1
|
Mirzaei H, Hatemi BMJ, Enayati A, Khori V, Jabbari A, Salehi A, Hojati MT, Hossieni SG. Potential antiplatelet agents with grape seed - backbone polyphenols: computational studies. Nat Prod Res 2024:1-9. [PMID: 38907668 DOI: 10.1080/14786419.2024.2370039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
The study focused on grape seed-derived polyphenols for their antiplatelet, anti-inflammatory, and fibrinolytic properties through molecular docking and dynamics simulations. Compounds were evaluated for their effects on P2Y12, PTP1B, thromboxane A2, and other targets. Compounds 1 and 6 showed strong inhibitory potential on P2Y12. Compounds 2 and 7, plus epigallocatechin gallate, demonstrated effective inhibition on NF-KB and COX1. The compounds exhibited drug-like properties and potential for new thrombotic disease therapies. The research sheds light on the interactions between polyphenols and target proteins, paving the way for novel antiplatelet strategies.
Collapse
Affiliation(s)
- Hassan Mirzaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Jabbari
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Aref Salehi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohamad Taher Hojati
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Ghadir Hossieni
- Department of Public Health, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
2
|
Shen X, Sheng H, Zhang Y, Dong X, Kou L, Yao Q, Zhao X. Nanomedicine-based disulfiram and metal ion co-delivery strategies for cancer treatment. Int J Pharm X 2024; 7:100248. [PMID: 38689600 PMCID: PMC11059435 DOI: 10.1016/j.ijpx.2024.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.
Collapse
Affiliation(s)
- Xinyue Shen
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Huixiang Sheng
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuan Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qing Yao
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Xinyu Zhao
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Alharthy KM, Fadhil Alsaffar M, Althurwi HN, Albaqami FF, Reidh Abass R, Majid Alawi A, Salah Jalal S, Tabassum S, Zhang H, Peng W. Boron nitride nanocage as drug delivery systems for chloroquine, as an effective drug for treatment of coronavirus disease: A DFT study. INORG CHEM COMMUN 2023; 150:110482. [PMID: 36777967 PMCID: PMC9899703 DOI: 10.1016/j.inoche.2023.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Research has shown that chloroquine (CQ) can effectively help control COVID-19 infection. B24N24 nanocage is a drug delivery system. Thus, through density functional theory, the present study analyzed pristine nanocage-CQ interaction and CQ interaction with Si- and Al -doped nanocage. The findings revealed that nanocage doping, particularly with Si and Al, yields more satisfactory drug delivery for CQ due to their greater electronic and energetic characteristics with CQ.
Collapse
Affiliation(s)
- Khalid M Alharthy
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | - Marwa Fadhil Alsaffar
- Medical Laboratories Techniques Department, AL-Mustaqbal University College, 51001 Hillah, Babil, Iraq
| | - Hassan N Althurwi
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | - Faisal F Albaqami
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | - Russul Reidh Abass
- Al-Farahidi University, Medical Lab. Techniques department, College of Medical Techology, Iraq
| | - Aisha Majid Alawi
- Medical Laboratory Techniques Department, Al-Nisour University College, Baghdad, Iraq
| | - Sarah Salah Jalal
- College of nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Shazia Tabassum
- Department of English, College of Science and Arts, Rejal Alma'a Campus, King Khalid University, Abha, Saudi Arabia
| | - Hao Zhang
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wang Peng
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Ghazarian S, Kalantar Z, Majid Hashemianzadeh S. An exploration of efficiency of proposed drug delivery system including BNNT, C48N12, and TMZ in treating of glioblastoma through classical molecular dynamics. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
George MAR, Dopfer O. Microhydrated clusters of a pharmaceutical drug: infrared spectra and structures of amantadineH +(H 2O) n. Phys Chem Chem Phys 2023; 25:5529-5549. [PMID: 36723361 DOI: 10.1039/d2cp04556g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Solvation of pharmaceutical drugs has an important effect on their structure and function. Analysis of infrared photodissociation spectra of amantadineH+(H2O)n=1-4 clusters in the sensitive OH, NH, and CH stretch range by quantum chemical calculations (B3LYP-D3/cc-pVTZ) provides a first impression of the interaction of this pharmaceutically active cation with water at the molecular level. The size-dependent frequency shifts reveal detailed information about the acidity of the protons of the NH3+ group of N-protonated amantadineH+ (AmaH+) and the strength of the NH⋯O and OH⋯O hydrogen bonds (H-bonds) of the hydration network. The preferred cluster growth begins with sequential hydration of the NH3+ group by NH⋯O ionic H-bonds (n = 1-3), followed by the extension of the solvent network through OH⋯O H-bonds. However, smaller populations of cluster isomers with an H-bonded solvent network and free N-H bonds are already observed for n ≥ 2, indicating the subtle competition between noncooperative ion hydration and cooperative H-bonding. Interestingly, cyclic water ring structures are identified for n ≥ 3, each with two NH⋯O and two OH⋯O H-bonds. Despite the increasing destabilization of the N-H proton donor bonds upon gradual hydration, no proton transfer to the (H2O)n solvent cluster is observed up to n = 4. In addition to ammonium cluster ions, a small population of microhydrated iminium isomers is also detected, which is substantially lower for the hydrophilic H2O than for the hydrophobic Ar environment.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
6
|
A. A. Ibrahim M, S. M. Rady AS, A. M. Moussa N, Naeem Ahmed M, Sidhom PA, Shawky AM, Alqahtani AM, Mohamed LA. Investigation of Aluminum Nitride Nanocarrier for Drug Delivery Process of Favipiravir: A DFT Study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Bağlayan Ö, Parlak C, Dikmen G, Alver Ö. The quest of the most stable structure of a carboxyfullerene and its drug delivery limits: A DFT and QTAIM approach. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Pereira GC. Nanotechnology-Driven Delivery Systems in Inoculation Therapies. Methods Mol Biol 2023; 2575:39-57. [PMID: 36301470 DOI: 10.1007/978-1-0716-2716-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanotechnology and genomics are the newest allies of inoculation design. In recent years, nucleic acids have been targeted as sources of therapeutics to stimulate immune responses, to both fight disease and create memory to trigger further responses to threat. A myriad of promising findings in cancer research and virology has been reported in the current literature. Nanosystems are demonstrating their capabilities as efficient carriers, improving the efficacy of drug delivery, including nucleic acids as therapeutics, at focal sites, in living systems. This chapter approaches major elements involved in the successful use of nanotechnology as delivery platforms to optimise the efficacy of nucleic acids-driven therapeutics, particularly mRNA vectors as coding engines for targeted viral proteins. Latest findings in nanotechnological design are highlighted, key discoveries associated with the success of nanodelivery platforms are presented, and key characteristics of nanodelivery systems in nucleic acids-based vaccine technology are discussed, to illustrate their distinct advantages and disadvantages.
Collapse
|
9
|
Gholami A, Shakerzadeh E, Chigo Anota E, corazon Flores Bautista M. A theoretical perspective on the adsorption performance of pristine and Metal-encapsulated B36N36 fullerenes toward the hydroxyurea and nitrosourea anticancer drugs. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Ibrahim MAA, Rady ASSM, Mandarawe AMA, Mohamed LA, Shawky AM, Hasanin THA, Sidhom PA, Soliman MES, Moussa NAM. Adsorption of Chlormethine Anti-Cancer Drug on Pure and Aluminum-Doped Boron Nitride Nanocarriers: A Comparative DFT Study. Pharmaceuticals (Basel) 2022; 15:1181. [PMID: 36297293 PMCID: PMC9607567 DOI: 10.3390/ph15101181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 08/11/2023] Open
Abstract
The efficacy of pure and aluminum (Al)-doped boron nitride nanocarriers (B12N12 and AlB11N12) in adsorbing Chlormethine (CM), an anti-cancer drug, was comparatively dissected by means of the density functional theory method. The CM∙∙∙B12N12 and ∙∙∙AlB11N12 complexes were studied within two configurations, A and B, in which the adsorption process occurred via N∙∙∙ and Cl∙∙∙B/Al interactions, respectively. The electrostatic potential affirmations confirmed the opulent ability of the studied nanocarriers to engage in delivering CM via two prominent electrophilic sites (B and Al). Furthermore, the adsorption process within the CM∙∙∙AlB11N12 complexes was noticed to be more favorable compared to that within the CM∙∙∙B12N12 analog and showed interaction and adsorption energy values up to -59.68 and -52.40 kcal/mol, respectively, for configuration A. Symmetry-adapted perturbation theory results indicated that electrostatic forces were dominant in the adsorption process. Notably, the adsorption of CM over B12N12 and AlB11N12 nanocarriers exhibited predominant changes in their electronic properties. An elemental alteration was also revealed for the softness and hardness of B12N12 and AlB11N12 nanocarriers before and following the CM adsorption. Spontaneity and exothermic nature were obviously observed for the studied complexes and confirmed by the negative values of thermodynamic parameters. In line with energetic manifestation, Gibbs free energy and enthalpy change were drastically increased by the Al doping process, with values raised to -37.15 and -50.14 kcal/mol, respectively, for configuration A of the CM∙∙∙AlB11N12 complex. Conspicuous enhancement was noticed for the adsorption process in the water phase more than that in the gas phase and confirmed by the negative values of the solvation energy up to -53.50 kcal/mol for configuration A of the CM∙∙∙AlB11N12 complex. The obtained outcomes would be the linchpin for the future utilization of boron nitride as a nanocarrier.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Al-shimaa S. M. Rady
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Asmaa M. A. Mandarawe
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Lamiaa A. Mohamed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Tamer H. A. Hasanin
- Department of Chemistry, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Research Laboratory, School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
11
|
George MAR, Dopfer O. Opening of the Diamondoid Cage upon Ionization Probed by Infrared Spectra of the Amantadine Cation Solvated by Ar, N 2 , and H 2 O. Chemistry 2022; 28:e202200577. [PMID: 35611807 PMCID: PMC9400954 DOI: 10.1002/chem.202200577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Radical cations of diamondoids, a fundamental class of very stable cyclic hydrocarbon molecules, play an important role in their functionalization reactions and the chemistry of the interstellar medium. Herein, we characterize the structure, energy, and intermolecular interaction of clusters of the amantadine radical cation (Ama+ , 1-aminoadamantane) with solvent molecules of different interaction strength by infrared photodissociation (IRPD) spectroscopy of mass-selected Ama+ Ln clusters, with L=Ar (n≤3) and L=N2 and H2 O (n=1), and dispersion-corrected density functional theory calculations (B3LYP-D3/cc-pVTZ). Three isomers of Ama+ generated by electron ionization are identified by the vibrational properties of their rather different NH2 groups. The ligands bind preferentially to the acidic NH2 protons, and the strength of the NH…L ionic H-bonds are probed by the solvation-induced red-shifts in the NH stretch modes. The three Ama+ isomers include the most abundant canonical cage isomer (I) produced by vertical ionization, which is separated by appreciable barriers from two bicyclic distonic iminium ions obtained from cage-opening (primary radical II) and subsequent 1,2 H-shift (tertiary radical III), the latter of which is the global minimum on the Ama+ potential energy surface. The effect of solvation on the energetics of the potential energy profile revealed by the calculations is consistent with the observed relative abundance of the three isomers. Comparison to the adamantane cation indicates that substitution of H by the electron-donating NH2 group substantially lowers the barriers for the isomerization reaction.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare PhysikTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
| |
Collapse
|
12
|
Density Functional Study of the adsorption behavior of 6-mercaptopurine on Primary, Si, Al and Ti doped C60 fullerenes. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
George MAR, Dopfer O. Infrared spectra and structures of protonated amantadine isomers: detection of ammonium and open-cage iminium ions. Phys Chem Chem Phys 2022; 24:16101-16111. [PMID: 35748364 DOI: 10.1039/d2cp01947g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protonated form of amantadine (1-C10H15NH2, Ama), the amino derivative of adamantane (C10H16, Ada), is a wide-spread antiviral and anti-Parkinsonian drug and plays a key role in many pharmaceutical processes. Recent studies reveal that the adamantyl cage (C10H15) of Ama can open upon ionization leading to distonic bicyclic iminium isomers, in addition to the canonical nascent Ama+ isomer. Herein, we study protonation of Ama using infrared photodissociation spectroscopy (IRPD) of Ar-tagged ions and density functional theory calculations to characterize cage and open-cage isomers of AmaH+ and the influence of the electron-donating NH2 group on the cage-opening reaction potential. In addition to the canonical ammonium isomer (AmaH+(I)) with an intact adamantyl cage, we identify at least one slightly less stable protonated bicyclic iminium ion (AmaH+(II)). While the ammonium ion is generated by protonation of the basic NH2 group, AmaH+(II) is formally formed by H addition to a distonic bicyclic iminium ion produced upon ionization of Ama and subsequent cage opening.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
14
|
Hachem K, Jade Catalan Opulencia M, Kamal Abdelbasset W, Sevbitov A, Kuzichkin OR, Mohamed A, Moazen Rad S, Salehi A, Kaur J, Kumar R, Ng Kay Lup A, Arian Nia A. Anti-inflammatory effect of functionalized sulfasalazine boron nitride nanocages on cardiovascular disease and breast cancer: An in-silico simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Kalika EB, Katin KP, Kochaev AI, Kaya S, Elik M, Maslov MM. Fluorinated carbon and boron nitride fullerenes for drug Delivery: Computational study of structure and adsorption. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Wang Q, Zhang P, Javed Ansari M, Aldawsari MF, Alalaiwe AS, Kaur J, Kumar R, Ng Kay Lup A, Enayati A, Mirzaei H, Soltani A, Su CH, Nguyen HC. Electrostatic interaction assisted Ca-decorated C20 fullerene loaded to anti-inflammatory drugs to manage cardiovascular disease risk in rheumatoid arthritis patients. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Katin KP, Kochaev AI, Kaya S, El-Hajjaji F, Maslov MM. Ab Initio Insight into the Interaction of Metal-Decorated Fluorinated Carbon Fullerenes with Anti-COVID Drugs. Int J Mol Sci 2022; 23:ijms23042345. [PMID: 35216462 PMCID: PMC8879019 DOI: 10.3390/ijms23042345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
We theoretically investigated the adsorption of two common anti-COVID drugs, favipiravir and chloroquine, on fluorinated C60 fullerene, decorated with metal ions Cr3+, Fe2+, Fe3+, Ni2+. We focused on the effect of fluoridation on the interaction of fullerene with metal ions and drugs in an aqueous solution. We considered three model systems, C60, C60F2 and C60F48, and represented pristine, low-fluorinated and high-fluorinated fullerenes, respectively. Adsorption energies, deformation of fullerene and drug molecules, frontier molecular orbitals and vibrational spectra were investigated in detail. We found that different drugs and different ions interacted differently with fluorinated fullerenes. Cr3+ and Fe2+ ions lead to the defluorination of low-fluorinated fullerenes. Favipiravir also leads to their defluorination with the formation of HF molecules. Therefore, fluorinated fullerenes are not suitable for the delivery of favipiravir and similar drugs molecules. In contrast, we found that fluorine enhances the adsorption of Ni2+ and Fe3+ ions on fullerene and their activity to chloroquine. Ni2+-decorated fluorinated fullerenes were found to be stable and suitable carriers for the loading of chloroquine. Clear shifts of infrared, ultraviolet and visible spectra can provide control over the loading of chloroquine on Ni2+-doped fluorinated fullerenes.
Collapse
Affiliation(s)
- Konstantin P. Katin
- Laboratory of Computational Design of Nanostructures, Nanodevices, and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Str. 14/55, 119620 Moscow, Russia; (A.I.K.); (M.M.M.)
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, 115409 Moscow, Russia
- Correspondence:
| | - Alexey I. Kochaev
- Laboratory of Computational Design of Nanostructures, Nanodevices, and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Str. 14/55, 119620 Moscow, Russia; (A.I.K.); (M.M.M.)
- Research and Education Center “Silicon and Carbon Nanotechnologies”, Ulyanovsk State University, 42 Leo Tolstoy Str., 432017 Ulyanovsk, Russia
| | - Savas Kaya
- Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140, Turkey;
| | - Fadoua El-Hajjaji
- Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, University Sidi Mohamed Ben Abdellah, Fez 1796, Morocco;
| | - Mikhail M. Maslov
- Laboratory of Computational Design of Nanostructures, Nanodevices, and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Str. 14/55, 119620 Moscow, Russia; (A.I.K.); (M.M.M.)
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, 115409 Moscow, Russia
| |
Collapse
|
18
|
Robert George MA, Dopfer O. Infrared Spectrum of the Amantadine Cation: Opening of the Diamondoid Cage upon Ionization. J Phys Chem Lett 2022; 13:449-454. [PMID: 34990124 DOI: 10.1021/acs.jpclett.1c03948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Radical cations of diamondoids, a fundamental class of highly stable cycloalkanes, are intermediates in functionalization reactions and possibly present in the interstellar medium. Herein, we characterize the structure of the radical cation of 1-amantadine (1-C10H15NH2+, Ama+), the amino derivative of the parent adamantane (C10H16+, Ada+), by infrared spectroscopy and density functional theory calculations. The structural isomers of Ama+ produced by electron ionization are probed by infrared photodissociation of cold Ar-tagged ions. In addition to the canonical nascent Ama+ isomer with an intact C10H15 cage, we identify two distonic bicyclic iminium isomers in which the adamantyl cage opens upon ionization, one of which is lower in energy than the cage isomer. The reaction profile with barriers and intermediates for this cage-opening reaction are determined. Comparison with Ada+ suggests that this type of ionization-induced cage-opening may be a common feature for diamondoids and important for their reactivity.
Collapse
Affiliation(s)
- Martin Andreas Robert George
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrsase 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrsase 36, 10623 Berlin, Germany
| |
Collapse
|
19
|
Bibi S, Ur-rehman S, Khalid L, Bhatti IA, Bhatti HN, Iqbal J, Bai FQ, Zhang HX. Investigation of the adsorption properties of gemcitabine anticancer drug with metal-doped boron nitride fullerenes as a drug-delivery carrier: a DFT study. RSC Adv 2022; 12:2873-2887. [PMID: 35425316 PMCID: PMC8979131 DOI: 10.1039/d1ra09319c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 12/29/2022] Open
Abstract
Anticancer-drug delivery is now becoming a challenging approach for researchers as it allows controlled drug delivery near cancerous cells with minimized generic collection and the avoidance of secondary side effects. Hence in this work, the applications of nanostructures as anticancer drug-delivery carriers were widely investigated to target cancerous tissues. Based on DFT calculations, we investigated the transition metal-doped boron nitride nanostructure as a drug-delivery agent for the gemcitabine drug utilizing the B3LYP/6-31G (d, p) level of theory. In this research, the adsorption energy and electronic parameters of gemcitabine on the interaction with the metal-doped BN nanostructures were studied. It has been observed that metal doping significantly enhances the drug-delivery properties of BN nanostructures. Among the investigated nanostructures, Ni–BN has been found to be the most prominent nanostructure to transport gemcitabine with an elevated value of adsorption energy in both the gas phase (−45.79) and water media (−32.46). The interaction between gemcitabine and BN nanostructures was confirmed through frontier molecular orbitals and stabilization energy analysis. The fractional charge transfer, MEP, NCI, and NBO analyses exposed the charge transfer from drug molecule to the BN nanostructures. Transition density maps and UV-VIS spectra were also plotted to investigate the excited-state properties of the designed complexes. Thus, the present study provides an in-depth interaction mechanism of the gemcitabine drug with BN, which reveals that metal-doped BN nanostructures can be a favorable drug-delivery vehicle for the gemcitabine anticancer drug. Anticancer-drug delivery is now becoming a challenging approach for researchers as it allows controlled drug delivery near cancerous cells with minimized generic collection and the avoidance of secondary side effects.![]()
Collapse
Affiliation(s)
- Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shafiq Ur-rehman
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Laryeb Khalid
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fu Quan Bai
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, 130000, China
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, 130000, China
| |
Collapse
|
20
|
Parlak C, Alver Ö, Ouma CNM, Rhyman L, Ramasami P. Interaction between favipiravir and hydroxychloroquine and their combined drug assessment: in silico investigations. ACTA ACUST UNITED AC 2021; 76:1471-1478. [PMID: 34744292 PMCID: PMC8562770 DOI: 10.1007/s11696-021-01946-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Hydroxychloroquine (HCQ) and favipiravir (FPV) are known to be effective antivirals, and there are reports about their use to fight the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) despite that these are not conclusive. The use of combined drugs is common in drug discovery, and thus, we investigated HCQ and FPV as a combined drug. The density functional theory method was used for the optimization of geometries, spectroscopic analysis and calculation of reactivity parameters. The quantum theory of atoms in molecules was applied to explain the nature of the hydrogen bonds and confirm the higher stability of the combined drug. We also evaluated the absorption, distribution, metabolism and excretion (ADME) parameters to assess their drug actions jointly using SwissADME. The preliminary findings of our theoretical study are promising for further investigations of more potent and selective antiviral drugs.
Collapse
Affiliation(s)
- Cemal Parlak
- Department of Physics, Science Faculty, Ege University, Izmir, 35100 Turkey
| | - Özgür Alver
- Department of Physics, Science Faculty, Eskisehir Technical University, Eskisehir, Turkey
| | - Cecil Naphtaly Moro Ouma
- HySA-Infrastructure CoC, Faculty of Engineering, North-West University, Private Bag X6001, Potchefstroom, 2531 South Africa
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837 Mauritius.,Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028 South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837 Mauritius.,Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028 South Africa
| |
Collapse
|
21
|
Khedri M, Beheshtizadeh N, Maleki R, Webster TJ, Rezvantalab S. Improving the self-assembly of bioresponsive nanocarriers by engineering doped nanocarbons: a computational atomistic insight. Sci Rep 2021; 11:21538. [PMID: 34728678 PMCID: PMC8564517 DOI: 10.1038/s41598-021-00817-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022] Open
Abstract
Here, molecular dynamics (MD) simulations were employed to explore the self-assembly of polymers and docetaxel (DTX) as an anticancer drug in the presence of nitrogen, phosphorous, and boron-nitrogen incorporated graphene and fullerene. The electrostatic potential and the Gibbs free energy of the self-assembled materials were used to optimize the atomic doping percentage of the N- and P-doped formulations at 10% and 50%, respectively. Poly lactic-glycolic acid (PLGA)- polyethylene glycol (PEG)-based polymeric nanoparticles were assembled in the presence of nanocarbons in the common (corresponding to the bulk environment) and interface of organic/aqueous solutions (corresponding to the microfluidic environment). Assessment of the modeling results (e.g., size, hydrophobicity, and energy) indicated that among the nanocarbons, the N-doped graphene nanosheet in the interface method created more stable polymeric nanoparticles (PNPs). Energy analysis demonstrated that doping with nanocarbons increased the electrostatic interaction energy in the self-assembly process. On the other hand, the fullerene-based nanocarbons promoted van der Waals intramolecular interactions in the PNPs. Next, the selected N-doped graphene nanosheet was utilized to prepare nanoparticles and explore the physicochemical properties of the nanosheets in the permeation of the resultant nanoparticles through cell-based lipid bilayer membranes. In agreement with the previous results, the N-graphene assisted PNP in the interface method and was translocated into and through the cell membrane with more stable interactions. In summary, the present MD simulation results demonstrated the success of 2D graphene dopants in the nucleation and growth of PLGA-based nanoparticles for improving anticancer drug delivery to cells, establishing new promising materials and a way to assess their performance that should be further studied.
Collapse
Affiliation(s)
- Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Sima Rezvantalab
- Renewable Energies Department, Faculty of Chemical Engineering, Urmia University of Technology, Urmia, 57166-419, Iran.
| |
Collapse
|
22
|
Parlak C, Alver Ö, Ouma CNM, Rhyman L, Ramasami P. Can the Antivirals Remdesivir and Favipiravir Work Better Jointly? In Silico Insights. Drug Res (Stuttg) 2021; 72:34-40. [PMID: 34535038 DOI: 10.1055/a-1585-1323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The proverb "Old is gold" is applicable in drug discovery and the proverb "All that Glitters is not Gold" is also appropriate. In the COVID-19 era, there has been a race for drugs to be effective against SARS-CoV-2. There are reports about the uses of Remdesivir and Favipiravir as existing antivirals against virus but none have been conclusive so far. In the attempts for innovations, the combination of drugs is also under trials. Therefore, we used the density functional theory method and quantum theory of atoms in molecules to investigate drug-drug interactions involving Remdesivir and Favipiravir. The computed parameters were related to the antiviral actions of both drugs together. The results indicate enhanced antiviral activity and it will be worthy to consider additional investigations with the combination of these two drugs.
Collapse
Affiliation(s)
- Cemal Parlak
- Department of Physics, Science Faculty, Ege University, Izmir, Turkey
| | - Özgür Alver
- Department of Physics, Science Faculty, Eskisehir Technical University, Eskisehir, Turkey
| | - Cecil N M Ouma
- HySA-Infrastructure CoC, North-West University, Faculty of Engineering, Potchefstroom, South Africa
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, Mauritius.,Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, Mauritius.,Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| |
Collapse
|
23
|
Bibi S, Urrehman S, Khalid L, Yaseen M, Khan AQ, Jia R. Metal doped fullerene complexes as promising drug delivery materials against COVID-19. ACTA ACUST UNITED AC 2021; 75:6487-6497. [PMID: 34393329 PMCID: PMC8351569 DOI: 10.1007/s11696-021-01815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022]
Abstract
An outbreak of respiratory disorder caused by coronavirus has been named as coronavirus infection 2019 (COVID-19). To find a specific treatment against this disease researchers are at the frontline. To cure COVID-19, favipiravir (FPV) has been reported as an effective drug based on its high recovery rate. Among nanomaterials, fullerene C60 has achieved enormous attention as a drug delivery vehicle due to its good bioavailability and low toxicity. Hence, in this work, we have investigated the potential of metal-doped fullerene as a drug carrier, based on DFT calculations by using M06-2X functional and 6-31G(d) basis set in water media. In this research electronic parameters and adsorption energy of FPV on interaction with metal-doped (Cr, Fe, and Ni) fullerene is studied. The charge transfer between drug and doped fullerene has been studied through electrophilicity indexes. The structural and electronic properties are explored in terms of adsorption energy through frontier molecular orbital (FMO) and density of state (DOS). It is observed that doping of fullerene C60 with Cr, Fe, and Ni metals significantly enhances the drug delivery rate and provides numerous advantages including controlled drug release at specific target sites which minimize the generic collection in vivo and reduce the side effects. Thusly, it is suggested that our designed metal-doped complexes might be efficient candidates as drug delivery materials for COVID-19 infection.
Collapse
Affiliation(s)
- Shamsa Bibi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Shafiq Urrehman
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Laryeb Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Muhammad Yaseen
- Spin-Optoelectronics and Ferro-Thermoelectric (SOFT) Materials and Devices Laboratory, Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Abdul Quyyam Khan
- Pakistan Council of Scientific and Industrial Research Laboratories Complex, , Ferozepur Road, Lahore, 54600 Pakistan
| | - Ran Jia
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, 130000 China
| |
Collapse
|
24
|
Parlak C, Alver Ö, Bağlayan Ö. Quantum mechanical simulation of Molnupiravir drug interaction with Si-doped C60 fullerene. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Computational study of the binding mode, action mechanism and potency of pregabalin through molecular docking and quantum mechanical descriptors. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Bagheri Novir S, Aram MR. Quantum mechanical studies of the adsorption of Remdesivir, as an effective drug for treatment of COVID-19, on the surface of pristine, COOH-functionalized and S-, Si- and Al- doped carbon nanotubes. PHYSICA. E, LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES 2021; 129:114668. [PMID: 33564274 PMCID: PMC7861578 DOI: 10.1016/j.physe.2021.114668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 05/26/2023]
Abstract
Remdesivir has been recognized as an important medicine in the control of COVID-19 illness. Since carbon nanotubes were considered in the design of novel drug delivery vehicles, the interaction between simple CNT, functionalized CNT by carboxylic group and S-, Al-, and Si-doped CNT and Remdesivir drug were studied using density functional theory (DFT) and time dependent DFT (TDDFT) calculations. The results of this work show that the Si-doped CNT is the best drug delivery system for Remdesivir due to its better electronic, energetic, adsorption and thermodynamic properties.
Collapse
Affiliation(s)
- Samaneh Bagheri Novir
- Multiphysics & Multiscale Simulation Group, Iranian Center for Quantum Technologies (ICQTs), Tehran, Iran
| | | |
Collapse
|
27
|
Wang P, Yan G, Zhu X, Du Y, Chen D, Zhang J. Heterofullerene MC 59 (M = B, Si, Al) as Potential Carriers for Hydroxyurea Drug Delivery. NANOMATERIALS 2021; 11:nano11010115. [PMID: 33430313 PMCID: PMC7825758 DOI: 10.3390/nano11010115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022]
Abstract
As a representative nanomaterial, C60 and its derivatives have drawn much attention in the field of drug delivery over the past years, due to their unique geometric and electronic structures. Herein, the interactions of hydroxyurea (HU) drug with the pristine C60 and heterofullerene MC59 (M = B, Si, Al) were investigated using the density functional theory calculations. The geometric and electronic properties in terms of adsorption configuration, adsorption energy, Hirshfeld charge, frontier molecular orbitals, and charge density difference are calculated. In contrast to pristine C60, it is found that HU molecule is chemisorbed on the BC59, SiC59, and AlC59 molecules with moderate adsorption energy and apparent charge transfer. Therefore, heterofullerene BC59, SiC59, and AlC59 are expected to be promising carriers for hydroxyurea drug delivery.
Collapse
Affiliation(s)
- Peng Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ge Yan
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
| | - Xiaodong Zhu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
| | - Yingying Du
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Da Chen
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
| | - Jinjuan Zhang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
- Correspondence: ; Tel.: +86-187-5425-3028
| |
Collapse
|
28
|
George MAR, Buttenberg F, Förstel M, Dopfer O. Microhydration of substituted diamondoid radical cations of biological relevance: infrared spectra of amantadine +-(H 2O) n = 1-3 clusters. Phys Chem Chem Phys 2020; 22:28123-28139. [PMID: 33290468 DOI: 10.1039/d0cp05299j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydration of biomolecules and pharmaceutical compounds has a strong impact on their structure, reactivity, and function. Herein, we explore the microhydration structure around the radical cation of the widespread pharmaceutical drug amantadine (C16H15NH2, Ama) by infrared photodissociation (IRPD) spectroscopy of mass-selected Ama+Wn = 1-3 clusters (W = H2O) recorded in the NH, CH, and OH stretch range of the cation ground electronic state. Analysis of the size-dependent frequency shifts by dispersion-corrected density functional theory calculations (B3LYP-D3/cc-pVTZ) provides detailed information about the acidity of the protons of the NH2 group of Ama+ and the structure and strength of the NHO and OHO hydrogen bonds (H-bonds) of the hydration network. The preferred sequential cluster growth begins with hydration of the two acidic NH protons of the NH2 group (n = 1-2) and continues with an extension of the H-bonded hydration network by forming an OHO H-bond of the third W to one ligand in the first hydration subshell (n = 3), like in the W2 dimer. For n = 2, a minor population corresponds to Ama+W2 structures with a W2 unit attached to Ama+via a NHW2 H-bond. Although the N-H proton donor bonds are progressively destabilized by gradual microhydration, no proton transfer to the Wn solvent cluster is observed in the investigated size range (n ≤ 3). Besides the microhydration structure, we also obtain a first impression of the structure and IR spectrum of bare Ama+, as well as the effects of both ionization and hydration on the structure of the adamantyl cage. Comparison of Ama+ with aliphatic and aromatic primary amine radical cations reveals differences in the acidity of the NH2 group and the resulting interaction with W caused by substitution of the cycloalkyl cage.
Collapse
|
29
|
Gang L, Guo S, Wu Q, Wu L. Investigation of the metformin drug-sensing mechanism on the decorated and pristine boron nitride semiconductor: ab-initio study. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1788190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Liu Gang
- School of Management, Hunan City University, Yiyang, People’s Republic of China
| | - Song Guo
- School of Business Administration, Wonkwang University, Iksan, Korea
| | - Qixiang Wu
- Media Design Department, Woosong University, Daejeon, Republic of Korea
| | - Liang Wu
- College of Science, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
30
|
Rahman H, Hossain MR, Ferdous T. The recent advancement of low-dimensional nanostructured materials for drug delivery and drug sensing application: A brief review. J Mol Liq 2020; 320:114427. [PMID: 33012931 PMCID: PMC7525470 DOI: 10.1016/j.molliq.2020.114427] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023]
Abstract
In this review article, we have presented a detailed analysis of the recent advancement of quantum mechanical calculations in the applications of the low-dimensional nanomaterials (LDNs) into biomedical fields like biosensors and drug delivery systems development. Biosensors play an essential role for many communities, e.g. law enforcing agencies to sense illicit drugs, medical communities to remove overdosed medications from the human and animal body etc. Besides, drug delivery systems are theoretically being proposed for many years and experimentally found to deliver the drug to the targeted sites by reducing the harmful side effects significantly. In current COVID-19 pandemic, biosensors can play significant roles, e.g. to remove experimental drugs during the human trials if they show any unwanted adverse effect etc. where the drug delivery systems can be potentially applied to reduce the side effects. But before proceeding to these noble and expensive translational research works, advanced theoretical calculations can provide the possible outcomes with considerable accuracy. Hence in this review article, we have analyzed how theoretical calculations can be used to investigate LDNs as potential biosensor devices or drug delivery systems. We have also made a very brief discussion on the properties of biosensors or drug delivery systems which should be investigated for the biomedical applications and how to calculate them theoretically. Finally, we have made a detailed analysis of a large number of recently published research works where theoretical calculations were used to propose different LDNs for bio-sensing and drug delivery applications.
Collapse
Affiliation(s)
- Hamidur Rahman
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Rakib Hossain
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tahmina Ferdous
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
31
|
Mohammadi MD, Salih IH, Abdullah HY. An Ultimate Investigation on the Adsorption of Amantadine on Pristine and Decorated Fullerenes C59X (X=Si, Ge, B, Al, Ga, N, P, and As): A DFT, NBO, and QTAIM Study. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2020. [DOI: 10.1142/s2737416521500022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this investigation, the feasibility of detecting the amantadine (AMD) molecule onto the outer surface of pristine fullerene (C[Formula: see text]), as well as C[Formula: see text]X ([Formula: see text], Ge, B, Al, Ga, N, P, and As) decorated structures, was carefully evaluated. For achieving this goal, a density functional theory level of study using the HSEH1PBE functional together with a 6-311G(d) basis set has been used. Subsequently, the B3LYP-D3, wB97XD and M062X functionals with a 6-311G(d) basis set were also employed to consider the single point energies. Natural bond orbital (NBO) and the quantum theory of atoms in molecules (QTAIM) were implemented using the B3LYP-D3/6-311G(d) method and the results were compatible with the electronic properties. In this regard, the total density of states (TDOSs), the Wiberg bond index (WBI), natural charge, natural electron configuration, donor–acceptor NBO interactions, and the second-order perturbation energies are performed to explore the nature of the intermolecular interactions. All of the energy calculations and population analyses denote that by adsorbing of the AMD molecule onto the surface of the considered nanostructures, the intermolecular interactions are of the type of strong physical adsorption. Among the doped fullerenes, Ge-doped structure has very high adsorption energy compared to other elements. Generally, it was revealed that the sensitivity of the adsorption will be increased when the AMD molecule interacts with the decorated fullerenes and decrease the HOMO–LUMO band gap; therefore, the change of electronic properties can be used to design suitable nanocarrier.
Collapse
Affiliation(s)
| | - Idris H. Salih
- Physics Education Department, Faculty of Education, Tishk International University, Erbil 44001, Iraq
| | - Hewa Y. Abdullah
- Physics Education Department, Faculty of Education, Tishk International University, Erbil 44001, Iraq
| |
Collapse
|
32
|
Bagheri Novir S, Aram MR. Quantum mechanical simulation of Chloroquine drug interaction with C60 fullerene for treatment of COVID-19. Chem Phys Lett 2020; 757:137869. [PMID: 32834063 PMCID: PMC7415227 DOI: 10.1016/j.cplett.2020.137869] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Chloroquine (CQ) has been reported as an effective drug in the control of COVID-19 infection. Since C60 fullerene has been considered as a drug delivery system, the interaction between pristine fullerene and chloroquine drug and also the interaction between B, Al, Si doped fullerene and chloroquine drug have been investigated based on the density functional theory calculations. The results of this study show that the doped fullerene, especially Al and Si doped fullerene could be the better drug delivery vehicles for chloroquine drug because of their relatively better energetic and electronic properties with chloroquine.
Collapse
Affiliation(s)
| | - Mohammad Reza Aram
- Iranian Center for Quantum Technologies (ICQTs), Tehran, Iran
- Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| |
Collapse
|
33
|
Parlak C, Tepe M, Bağlayan Ö, Alver Ö. Investigation of detection and adsorption properties of β-propiolactone with silicon and aluminum doped fullerene C60 using density functional theory. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Hou X, Ren Y, Fu F, Tian X. Doping atom to tune electronic characteristics and adsorption of cyclo[18] carbons: A theoretical study. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Wang Y, Han Q, Zhang H, Yan Y. Evaluation of the binding interactions of p-acetylaminophenol, aspirin, ibuprofen and aminopyrine with norfloxacin from the view of antipyretic and anti-inflammatory. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Heidari SM, Anctil A. Identifying alternative solvents for C 60 manufacturing using singular and combined toxicity assessments. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122337. [PMID: 32172058 DOI: 10.1016/j.jhazmat.2020.122337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Linseed oil, olive oil, and sunflower oil were selected based on green chemistry principles and C60 solubility as alternative solvents to replace 1,2,4-trimethylbenzene (TMB) for C60 manufacturing. Singular acute toxicity experiments of C60 and the four solvents was performed using Daphnia magna to identify the solvent with the lowest toxicity and estimate the toxicity of C60. The EC50 for C60 was estimated to be higher than 176 ppm. The toxicity of the solvents increased from sunflower oil to olive oil, linseed oil, and TMB. Combined toxicity tests were conducted to investigate the interaction between C60 and the solvent since essential oils can be nanocarriers and facilitate the transport of C60 into the cell membranes, which would increase its toxicity. Various concentrations of C60 (0, 11, 22, 44, 88, and 176 mg/L) were mixed with solvents at their EC50 concentrations. The toxicity of linseed oil increased with increasing C60 concentrations. For olive and sunflower oil, the toxicity was lowered with low concentrations of C60. Olive oil was determined to be a suitable solvent for C60 manufacturing based on singular and combined toxicity assessments. This study showed the importance of considering combined toxicity for solvent selection.
Collapse
Affiliation(s)
- Seyed M Heidari
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, United States.
| | - Annick Anctil
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
37
|
Theoretical investigation of the adsorption behaviors of fluorouracil as an anticancer drug on pristine and B-, Al-, Ga-doped C36 nanotube. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Kamali F, Ebrahimzadeh Rajaei G, Mohajeri S, Shamel A, Khodadadi-Moghaddam M. Adsorption behavior of metformin drug on the C60 and C48 nanoclusters: a comparative DFT study. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02597-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Adsorption behavior of letrozole on pure, Ge- and Si-doped C60 fullerenes: a comparative DFT study. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-019-02524-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes: A comparative DFT study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Osikoya AO, Opoku F, Dikio ED, Govender PP. High-Throughput 2D Heteroatom Graphene Bioelectronic Nanosculpture: A Combined Experimental and Theoretical Study. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11238-11250. [PMID: 30817112 DOI: 10.1021/acsami.9b01914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, chemical vapor deposition-synthesized heteroatom graphene (HGr) bioelectronic interfaces have been developed for ultrafast, all-electronic detection and analysis of molecules by driving them through tiny holes-or atompores-in a thin lattice of the graphene sheet, including the efforts toward facilitating enhanced electrocatalytic and mapping electron transport activities. The presence of chlorine, nitrogen, and oxygen in the crystalline graphitic layers (<7) has been confirmed using Raman spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. We report a swift bioelectrocatalytic response to step-by-step additions of the substrate with the achievement of a steady current within a few seconds. The response limit was 2.07 μM with a dynamic range of sensing from 2.07 μM to 2.97 mM. The electronic properties and adsorption energies of hydroquinone and p-benzophenone molecule adsorption on pristine, O-, N-, and Cl-doped graphene nanosheet surfaces were systematically investigated using first-principles calculations. The results revealed that the adsorption capacity was improved upon doping graphene nanosheets with O, N, and Cl atoms. Hence, Cl-doped graphene nanosheets were shown as a promising adsorbent toward hydroquinone and p-benzophenone detection.
Collapse
Affiliation(s)
- Adeniyi Olugbenga Osikoya
- Department of Applied Chemistry , University of Johannesburg , P.O. Box 17011, Doornfontein 2028 Johannesburg , South Africa
| | - Francis Opoku
- Department of Applied Chemistry , University of Johannesburg , P.O. Box 17011, Doornfontein 2028 Johannesburg , South Africa
| | - Ezekiel Dixon Dikio
- Applied Chemistry and Nanoscience Laboratory, Department of Chemistry , Vaal University of Technology , P.O. Box X021, 1900 Vanderbijlpark , South Africa
| | - Penny Poomani Govender
- Department of Applied Chemistry , University of Johannesburg , P.O. Box 17011, Doornfontein 2028 Johannesburg , South Africa
| |
Collapse
|
42
|
Farmanzadeh D, Keyhanian M. Computational assessment on the interaction of amantadine drug with B12N12 and Zn12O12 nanocages and improvement in adsorption behaviors by impurity Al doping. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2400-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Ergürhan O, Parlak C, Alver Ö, Şenyel M. Conformational and electronic properties of hydroquinone adsorption on C60 fullerenes: Doping atom, solvent and basis set effects. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
|
45
|
Computational studies on the doped graphene quantum dots as potential carriers in drug delivery systems for isoniazid drug. Struct Chem 2018. [DOI: 10.1007/s11224-018-1129-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
A computational study for the B 30 bowl-like nanostructure as a possible candidate for drug delivery system for amantadine. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|