1
|
Nowak-Perlak M, Ziółkowski P, Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155035. [PMID: 37603973 DOI: 10.1016/j.phymed.2023.155035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Experimental studies emphasize the therapeutic potential of plant-derived photosensitizers used in photodynamic therapy. Moreover, several in vitro and in vivo research present the promising roles of less-known anthraquinones that can selectively target cancer cells and eliminate them after light irradiation. This literature review summarizes the current knowledge of chosen plant-based-photosensitizers in PDT to show the results of emodin, aloe-emodin, parietin, rubiadin, hypericin, and soranjidiol in photodynamic therapy of cancer treatment and describe the comprehensive perspective of their role as natural photosensitizers. METHODS Literature searches of chosen anthraquinones were conducted on PubMed.gov with keywords: "emodin", "aloe-emodin", "hypericin", "parietin", "rubiadin", "soranjidiol" with "cancer" and "photodynamic therapy". RESULTS According to literature data, this review concentrated on all existing in vitro and in vivo studies of emodin, aloe-emodin, parietin, rubiadin, soranjidiol used as natural photosensitizers emphasizing their effectiveness and detailed mechanism of action in anticancer therapy. Moreover, comprehensive preclinical and clinical studies on hypericin reveal that the above-described substances may be included in the phototoxic treatment of different cancers. CONCLUSIONS Overall, this review presented less-known anthraquinones with their promising molecular mechanisms of action. It is expected that in the future they may be used as natural PSs in cancer treatment as well as hypericin.
Collapse
Affiliation(s)
- Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland.
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| |
Collapse
|
2
|
Galinari CB, Biachi TDP, Gonçalves RS, Cesar GB, Bergmann EV, Malacarne LC, Kioshima Cotica ÉS, Bonfim-Mendonça PDS, Svidzinski TIE. Photoactivity of hypericin: from natural product to antifungal application. Crit Rev Microbiol 2023; 49:38-56. [PMID: 35171731 DOI: 10.1080/1040841x.2022.2036100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Considering the multifaceted and increasing application of photodynamic therapy (PDT), in recent years the antimicrobial employment of this therapy has been highlighted, because of the antiviral, antibacterial, antiparasitic, and antifungal activities that have already been demonstrated. In this context, research focussed on antimycological action, especially for treatment of superficial infections, presents promising growth due to the characteristics of these infections that facilitate PDT application as new therapeutic options are needed in the field of medical mycology. Among the more than one hundred classes of photosensitizers the antifungal action of hypericin (Hyp) stands out due to its ability to permeate the lipid membrane and accumulate in different cytoplasmic organelles of eukaryotic cells. In this review, we aim to provide a complete overview of the origin, physicochemical characteristics, and optimal alternative drug deliveries that promote the photodynamic action of Hyp (Hyp-PDT) against fungi. Furthermore, considering the lack of a methodological consensus, we intend to compile the best strategies to guide researchers in the antifungal application of Hyp-PDT. Overall, this review provides a future perspective of new studies and clinical possibilities for the advances of such a technique in the treatment of mycoses in humans.
Collapse
Affiliation(s)
- Camila Barros Galinari
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Tiago de Paula Biachi
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Pietrzak M, Szabelski M, Wołąkiewicz G, Wieczorek Z. Spectroscopy studies of interaction hypericin with an anti-cancer therapy drug doxorubicin. Biophys Chem 2022; 288:106858. [PMID: 35905651 DOI: 10.1016/j.bpc.2022.106858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
The presented study was designed to estimate the ability of hypericin to interact with the anticancer drug doxorubicin. The hetero-association of hypericin and doxorubicin was investigated with absorption and fluorescence spectroscopy methods in aqueous solution of DMSO in two-component mixtures: doxorubicin-hypericin and three component mixtures: DNA-doxorubicin-hypericin. The data indicate that hypericin forms complexes with doxorubicin and that the association constants are on the order of 300,000 M-1 in a buffer with 30% DMSO content. The absorption spectra of the hypericin - doxorubicin complexes were examined as well. Owing to its ability to interact with flat aromatic compounds, hypericin may potentially be used as an interceptor molecule to detoxification of patients after chemotherapy.
Collapse
Affiliation(s)
- Monika Pietrzak
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland.
| | - Mariusz Szabelski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Grzegorz Wołąkiewicz
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Zbigniew Wieczorek
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Conrado PCV, Sakita KM, Arita GS, Gonçalves RS, Cesar GB, Caetano W, Hioka N, Voidaleski MF, Vicente VA, Svidzinski TIE, Bonfim-Mendonça PS, Kioshima ES. Hypericin-P123-photodynamic therapy in an ex vivo model as an alternative treatment approach for onychomycosis caused by Fusarium spp. Photodiagnosis Photodyn Ther 2021; 35:102414. [PMID: 34186264 DOI: 10.1016/j.pdpdt.2021.102414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
BackgroundFusarium has been considered an opportunistic pathogen, causing several infections in humans, including onychomycosis. In addition, a high resistance to conventional antifungals has been linked to this genus. Photodynamic Therapy (PDT), known as a non-invasive therapy, can be an alternative treatment for fungal infections, based on the excitation of a photosensitizing compound (PS) by a specific length of light, causing damage to the target. The aim of this study was to evaluate the effects of a formulation of Hypericin (Hyp) encapsulated in Pluronic™ (P123), via photodynamic therapy (PDT), on planktonic cells and biofilms in Fusarium spp. using in vitro and ex vivo assays. Materials & Methods epidemiology studies about Fusarium spp. in onychomycosis was perfomed, carried out molecular identification, compared the antifungal activity of the conventional antifungals with PDT with encapsulated Hypericin (Hyp-P123), carried out detection of reactive oxygen species, and measured the antibiofilm effect of the Hyp-P123-PDT in vitro and in an ex vivo model of onychomycosis. Results Hyp-P123-PDT exhibited a fungicidal effect in vitro with reductions ≥ 3 log10. ROS generation increased post-Hyp-P123-PDT in Fusarium spp. Hyp-P123-PDT showed a potent inhibitory effect on adhesion-phase and mature biofilms in vitro tests and an ex vivo model of onychomycosis (p<0.0001). Conclusion Hyp-P123-PDT had a potent effect against Fusarium spp., suggesting that photodynamic therapy with Hyp-P123 is a safe and promising treatment for onychomycosis in clinical practice.
Collapse
Affiliation(s)
- Pollyanna C V Conrado
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Karina M Sakita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Glaucia S Arita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | | | - Gabriel B Cesar
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Morgana F Voidaleski
- Department of Pathology Basic, State Federal University of Parana, Parana, Brazil
| | - Vania A Vicente
- Department of Pathology Basic, State Federal University of Parana, Parana, Brazil
| | | | | | - Erika S Kioshima
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil.
| |
Collapse
|
5
|
Gonçalves RS, de Oliveira ACV, Hioka N, Caetano W. Elucidation the binding interaction of hypericin-loaded P84 copolymeric micelles by using 1D and 2D NMR techniques. Nat Prod Res 2020; 36:1904-1908. [PMID: 32911984 DOI: 10.1080/14786419.2020.1817923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hypericin (HYP) is an active compound of Hypericum perforatum. Associated with photodynamic therapy (PDT), HYP has shown a broad therapeutic potential against microorganisms and cancer cells. Due to the low water solubility of HYP, its application in the biological medium becomes limited. To solve this limitation, our research group has been used copolymeric micelles to carrier HYP with high efficiency. However, there is no elucidated mechanism for HYP delivery mediated by copolymeric micelles. In this sense, we believed that the study of binding-sites of copolymeric micelles and HYP is the first step to its understanding. For this purpose, in this work, we employed 1D and 2D NMR techniques to investigate the behaviour of HYP-loaded P84 micelles in different concentrations . 1D and 2D NMR analysis revealed that HYP molecules were arrangement in a π-stacked aggregation form with a specific location on the core of P84 micelles.
Collapse
Affiliation(s)
| | | | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
6
|
de Morais FAP, Gonçalves RS, Vilsinski BH, Lazarin-Bidóia D, Balbinot RB, Tsubone TM, Brunaldi K, Nakamura CV, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposomes - part II: stability and application in melanoma B16-F10 cancer cells. Photochem Photobiol Sci 2020; 19:620-630. [PMID: 32248218 DOI: 10.1039/c9pp00284g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypericin (Hyp) is considered a promising photosensitizer for Photodynamic Therapy (PDT), due to its high hydrophobicity, affinity for cell membranes, low toxicity and high photooxidation activity. In this study, Hyp photophysical properties and photodynamic activity against melanoma B16-F10 cells were optimized using DPPC liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as a drug delivery system. This nanoparticle is used as a cell membrane biomimetic model and solubilizes hydrophobic drugs. Hyp oxygen singlet lifetime (τ) in DPPC was approximately two-fold larger than that in P-123 micelles (Pluronic™ surfactants), reflecting a more hydrophobic environment provided by the DPPC liposome. On the other hand, singlet oxygen quantum yield values (ΦΔ1O2) in DPPC and P-123 were similar; Hyp molecules were preserved as monomers. The Hyp/DPPC liposome aqueous dispersion was stable during fluorescence emission and the liposome diameter remained stable for at least five days at 30 °C. However, the liposomes collapsed after the lyophilization/rehydration process, which was resolved by adding the lyoprotectant Trehalose to the liposome dispersion before lyophilization. Cell viability of the Hyp/DPPC formulation was assessed against healthy HaCat cells and high-metastatic melanoma B16-F10 cells. Hyp incorporated into the DPPC carrier presented a higher selectivity index than the Hyp sample previously solubilized in ethanol under the illumination effect. Moreover, the IC50 was lower for Hyp in DPPC than for Hyp pre-solubilized in ethanol. These results indicate the potential of the formulation of Hyp/DPPC for future biomedical applications in PDT treatment.
Collapse
Affiliation(s)
| | | | | | - Danielle Lazarin-Bidóia
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Rodolfo Bento Balbinot
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Tayana Mazin Tsubone
- Universidade Federal de Uberlandia, Institute of Chemistry, 38400-902, Minas, Gerais, Brazil
| | - Kellen Brunaldi
- Physiological Sciences Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Celso Vatatu Nakamura
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Noboru Hioka
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
7
|
Gao L, Tong X, Ye T, Gao H, Zhang Q, Yan C, Yu Y, Fei Y, Zhou X, Shao Y. G‐Quadruplex‐Based Photooxidase Driven by Visible Light. ChemCatChem 2019. [DOI: 10.1002/cctc.201901481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Longlong Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Xingyu Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Ting Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yali Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yifan Fei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| |
Collapse
|
8
|
Akimsheva E, Dolinina E, Parfenyuk E. Interactions of sol-gel encapsulated acyclovir with silica matrix. Colloids Surf B Biointerfaces 2019; 178:103-110. [DOI: 10.1016/j.colsurfb.2019.02.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/06/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
|
9
|
Jin Q, Zhao J, Gao M, Feng Y, Liu W, Yin Z, Li T, Song S, Ni Y, Zhang J, Huang D, Zhang D. Evaluation of Necrosis Avidity and Potential for Rapid Imaging of Necrotic Myocardium of Radioiodinated Hypocrellins. Mol Imaging Biol 2019; 20:551-561. [PMID: 29305726 DOI: 10.1007/s11307-017-1157-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Rapid noninvasive delineation of necrotic myocardium in ischemic regions is very critical for risk stratification and clinical decision-making but still challenging. This study aimed to evaluate the necrosis avidity of radioiodinated hypocrellins and its potential for rapidly imaging necrotic myocardium. PROCEDURES The aggregation constants of four natural hypocrellins were analyzed by UV/vis spectroscopy. Then, they were radiolabeled with iodine-131 by iodogen oxidation method. Necrosis avidity of iodine-131-labeled hypocrellins was evaluated in rat models with reperfused liver infarction and muscular necrosis by gamma counting, autoradiography, and histopathology. Their pharmacokinetic properties were examined in normal rats. The potential of iodine-131-labeled hypomycin A ([131I]HD) for early imaging of necrotic myocardium was explored in rat models with reperfused myocardial infarction. Finally, the possible mechanism of necrosis avidity was investigated by in vitro DNA binding and in vivo blocking experiments. RESULTS The aggregation constants of four hypocrellins were all much smaller than that of hypericin, a most studied necrosis avid agent. The radiochemical purities of the four radiotracers after purification were all greater than 95 %, and more than 90 % of tracers remained intact after incubation in rat serum for 24 h. Among the four tracers, [131I]HD exhibited the highest necrotic to viable tissue uptake ratio and the fastest blood clearance. The necrotic myocardium could be clearly visualized 4 h after injection of [131I]HD by single-photon emission computed tomography/X-ray computed tomography (SPECT/CT). DNA binding studies suggested that HD could bind to DNA through intercalation. Blocking studies demonstrated that uptake of [131I]HD in necrotic muscle could be significantly blocked by excess unlabeled HD and ethidium bromide with 67 and 60 % decline at 6 h after coinjection, respectively. CONCLUSIONS [131I]HD can be used to rapidly visualize necrotic myocardium. The necrosis avidity mechanism of [131I]HD may be attributed to its binding to the exposed DNA in necrotic tissues.
Collapse
Affiliation(s)
- Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Juanzhi Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Yuanbo Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Wei Liu
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Tiannv Li
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200127, People's Republic of China
| | - Yicheng Ni
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Theragnostic Laboratory, KU Leuven, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Dejian Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Ma L, Cai L, Jin Q, Liang J, Zhang D, Liu W, Ni Y, Yin Z, Zhang J, Pan K. Evaluation of necrosis avidity of radioiodinated 5-hydroxytryptophan and its potential applications in myocardial infarction imaging. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
de Morais FAP, Gonçalves RS, Vilsinski BH, de Oliveira ÉL, Rocha NL, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposome. PART I: biomimetism of loading, location, interactions and thermodynamic properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 190:118-127. [PMID: 30513414 DOI: 10.1016/j.jphotobiol.2018.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/02/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Hypericin (Hyp) is a potential photosensitizer drug for Photodynamic Therapy (PDT). However, the high lipophilicity of Hyp prevents its preparation in water. To overcome the Hyp solubility problem, this study uses the liposomal vesicle of DPPC. Otherwise liposome is also one of the most employed artificial systems that mimetizes cell membranes. Our present focus is the interaction of Hyp into DPPC liposome as biomimetic system. We studied the loading, interaction, and localization of Hyp (2.8 μmol L-1) in DPPC (5.4 mmol L-1) liposomes, as well as the thermodynamic aspects of Hyp-liposomes. The Hyp addition to the DPPC liposome dispersion showed a Encapsulation Efficiency for [Hyp] = 2.8 μmol L-1 in [DPPC] = 5.3 mmol L-1 of 74.3% and 89.3% at 30.0 and 50.0 °C, respectively. The encapsulation profile obeys a pseudo first-order kinetic law, with a rate constant of 1.26 × 10-3 s-1 at 30.0 °C. Also the data suggests this reaction is preceded by an extremely rapid step. A study on the binding of Hyp/DPPC liposomes (Kb), performed at several temperatures, showed results of 4.8 and 18.5 × 103 L mol-1 at 293 and 323 K, respectively. Additionally, a decrease was observed in the ΔG of the Hyp/DPPC interaction (-20.6 and - 26.4 kL mol-1 at 293 and 323 K, respectively). The resulting ΔH > 0 with ΔS < 0 shows that the entropy is driven the process. Studies of Hyp location in the liposome at 298 K revealed the existence of two different Hyp populations with a Stern-Volmer constant (Ksv) of 4.65 and 1.87 L mol-1 using iodide as an aquo-suppressor at concentration ranged from 0 to 0.025 mol L-1 and from 0.025 to 0.150 mol L-1, respectively. Furthermore, studies of Fluorescence Resonance Energy Transfer, using DPH as a donor and Hyp as an acceptor, revealed that Hyp is allocated in different binding sites of the liposome. This is dependent on temperature. Thermal studies revealed that the Hyp/DPPC formulation presented reasonable stability. Size and morphological investigations showed that Hyp incorporation increases the average size of DPPC liposomes from 116 to 154 nm. The study demonstrated the ability of the Hyp-DPPC liposome as an interesting system for drug delivery system that can be applied to PDT.
Collapse
Affiliation(s)
- Flávia A P de Morais
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| | - Renato S Gonçalves
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| | - Bruno H Vilsinski
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil
| | - Évelin L de Oliveira
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil
| | - Nicola L Rocha
- Instituto de Química, Universidade Estadual de Campinas, Rua Carlos Gomes 241- Campinas - SP, Brazil
| | - Noboru Hioka
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| | - Wilker Caetano
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| |
Collapse
|
12
|
Damke GMZF, Souza RP, Montanha MC, Damke E, Gonçalves RS, César GB, Kimura E, Caetano W, Hioka N, Consolaro MEL. Selective Photodynamic Effects on Breast Cancer Cells Provided by p123 Pluronic®- Based Nanoparticles Modulating Hypericin Delivery. Anticancer Agents Med Chem 2018; 20:1352-1367. [PMID: 30387402 DOI: 10.2174/1871520618666181102091010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Breast cancer is the most relevant type of cancer and the second cause of cancer- related deaths among women in general. Currently, there is no effective treatment for breast cancer although advances in its initial diagnosis and treatment are available. Therefore, the value of novel anti-tumor therapeutic modalities remains an immediate unmet need in clinical practice. Following our previous work regarding the properties of the Pluronics with different photosensitizers (PS) for photodynamic therapy (PDT), in this study we aimed to evaluate the efficacy of supersaturated hypericin (HYP) encapsulated on Pluronic® P123 (HYP/P123) against breast cancer cells (MCF-7) and non-tumorigenic breast cells (MCF-10A). METHODS Cell internalization and subcellular distribution of HYP/P123 was confirmed by fluorescence microscopy. The phototoxicity and citototoxicity of HYP/P123 was assessed by trypan blue exclusion assay in the presence and absence of light. Long-term cytotoxicity was performed by clonogenic assay. Cell migration was determined by the wound-healing assay. Apoptosis and necrosis assays were performed by annexin VFITC/ propidium Iodide (PI) by fluorescence microscopy. RESULTS Our results showed that HYP/P123 micelles had high stability and high rates of binding to cells, which resulted in the selective internalization in MCF-7, indicating their potential to permeate the membrane of these cells. Moreover, HYP/P123 micelles accumulated in mitochondria and endoplasmic reticulum organelles, resulting in the photodynamic cell death by necrosis. Additionally, HYP/P123 micelles showed effective and selective time- and dose dependent phototoxic effects on MCF-7 cells but little damage to MCF-10A cells. HYP/P123 micelles inhibited the generation of cellular colonies, indicating a possible capability to prevent the recurrence of breast cancer. We also demonstrated that HYP/P123 micelles inhibit the migration of tumor cells, possibly by decreasing their ability to form metastases. CONCLUSION Taken together, the results presented here indicate a potentially useful role of HYP/P123 micelles as a platform for HYP delivery to more specifically and effectively treat human breast cancers through photodynamic therapy, suggesting they are worthy for in vivo preclinical evaluations.
Collapse
Affiliation(s)
| | - Raquel Pantarotto Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringa, Parana, Brazil
| | | | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringa, Parana, Brazil
| | | | | | - Elza Kimura
- Department of Pharmacy, Universidade Estadual de Maringa, Parana, Brazil
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringa, Parana, Brazil
| | - Noboru Hioka
- Department of Chemistry, Universidade Estadual de Maringa, Parana, Brazil
| | | |
Collapse
|
13
|
Keša P, Jancura D, Kudláčová J, Valušová E, Antalík M. Excitation of triplet states of hypericin in water mediated by hydrotropic cromolyn sodium salt. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:185-191. [PMID: 29241053 DOI: 10.1016/j.saa.2017.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Hypericin (Hyp) is a hydrophobic pigment found in plants of the genus Hypericum which exhibits low levels of solubility in water. This work shows that the solubility of Hyp can be significantly increased through the addition of cromolyn disodium salt (DSCG). Performed studies using UV-VIS absorption and fluorescence spectroscopies demonstrate that Hyp remains in a predominantly biologically photodynamic active monomeric form in the presence of DSCG at concentrations ranging from 4.6×10-3 to 1.2×10-1mol·L-1. The low association constant between Hyp and DSCG (Ka=71.7±2M-1), and the polarity value of 0.3 determined for Hyp in a DSCG-water solution, lead to a suggestion that the monomerization of Hyp in aqueous solution can be explained as a result of the hydrotropic effect of DSCG. This hydrotropic effect is most likely a result of interactions between two relative rigid aromatic rings of DSCG and a delocalized charge on the surface of the Hyp molecule. The triplet-triplet (T-T) electronic transition observed in is Hyp in the presence of DSCG suggests a possible production of reactive oxygen species once Hyp is irradiated with visible light in a DSCG aqueous solution.
Collapse
Affiliation(s)
- Peter Keša
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia.
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Júlia Kudláčová
- Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Šrobárova 2, 041 80 Košice, Slovakia
| | - Eva Valušová
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Marián Antalík
- Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Šrobárova 2, 041 80 Košice, Slovakia; Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| |
Collapse
|
14
|
Keša P, Antalík M. Determination of p K a constants of hypericin in aqueous solution of the anti-allergic hydrotropic drug Cromolyn disodium salt. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Pietrzak M, Szabelski M, Kasparek A, Wieczorek Z. Interactions of hypericin with a model mutagen – Acridine orange analyzed by light absorption and fluorescence spectroscopy. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Yin Z, Sun L, Jin Q, Song S, Feng Y, Liao H, Ni Y, Zhang J, Liu W. Excretion and toxicity evaluation of 131I-Sennoside A as a necrosis-avid agent. Xenobiotica 2016; 47:980-988. [PMID: 27830982 DOI: 10.1080/00498254.2016.1258740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. Sennoside A (SA) is a newly identified necrosis-avid agent that shows capability for imaging diagnosis and tumor necrosis targeted radiotherapy. As a water-soluble compound, 131I-Sennoside A (131I-SA) might be excreted predominately through the kidneys with the possibility of nephrotoxicity. 2. To further verify excretion pathway and examine nephrotoxicity of 131I-SA, excretion and nephrotoxicity were appraised. The pharmacokinetics, hepatotoxicity and hematotoxicity of 131I-SA were also evaluated to accelerate its possible clinical translation. All these studies were conducted in mice with ethanol-induced muscular necrosis following a single intravenous administration of 131I-SA at 18.5 MBq/kg or 370 MBq/kg. 3. Excretion data revealed that 131I-SA was predominately (73.5% of the injected dose (% ID)) excreted via the kidneys with 69.5% ID detected in urine within 72 h post injection. Biodistribution study indicated that 131I-SA exhibited initial high distribution in the kidneys but subsequently a fast renal clearance, which was further confirmed by the results of autoradiography and single-photon emission computed tomography-computed tomography (SPECT-CT) imaging. The maximum necrotic to normal muscle ratio reached to 7.9-fold at 48 h post injection, which further verified the necrosis avidity of 131I-SA. Pharmacokinetic parameters showed that 131I-SA had fast blood clearance with an elimination half-life of 6.7 h. Various functional indexes were no significant difference (p > 0.05) between before administration and 1 d, 8 d, 16 d after administration. Histopathology showed no signs of tissue damage. 4. These data suggest 131I-SA is a safe and promising necrosis-avid agent applicable in imaging diagnosis and tumor necrosis targeted radiotherapy.
Collapse
Affiliation(s)
- Zhiqi Yin
- a Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Drug Screening , China Pharmaceutical University , Nanjing , Jiangsu Province , P.R. China
| | - Lidan Sun
- a Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Drug Screening , China Pharmaceutical University , Nanjing , Jiangsu Province , P.R. China.,b Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , P.R. China.,c Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China
| | - Qiaomei Jin
- b Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , P.R. China.,c Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China
| | - Shaoli Song
- d Department of Nuclear Medicine , Renji Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yuanbo Feng
- b Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , P.R. China.,c Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China.,e Department of Radiology , Faculty of Medicine, K.U. Leuven , Leuven , Belgium , and
| | - Hong Liao
- a Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Drug Screening , China Pharmaceutical University , Nanjing , Jiangsu Province , P.R. China
| | - Yicheng Ni
- b Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , P.R. China.,c Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China.,e Department of Radiology , Faculty of Medicine, K.U. Leuven , Leuven , Belgium , and
| | - Jian Zhang
- b Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , P.R. China.,c Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu Province , P.R. China
| | - Wei Liu
- f Department of Nuclear Medicine , The First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu Province , P.R. China
| |
Collapse
|
17
|
Wang C, Jin Q, Yang S, Zhang D, Wang Q, Li J, Song S, Sun Z, Ni Y, Zhang J, Yin Z. Synthesis and Evaluation of 131I-Skyrin as a Necrosis Avid Agent for Potential Targeted Radionuclide Therapy of Solid Tumors. Mol Pharm 2015; 13:180-189. [PMID: 26647005 DOI: 10.1021/acs.molpharmaceut.5b00630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An innovative anticancer approach targeted to necrotic tissues, which serves as a noncancerous and generic anchor, may present a breakthrough. Necrosis avid agents with a flat conjugate aromatic structure selectively accumulate in necrotic tissues, but they easily form aggregates that undesirably distribute to normal tissues. In this study, skyrin, a dianthraquinone compound with smaller and distorted π-cores and thus decreased aggregates as compared with hypericin (Hyp), was designed to target necrosis for tumor therapy. Aggregation studies of skyrin by UV/vis spectroscopy showed a smaller self-association constant with skyrin than with Hyp. Skyrin was labeled by iodine-131 with a radiochemical purity of 98% and exhibited good stability in rat serum for 72 h. In vitro cell uptake studies showed significant difference in the uptake of 131I-skyrin by necrotic cells compared to normal cells (P < 0.05). Compared in rats with liver and muscle necrosis, radiobiodistribution, whole-body autoradiography, and SPECT/CT studies revealed higher accumulation of 131I-skyrin in necrotic liver and muscle (p < 0.05), but lower uptake in normal organs, relative to that of 131I-Hyp. In mice bearing H22 tumor xenografts treated with combretastatin A4 disodium phosphate, the highest uptake of 131I-skyrin was found in necrotic tumor. In conclusion, 131I-skyrin appears a promising agent with reduced accumulation in nontarget organs for targeted radionuclide therapy of solid tumors.
Collapse
Affiliation(s)
- Cong Wang
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Qiaomei Jin
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Shengwei Yang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Dongjian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Qin Wang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China.,College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing 210023, Jiangsu Province, P. R. China
| | - Jindian Li
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University, School of Medicine , Shanghai 200127, P. R. China
| | - Ziping Sun
- Radiation Medical Institute, Shandong Academy of Medical Sciences , Jinan 250062, Shandong Province, P. R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven , 3000 Leuven, Belgium
| | - Jian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China
| |
Collapse
|
18
|
Li J, Zhang J, Yang S, Jiang C, Zhang D, Jin Q, Wang Q, Wang C, Ni Y, Yin Z, Song S. Synthesis and Preclinical Evaluation of Radioiodinated Hypericin Dicarboxylic Acid as a Necrosis Avid Agent in Rat Models of Induced Hepatic, Muscular, and Myocardial Necroses. Mol Pharm 2015; 13:232-40. [PMID: 26568406 DOI: 10.1021/acs.molpharmaceut.5b00686] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myocardial infarction (MI) leads to substantial morbidity and mortality around the world. Accurate assessment of myocardial viability is essential to assist therapies and improve patient outcomes. (131)I-hypericin dicarboxylic acid ((131)I-HDA) was synthesized and evaluated as a potential diagnostic agent for earlier assessment of myocardium viability compared to its preceding counterpart (131)I-hypericin ((131)I-Hyp) with strong hydrophobic property, long plasma half-life, and high uptake in mononuclear phagocyte system (MPS). Herein, HDA was synthesized and characterized, and self-aggregation constant Kα was analyzed by spectrophotometry. Plasma half-life was determined in healthy rats by γ-counting. (131)I-HDA and (131)I-Hyp were prepared with iodogen as oxidant. In vitro necrosis avidity of (131)I-HDA and (131)I-Hyp was evaluated in necrotic cells induced by hyperthermia. Biodistribution was determined in rat models of induced necrosis using γ-counting, autoradiography, and histopathology. Earlier imaging of necrotic myocardium to assess myocardial viability was performed in rat models of reperfused myocardium infarction using single photon emission computed tomography/computed tomography (SPECT/CT). As a result, the self-aggregation constant Kα of HDA was lower than that of Hyp (105602 vs 194644, p < 0.01). (131)I-HDA displayed a shorter blood half-life compared with (131)I-Hyp (9.21 vs 31.20 h, p < 0.01). The necrotic-viable ratio in cells was higher with (131)I-HDA relative to that with (131)I-Hyp (5.48 vs 4.63, p < 0.05). (131)I-HDA showed a higher necrotic-viable myocardium ratio (7.32 vs 3.20, p < 0.01), necrotic myocardium-blood ratio (3.34 vs 1.74, p < 0.05), and necrotic myocardium-lung ratio (3.09 vs 0.61, p < 0.01) compared with (131)I-Hyp. (131)I-HDA achieved imaging of necrotic myocardium at 6 h postinjection (p.i.) with SPECT/CT, earlier than what (131)I-Hyp did. Therefore, (131)I-HDA may serve as a promising necrosis-avid diagnostic agent for earlier imaging of necrotic myocardium compared with (131)I-Hyp. This may support further development of radiopharmaceuticals ((123)I and (99m)Tc) based on HDA for SPECT/CT of necrotic myocardium.
Collapse
Affiliation(s)
- Jindian Li
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Jian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Shengwei Yang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Cuihua Jiang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - DongJian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Qiaomei Jin
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Qin Wang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China.,College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing 210023, Jiangsu Province, P. R. China
| | - Cong Wang
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Yicheng Ni
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China.,Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven , 3000 Leuven, Belgium
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University, School of Medicine , Shanghai 200127, P. R. China
| |
Collapse
|
19
|
Zhang D, Jiang C, Yang S, Gao M, Huang D, Wang X, Shao H, Feng Y, Sun Z, Ni Y, Zhang J, Yin Z. Effects of skeleton structure on necrosis targeting and clearance properties of radioiodinated dianthrones. J Drug Target 2015; 24:566-77. [DOI: 10.3109/1061186x.2015.1113541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dongjian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, P.R. China,
| | - Cuihua Jiang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Shengwei Yang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Meng Gao
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Dejian Huang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Xiaoning Wang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Haibo Shao
- Department of Radiology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China,
| | - Yuanbo Feng
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Ziping Sun
- Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, Shandong Province, P.R. China, and
| | - Yicheng Ni
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
- Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, Shandong Province, P.R. China, and
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, P.R. China,
| |
Collapse
|
20
|
Zhang D, Huang D, Ji Y, Jiang C, Li Y, Gao M, Yao N, Liu X, Shao H, Jing S, Ni Y, Yin Z, Zhang J. Experimental evaluation of radioiodinated sennoside B as a necrosis-avid tracer agent. J Drug Target 2014; 23:180-90. [PMID: 25330022 DOI: 10.3109/1061186x.2014.971328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Necrosis-avid agents are a class of compounds that selectively accumulate in the necrotic tissues after systemic administration, which can be used for in vivo necrosis imaging and targeted therapies. In order to search for a necrosis-avid tracer agent with improved drugability, we labelled iodine-131 on sennoside B (SB) as a naturally occurring median dianthrone compound. The necrosis targetability and clearance properties of (131)I-SB were evaluated in model rats with liver and muscle necrosis. On SPECT/CT images, a "hot spot" in the infarcted liver lobe and necrotic muscle was persistently observed at 24 h and 72 h post-injection (p.i.). Gamma counting of the tissues of interest revealed a radioactivity ratio of necrotic to viable liver at 4.6 and 3.4 and of necrotic to viable muscle at 7.0 and 8.8 at 24 h and 72 h p.i., respectively. The good match of autoradiographs and fluoromicroscopic images with corresponding histochemical staining suggested preferential uptake of (131)I-SB in necrotic tissue. Pharmacokinetic study revealed that (131)I-SB has an elimination half-life of 8.6 h. This study indicates that (131)I-SB shows not only prominent necrosis avidity but also favourable pharmacokinetics, which may serve as a potential necrosis-avid diagnostic agent for assessment of tissue viability.
Collapse
Affiliation(s)
- Dongjian Zhang
- Department of Natural Medicinal Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, Jiangsu Province , PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|