1
|
Schwinger DP, Peschel MT, Rigotti T, Kabaciński P, Knoll T, Thyrhaug E, Cerullo G, Hauer J, de Vivie-Riedle R, Bach T. Photoinduced B-Cl Bond Fission in Aldehyde-BCl 3 Complexes as a Mechanistic Scenario for C-H Bond Activation. J Am Chem Soc 2022; 144:18927-18937. [PMID: 36205547 DOI: 10.1021/jacs.2c06683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In concert with carbonyl compounds, Lewis acids have been identified as a versatile class of photocatalysts. Thus far, research has focused on activation of the substrate, either by changing its photophysical properties or by modifying its photochemistry. In this work, we expand the established mode of action by demonstrating that UV photoexcitation of a Lewis acid-base complex can lead to homolytic cleavage of a covalent bond in the Lewis acid. In a study on the complex of benzaldehyde and the Lewis acid BCl3, we found evidence for homolytic B-Cl bond cleavage leading to formation of a borylated ketyl radical and a free chlorine atom only hundreds of femtoseconds after excitation. Both time-dependent density functional theory and transient absorption experiments identify a benzaldehyde-BCl2 cation as the dominant species formed on the nanosecond time scale. The experimentally validated B-Cl bond homolysis was synthetically exploited for a BCl3-mediated hydroalkylation reaction of aromatic aldehydes (19 examples, 42-76% yield). It was found that hydrocarbons undergo addition to the C═O double bond via a radical pathway. The photogenerated chlorine radical abstracts a hydrogen atom from the alkane, and the resulting carbon-centered radical either recombines with the borylated ketyl radical or adds to the ground-state aldehyde-BCl3 complex, releasing a chlorine atom. The existence of a radical chain was corroborated by quantum yield measurements and by theory. The photolytic mechanism described here is based on electron transfer between a bound chlorine and an aromatic π-system on the substrate. Thereby, it avoids the use of redox-active transition metals.
Collapse
Affiliation(s)
- Daniel P Schwinger
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, D-85747 Garching, Germany
| | - Martin T Peschel
- Department of Chemistry, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Thomas Rigotti
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, D-85747 Garching, Germany
| | - Piotr Kabaciński
- IFN-CNR and Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - Thomas Knoll
- Department of Chemistry, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Erling Thyrhaug
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, D-85747 Garching, Germany
| | - Giulio Cerullo
- IFN-CNR and Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - Jürgen Hauer
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, D-85747 Garching, Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
2
|
Farfan CA, Turner DB. A systematic model study quantifying how conical intersection topography modulates photochemical reactions. Phys Chem Chem Phys 2020; 22:20265-20283. [PMID: 32966428 DOI: 10.1039/d0cp03464a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite their important role in photochemistry and expected presence in most polyatomic molecules, conical intersections have been thoroughly characterized in a comparatively small number of systems. Conical intersections can confer molecular photoreactivity or photostability, often with remarkable efficacy, due to their unique structure: at a conical intersection, the adiabatic potential energy surfaces of two or more electronic states are degenerate, enabling ultrafast decay from an excited state without radiative emission, known as nonadiabatic transfer. Furthermore, the precise conical intersection topography determines fundamental properties of photochemical processes, including excited-state decay rate, efficacy, and molecular products that are formed. However, these relationships have yet to be defined comprehensively. In this article, we use an adaptable computational model to investigate a variety of conical intersection topographies, simulate resulting nonadiabatic dynamics, and calculate key photochemical observables. We varied the vibrational mode frequencies to modify conical intersection topography systematically in four primary classes of conical intersections and quantified the resulting rate, total yield, and product yield of nonadiabatic decay. The results reveal that higher vibrational mode frequencies reduce nonadiabatic transfer, but increase the transfer rate and resulting photoproduct formation. These trends can inform progress toward experimental control of photochemical reactions or tuning of molecules' photochemical properties based on conical intersections and their topography.
Collapse
Affiliation(s)
- Camille A Farfan
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Daniel B Turner
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
3
|
Nitschke P, Lokesh N, Gschwind RM. Combination of illumination and high resolution NMR spectroscopy: Key features and practical aspects, photochemical applications, and new concepts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:86-134. [PMID: 31779887 DOI: 10.1016/j.pnmrs.2019.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, photochemical and photocatalytic applications have developed into one of the dominant research fields in chemistry. However, mechanistic investigations to sustain this enormous progress are still relatively sparse and in high demand by the photochemistry community. UV/Vis spectroscopy and EPR spectroscopy have been the main spectroscopic tools to study the mechanisms of photoreactions due to their higher time resolution and sensitivity. On the other hand, application of NMR in photosystems has been mainly restricted to photo-CIDNP, since the initial photoexcitation was thought to be the single key to understand photoinduced reactions. In 2015 the Gschwind group showcased the possibility that different reaction pathways could occur from the same photoexcited state depending on the reaction conditions by using in situ LED illumination NMR. This was the starting point to push the active participation of NMR in photosystems to its full potential, including reaction profiling, structure determination of intermediates, downstream mechanistic studies, dark pathways, intermediate sequencing with CEST etc. Following this, multiple studies using in situ illumination NMR have been reported focusing on mechanistic investigations in photocatalysis, photoswitches, and polymerizations. The recent increased popularity of this technique can be attributed to the simplicity of the experimental setup and the availability of low cost, high power LEDs. Here, we review the development of experimental design, applications and new concepts of illuminated NMR. In the first part, we describe the development of different designs of NMR illumination apparatus, illuminating from the bottom/side/top/inside, and discuss their pros and cons for specific applications. Furthermore, we address LASERs and LEDs as different light sources as well as special cases such as UVNMR(-illumination), FlowNMR, NMR on a Chip etc. To complete the discussion on experimental apparatus, the advantages and disadvantages of in situ LED illumination NMR versus ex situ illumination NMR are described. The second part of this review discusses different facets of applications of inside illumination experiments. It highlights newly revealed mechanistic and structural information and ideas in the fields of photocatalyis, photoswitches and photopolymerization. Finally, we present new concepts and methods based on the combination of NMR and illumination such as sensitivity enhancement, chemical pump probes, experimental access to transition state combinations and NMR actinometry. Overall this review presents NMR spectroscopy as a complementary tool to UV/Vis spectroscopy in mechanistic and structural investigations of photochemical processes. The review is presented in a way that is intended to assist the photochemistry and photocatalysis community in adopting and understanding this astonishingly powerful in situ LED illumination NMR method for their investigations on a daily basis.
Collapse
Affiliation(s)
- Philipp Nitschke
- Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | - Ruth M Gschwind
- Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
4
|
Knorr J, Sokkar P, Costa P, Sander W, Sanchez-Garcia E, Nuernberger P. How Protic Solvents Determine the Reaction Mechanisms of Diphenylcarbene in Solution. J Org Chem 2019; 84:11450-11457. [PMID: 31343881 DOI: 10.1021/acs.joc.9b01228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigate the effects of small admixtures of protic solvent molecules, such as water and alcohols, on the ultrafast dynamics of diphenylcarbene in acetonitrile at room temperature. Broadband transient absorption measurements and quantum mechanics/molecular mechanics molecular dynamics simulations allow elucidating the dominant reaction mechanism of an intermediate hydrogen-bonded complex between singlet diphenylcarbene and a protic solvent molecule, thus competing with intersystem crossing. Analysis of the data indicates that complex formation is a diffusion-controlled process with orientational requirements. The reaction path involving a benzhydryl cation is less likely in neat bulkier alcohols, as it requires the interaction of the carbene with a protic solvent molecule being part of a hydrogen-bonded network. The simulations indicate a further reaction path toward O-H insertion and two side reactions depending on the involved protic solvent species. Thus, we established that not only the number but also the chemical nature of the protic solvent molecule determine which reaction path is pursued.
Collapse
Affiliation(s)
| | - Pandian Sokkar
- Computational Biochemistry, Center of Medical Biotechnology , University of Duisburg-Essen , 45117 Essen , Germany
| | | | | | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology , University of Duisburg-Essen , 45117 Essen , Germany
| | | |
Collapse
|
5
|
Schüppel F, Roos MK, de Vivie-Riedle R. Ultrafast non-adiabatic dynamics of excited diphenylmethyl bromide elucidated by quantum dynamics and semi-classical on-the-fly dynamics. Phys Chem Chem Phys 2018; 20:22753-22761. [PMID: 30140797 DOI: 10.1039/c8cp03257b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbocations and carboradicals are key intermediates in organic chemistry. Typically UV laser excitation is used to induce homolytical or heterolytical bond cleavage in suitable precursor molecules. Of special interest hereby are diphenylmethyl compounds (Ph2CH-X) with X = Cl, Br as a leaving group as they form diphenylmethyl radicals (Ph2CH˙) and cations (Ph2CH+) within a femtosecond time scale in polar solvents. In this work, we build on our methodology developed for the chlorine case and investigate the photodissociation reaction of Ph2CH-Br by state-of-the-art theoretical methods. On the one hand, we employ specially adapted reactive coordinates for a grid-based wave packet dynamics in reduced dimensionality using the Wilson G-matrix ansatz for the kinetic part of the Hamiltonian. On the other hand, we use full-dimensional semiclassical on-the-fly dynamics with Tully's fewest switches surface hopping routine for comparison. We apply both methods to explain remarkable differences in experimental transient absorption measurements for Cl or Br as the leaving group. The wave packet motion, visible only for the bromine leaving group, can be related to the crucial role of the central carbon atom, which undergoes rehybridization from sp3 to sp2 during the photoinduced bond cleavage. Comparable features are the two consecutive conical intersections near the Franck-Condon region controlling the product splitting to Ph2CH˙/Br˙ and Ph2CH+/Br- as well as the difference in delay time for the respective product formation.
Collapse
Affiliation(s)
- Franziska Schüppel
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany.
| | | | | |
Collapse
|
6
|
Seegerer A, Nitschke P, Gschwind RM. Combined In Situ Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry. Angew Chem Int Ed Engl 2018; 57:7493-7497. [PMID: 29573313 PMCID: PMC6033024 DOI: 10.1002/anie.201801250] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 12/22/2022]
Abstract
Synthetic applications in photochemistry are booming. Despite great progress in the development of new reactions, mechanistic investigations are still challenging. Therefore, we present a fully automated in situ combination of NMR spectroscopy, UV/Vis spectroscopy, and illumination to allow simultaneous and time-resolved detection of paramagnetic and diamagnetic species. This optical fiber-based setup enables the first acquisition of combined UV/Vis and NMR spectra in photocatalysis, as demonstrated on a conPET process. Furthermore, the broad applicability of combined UVNMR spectroscopy for light-induced processes is demonstrated on a structural and quantitative analysis of a photoswitch, including rate modulation and stabilization of transient species by temperature variation. Owing to the flexibility regarding the NMR hardware, temperature, and light sources, we expect wide-ranging applications of this setup in various research fields.
Collapse
Affiliation(s)
- Andreas Seegerer
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Philipp Nitschke
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Ruth M. Gschwind
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| |
Collapse
|
7
|
Seegerer A, Nitschke P, Gschwind RM. Combined In Situ Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andreas Seegerer
- Institute of Organic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Philipp Nitschke
- Institute of Organic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Ruth M. Gschwind
- Institute of Organic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
8
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|