1
|
Hei X, Li Z, Liu Z, Li S, Wu C, Ma X, Jiao B, Hu H, Zhu J, Adhikari B, Wang Q, Shi A. Effects of ethanol addition on the quality and stability of Pickering emulsions: Developing Baijiu-infused ice cream. Int J Biol Macromol 2025; 284:138190. [PMID: 39615719 DOI: 10.1016/j.ijbiomac.2024.138190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
The application of Pickering emulsions in real food systems has attracted increasing research interest. Similarly, the tendency of incorporation of Chinese Baijiu into food products is also increasing. This study aimed to investigate the effects of ethanol addition (3 %-15 %, v/v) on the physicochemical, rheological properties and microstructure of Pickering emulsions. The results showed that ethanol resulted in a decrease in particle size, an increase in the apparent viscosity and in the proportion of adsorbed proteins at the oil-water interface of Pickering emulsions, resulting in an increase in emulsion stability. The results obtained from cryo-scanning electron microscopy showed that the incorporation of Baijiu improve the interaction between the fat globules at the interface, enhanced the film around the bubbles, and led to a reduction in the size and a more uniform distribution of air bubbles in the ice cream. These results indicate that the incorporation of a moderate amount (<15 %, v/v) of ethanol into the Pickering emulsion enhances its stability. Adding Baijiu to the preparation of plant-based ice cream resulted in a mellow texture, fine organization, and suitable hardness. These findings provide valuable information for potential application of ethanol, particularly Baijiu, in Pickering emulsion-based applications, including frozen products.
Collapse
Affiliation(s)
- Xue Hei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenyuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shanshan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chao Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, 3083, VIC, Australia
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
2
|
Goodarzi MM, Jalalirad R. Clear insight into complex multimodal resins and impurities to overcome recombinant protein purification challenges: A review. Biotechnol Bioeng 2025; 122:5-29. [PMID: 39290077 DOI: 10.1002/bit.28846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Increasing attention has been paid to the purity of therapeutic proteins imposing extensive costs and challenges to the downstream processing of biopharmaceuticals. One of the efforts, that has been exerted to overcome such limitations, was developing multimodal or mixed-mode chromatography (MMC) resins for launching selective, orthogonal, non-affinity purification platforms. Despite relatively extensive usage of MMC resins, their real potential and fulfillment have not been extensively reviewed yet. In this work, the explanation of practical and key aspects of downstream processing of recombinant proteins with or without MMC resins was debated, as being useful for further purification process development. This review has been written as a step-by-step guide to deconvolute both inherent protein purification and MMC complexities. Here, after complete elucidation of the potential of MMC resins, the effects of frequently used additives (mobile phase modifiers) and their possible interactions during the purification process, the critical characteristics of common product-related impurities (e.g., aggregates, charge variants, fragments), host-related impurities (e.g., host cell protein and DNA) and process related impurities (e.g., endotoxin, and viruses) with solved or unsolved challenges of traditional and MMC resins have been discussed. Such collective experiences which are reported in this study could be considered as an applied guide for developing successful downstream processing in challenging conditions by providing a clear insight into complex MMC resins and impurities.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Reza Jalalirad
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| |
Collapse
|
3
|
Impact of ethanol shock on the structural change and emulsifying capacity of bovine lactoferrin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Feng Y, Yuan D, Cao C, Kong B, Sun F, Xia X, Liu Q. Changes of in vitro digestion rate and antioxidant activity of digestion products of ethanol-modified whey protein isolates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Effects of ethanol pre-treated whey protein isolates on the physical stability and protein-lipid co-oxidation in oil-in-water emulsions. Food Chem 2022; 385:132733. [PMID: 35318178 DOI: 10.1016/j.foodchem.2022.132733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
The changes of physical stability and protein-lipid co-oxidation of oil-in-water (O/W) emulsions which stabilized by whey protein isolates (WPI) and ethanol pre-treated WPI (EWPI) under different homogenization methods were investigated. Compared with WPI, EWPI could obviously enhance the O/W emulsion's stability due to smaller particle size and higher level of adsorbed proteins. Moreover, protein-lipid co-oxidation was observed in both WPI and EWPI stabilized O/W emulsions and controlled by the characteristics of the adsorbed proteins. EWPI protect themselves from attacked of lipid oxidation products more effectively than WPI, showing lower N'-formyl-l-kynurenine or carbonyl contents and degree of aggregation, as well as higher fluorescence intensity. Furthermore, high-pressure homogenization induced higher levels of adsorbed proteins in O/W emulsions than ultrasound homogenization, resulting in a higher degree of protein oxidation and lower degree of lipid oxidation. Therefore, EWPI can be applied as an efficient emulsifier in emulsion foods with higher physical and oxidative stabilities.
Collapse
|
6
|
Germolus CB, Rehman UN, Ramahi AA, Jue T. Lipid Oxidation Product Nonenal and Myoglobin Oxidation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clayton B. Germolus
- Department of Biochemistry and Molecular Medicine University of California‐Davis Davis CA 95616 USA
| | - Usman N. Rehman
- Department of Biochemistry and Molecular Medicine University of California‐Davis Davis CA 95616 USA
| | - Amjad A. Ramahi
- Department of Biochemistry and Molecular Medicine University of California‐Davis Davis CA 95616 USA
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine University of California‐Davis Davis CA 95616 USA
| |
Collapse
|
7
|
Penaloza Arias LC, Huynh DN, Babity S, Marleau S, Brambilla D. Optimization of a Liposomal DNase I Formulation with an Extended Circulating Half-Life. Mol Pharm 2022; 19:1906-1916. [PMID: 35543327 DOI: 10.1021/acs.molpharmaceut.2c00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug delivery systems such as liposomes are widely used to stabilize and increase the plasma half-life of therapeutics. In this article, we have investigated two strategies to increase the half-life of deoxyribonuclease I, an FDA-approved enzyme used for the treatment of cystic fibrosis, and a potential candidate for the reduction of uncontrolled inflammation induced by neutrophil extracellular traps. We demonstrate that our optimized preparation procedure resulted in nanoparticles with improved plasma half-life and total exposure relative to native protein, while maintaining enzymatic activity.
Collapse
Affiliation(s)
| | - David N Huynh
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec Canada H3T 1J4
| | - Samuel Babity
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec Canada H3T 1J4
| | - Sylvie Marleau
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec Canada H3T 1J4
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec Canada H3T 1J4
| |
Collapse
|
8
|
Yang C, Yu C, Zhang M, Yang X, Dong H, Dong Q, Zhang H, Li L, Guo X, Zang H. Investigation of protective effect of ethanol on the natural structure of protein with infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120935. [PMID: 35121476 DOI: 10.1016/j.saa.2022.120935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The stability of biological drugs with protein as an active substance depends heavily on the retention of natural protein structure during freeze-drying. Stabilizers have become important substances in the process of protein freeze-drying. In order to further understand the mechanism of the interaction between protein and stabilizers, human serum albumin (HSA) and simple hydroxyl compound ethanol were used as models. Infrared (IR) spectroscopy combined with chemometrics was implemented to investigate the changes of secondary structure and hydration of HSA when different concentrations of ethanol were considered as interference. Through the analysis of the protein secondary structure and hydrated layer, we found that the addition of ethanol-d6 increased the α-helix of HSA and reduced the disordered structure. The hydrogen bond structure around HSA was enhanced and intermolecular aggregation was reduced through the action of the water molecules. The hypothesis was verified by circular dichroism (CD) and transmission electron microscopy (TEM) observation by adding different concentrations of ethanol-d6. It was found that a small amount of ethanol could protect the native conformation of HSA. In conclusion, this study revealed the mechanism of ethanol as a protein protector, provided a new idea for protein purification process and a theoretical basis for biomolecular interaction.
Collapse
Affiliation(s)
- Cui Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chen Yu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengqi Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangchun Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hailing Dong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qin Dong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Zhang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China
| | - Xueping Guo
- Bloomage Biotechnology Corporation Limited, Tianchen Street 678, Jinan, Shandong 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
9
|
Lei Y, Gao S, Xiang X, Li X, Yu X, Li S. Physicochemical, structural and adhesion properties of walnut protein isolate-xanthan gum composite adhesives using walnut protein modified by ethanol. Int J Biol Macromol 2021; 192:644-653. [PMID: 34655580 DOI: 10.1016/j.ijbiomac.2021.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
Low-sugar and high-protein adhesives have broad market application prospects, while natural plant proteins have confronted technical bottlenecks due to their poor adhesion. In this study, the effects of ethanol with different concentrations (0-80%) on the adhesion properties of walnut protein isolate-xanthan gum (WNPI-XG) composite adhesives were investigated. Results showed the bonding strength of WNPI-XG treated with 40% ethanol reached 12.55 MPa, the denaturation temperature and the surface hydrophobicity increased to 87.91 and 185.07 respectively, displaying the best rheological and texture properties. It also indicated appropriate concentration of ethanol (40%) didn't change the molecular weight of WNPI-XG, but greatly strengthened the fluorescence intensity, leading changes in contents of reactive sulfhydryl groups, electrostatic forces, hydrophobic interactions, hydrogen bonds and disulfide bonds. Furthermore, the treatment also facilitated a conformation conversion of the secondary structures from β-sheet to α-helix, promoting the full unfolding of protein molecules. The microstructure analysis showed after 40% ethanol treatment, the WNPI structure was uniform, the surface of WNPI-XG adhesive was flat and smooth, combined more closely with water molecules. By analyzing the influence of ethanol treatment on adhesion of WNPI-XG, the research laid a theoretical foundation for protein modification, providing good technical references for its development and utilization.
Collapse
Affiliation(s)
- Yuqing Lei
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaole Xiang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
10
|
Hansen J, Uthayakumar R, Pedersen JS, Egelhaaf SU, Platten F. Interactions in protein solutions close to liquid-liquid phase separation: ethanol reduces attractions via changes of the dielectric solution properties. Phys Chem Chem Phys 2021; 23:22384-22394. [PMID: 34608908 DOI: 10.1039/d1cp03210k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ethanol is a common protein crystallization agent, precipitant, and denaturant, but also alters the dielectric properties of solutions. While ethanol-induced unfolding is largely ascribed to its hydrophobic parts, its effect on protein phase separation and inter-protein interactions remains poorly understood. Here, the effects of ethanol and NaCl on the phase behavior and interactions of protein solutions are studied in terms of the metastable liquid-liquid phase separation (LLPS) and the second virial coefficient B2 using lysozyme solutions. Determination of the phase diagrams shows that the cloud-point temperatures are reduced and raised by the addition of ethanol and salt, respectively. The observed trends can be explained using the extended law of corresponding states as changes of B2. The results for B2 agree quantitatively with those of static light scattering and small-angle X-ray scattering experiments. Furthermore, B2 values calculated based on inter-protein interactions described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential and considering the dielectric solution properties and electrostatic screening due to the ethanol and salt content quantitatively agree with the experimentally observed B2 values.
Collapse
Affiliation(s)
- Jan Hansen
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Rajeevann Uthayakumar
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Jan Skov Pedersen
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany. .,Institute of Biological Information Processing (IBI-4: Biomacromolecular Systems and Processes), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
11
|
Ethanol induced changes in structural, morphological, and functional properties of whey proteins isolates: Influence of ethanol concentration. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106379] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Xu S, Gu M, Wu K, Li G. Unraveling the interaction mechanism between collagen and alcohols with different chain lengths and hydroxyl positions. Colloids Surf B Biointerfaces 2021; 199:111559. [PMID: 33429285 DOI: 10.1016/j.colsurfb.2021.111559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/20/2020] [Accepted: 01/03/2021] [Indexed: 01/19/2023]
Abstract
The present study systematically investigated the effects of alcohols, including methanol, ethanol, n-butanol, and propanol with different hydroxyl group numbers and locations on the thermal stability and molecular aggregation behavior of collagen. The results of ultra-sensitive differential scanning calorimetry (US-DSC), dynamic light scattering (DLS) and intrinsic fluorescence showed that with the increase of carbon chain length, alcohols can denature collagen, accompanied by transition in triple helical structure, promoted aggregation behavior, and altered molecular interactions. However, with the number of hydroxyl groups in alcohol molecules increased, the thermal stability of collagen increased and the molecules tended to disperse. Furthermore, radial distribution function (RDF) results showed that alcohols can change the structure of the hydration layer around collagen, thus altering the aggregation morphology of collagen molecules in solution. The results of the interaction between components in different alcohol systems demonstrated that with the decrease of alcohol polarity, bridge bond networks were formed between collagen molecules. Specifically, it was found that because the hydroxyl groups in 1,3-propanediol are located at both ends of the carbon chain, the reticular bridge bond structure formed between the collagen molecules changed into chain-like bridge structure. The bridge bonds between collagen molecules were considered to be weak cross-linking, which was an important reason for the destruction of collagen structure. In this study, the mechanism of interaction between different alcohols and collagen was elucidated, which will be helpful for further development of complex alcohol and collagen products.
Collapse
Affiliation(s)
- Songcheng Xu
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Min Gu
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Kun Wu
- School of Materials and Environmental Protection, Chengdu Textile College, Chengdu 610065, PR China.
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
13
|
Lim DG, Lee JC, Kim DJ, Kim SJ, Yu HW, Jeong SH. Effects of precipitation process on the biophysical properties of highly concentrated proteins. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00471-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Zhanmu O, Zhao P, Yang Y, Yang X, Gong H, Li X. Maintenance of Fluorescence During Paraffin Embedding of Fluorescent Protein-Labeled Specimens. Front Neurosci 2019; 13:752. [PMID: 31396038 PMCID: PMC6664058 DOI: 10.3389/fnins.2019.00752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 11/20/2022] Open
Abstract
Paraffin embedding is widely used in microscopic imaging for preparing biological specimens. However, owing to significant fluorescence quenching during the embedding process, it is not compatible with fluorescent-labeling techniques, such as transgenic and viral labeling using green fluorescent protein (GFP). Here, we investigate the quenching mechanism and optimize the embedding process to improve the preservation of fluorescence intensity. The results show that dehydration is the main reason for fluorescence quenching during paraffin embedding, caused by the full denaturation of GFP molecules in ethyl alcohol. To evaluate fluorescent and morphological preservation, we modified the embedding process using tertiary butanol (TBA) instead of ethyl alcohol. Fluorescence intensity following TBA dehydration increased 12.08-fold of that observed in the traditional method. We obtained uniform fluorescence maintenance throughout the whole mouse brain, while the continuous apical dendrites, spines, and axon terminals were shown evenly within the cortex, hippocampus, and the amygdala. Moreover, we embedded a whole rat brain labeled with AAV in the prelimbic cortex (Prl). With the axon terminals in different areas, such as the caudate putamen, thalamus, and pyramidal tract, the results showed a continuous tract of Prl neurons throughout the whole brain. This method was also suitable for tdTomota labeled samples. These findings indicate that this modified embedding method could be compatible with GFP and provides a potential turning point for applications in the fluorescent labeling of samples.
Collapse
Affiliation(s)
- Ouyang Zhanmu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Peilin Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| |
Collapse
|