1
|
Acebedo-Martínez FJ, Domínguez-Martín A, Alarcón-Payer C, Verdugo-Escamilla C, Gómez-Morales J, Choquesillo-Lazarte D. Enhanced Drug Loading Capacity Using the Dual Metformine-Dexketoprofren Salt on Nanoapatite Materials. Mol Pharm 2025. [PMID: 40275552 DOI: 10.1021/acs.molpharmaceut.5c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Both apatite nanoparticles and multicomponent pharmaceutical materials have proved the ability to significantly improve the bioavailability of different drugs using different strategies. Herein, the use of nanoapatite is proposed as a promising vehicle for advanced drug delivery of multicomponent pharmaceutical materials. To this purpose, the full synthesis and comprehensive characterization of apatite nanoparticles and the molecular pharmaceutical salt metformin-dexketoprofen are reported, paying special attention to the improvements regarding solubility and stability of the novel materials compared to the parent active pharmaceutical ingredients, as well as the drug loading capacity enhancement achieved in nanoapatites. Our results evidence the potential of the presented novel strategy, enhancing the dexketoprofen-loading a remarkable 50-fold when compared to native drug, thanks to the improvement of solubility achieved via salt-formation (567 and 168 mg/mL at pH 6.8 and 1.2, respectively), thus expecting improved therapeutic outcomes.
Collapse
Affiliation(s)
| | - Alicia Domínguez-Martín
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | | | | | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT-CSIC, Avda. de las Palmeras 4, 18100 Armilla, Spain
| | | |
Collapse
|
2
|
Martínez-Parra L, Piñol-Cancer M, Sanchez-Cano C, Miguel-Coello AB, Di Silvio D, Gomez AM, Uriel C, Plaza-García S, Gallego M, Pazos R, Groult H, Jeannin M, Geraki K, Fernández-Méndez L, Urkola-Arsuaga A, Sánchez-Guisado MJ, Carrillo-Romero J, Parak WJ, Prato M, Herranz F, Ruiz-Cabello J, Carregal-Romero S. A Comparative Study of Ultrasmall Calcium Carbonate Nanoparticles for Targeting and Imaging Atherosclerotic Plaque. ACS NANO 2023; 17:13811-13825. [PMID: 37399106 PMCID: PMC10900527 DOI: 10.1021/acsnano.3c03523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Atherosclerosis is a complex disease that can lead to life-threatening events, such as myocardial infarction and ischemic stroke. Despite the severity of this disease, diagnosing plaque vulnerability remains challenging due to the lack of effective diagnostic tools. Conventional diagnostic protocols lack specificity and fail to predict the type of atherosclerotic lesion and the risk of plaque rupture. To address this issue, technologies are emerging, such as noninvasive medical imaging of atherosclerotic plaque with customized nanotechnological solutions. Modulating the biological interactions and contrast of nanoparticles in various imaging techniques, including magnetic resonance imaging, is possible through the careful design of their physicochemical properties. However, few examples of comparative studies between nanoparticles targeting different hallmarks of atherosclerosis exist to provide information about the plaque development stage. Our work demonstrates that Gd (III)-doped amorphous calcium carbonate nanoparticles are an effective tool for these comparative studies due to their high magnetic resonance contrast and physicochemical properties. In an animal model of atherosclerosis, we compare the imaging performance of three types of nanoparticles: bare amorphous calcium carbonate and those functionalized with the ligands alendronate (for microcalcification targeting) and trimannose (for inflammation targeting). Our study provides useful insights into ligand-mediated targeted imaging of atherosclerosis through a combination of in vivo imaging, ex vivo tissue analysis, and in vitro targeting experiments.
Collapse
Affiliation(s)
- Lydia Martínez-Parra
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
| | - Marina Piñol-Cancer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
| | - Ana B Miguel-Coello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Desirè Di Silvio
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Ana M Gomez
- Instituto de Química Orgánica General, IQOG-CSIC, 28006 Madrid, Spain
| | - Clara Uriel
- Instituto de Química Orgánica General, IQOG-CSIC, 28006 Madrid, Spain
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Marta Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Raquel Pazos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Hugo Groult
- Biotechnologies et Chimie des Bioressources pour la Santé, Littoral Environment et Sociétés (LIENSs Laboratory), UMR CNRS 7266, 17000 La Rochelle, France
| | - Marc Jeannin
- Laboratoire des Sciences de l'Ingénieur pour l'Environnement (LaSIE), UMR-CNRS 7536, La Rochelle Université, 7356 La Rochelle, France
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Laura Fernández-Méndez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Ainhize Urkola-Arsuaga
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - María Jesús Sánchez-Guisado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Juliana Carrillo-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Basque Res & Technol Alliance BRTA, GAIKER, Technol Ctr, 48170 Zamudio, Spain
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Fernando Herranz
- NanoMedMol, Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid 28006, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
3
|
Mathew R, Stevensson B, Pujari-Palmer M, Wood CS, Chivers PRA, Spicer CD, Autefage H, Stevens MM, Engqvist H, Edén M. Nuclear Magnetic Resonance and Metadynamics Simulations Reveal the Atomistic Binding of l-Serine and O-Phospho-l-Serine at Disordered Calcium Phosphate Surfaces of Biocements. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8815-8830. [PMID: 36248225 PMCID: PMC9558313 DOI: 10.1021/acs.chemmater.2c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Interactions between biomolecules and structurally disordered calcium phosphate (CaP) surfaces are crucial for the regulation of bone mineralization by noncollagenous proteins, the organization of complexes of casein and amorphous calcium phosphate (ACP) in milk, as well as for structure-function relationships of hybrid organic/inorganic interfaces in biomaterials. By a combination of advanced solid-state NMR experiments and metadynamics simulations, we examine the detailed binding of O-phospho-l-serine (Pser) and l-serine (Ser) with ACP in bone-adhesive CaP cements, whose capacity of gluing fractured bone together stems from the close integration of the organic molecules with ACP over a subnanometer scale. The proximity of each carboxy, aliphatic, and amino group of Pser/Ser to the Ca2+ and phosphate species of ACP observed from the metadynamics-derived models agreed well with results from heteronuclear solid-state NMR experiments that are sensitive to the 13C-31P and 15N-31P distances. The inorganic/organic contacts in Pser-doped cements are also contrasted with experimental and modeled data on the Pser binding at nanocrystalline HA particles grown from a Pser-bearing aqueous solution. The molecular adsorption is driven mainly by electrostatic interactions between the negatively charged carboxy/phosphate groups and Ca2+ cations of ACP, along with H bonds to either protonated or nonprotonated inorganic phosphate groups. The Pser and Ser molecules anchor at their phosphate/amino and carboxy/amino moieties, respectively, leading to an extended molecular conformation across the surface, as opposed to an "upright standing" molecule that would result from the binding of one sole functional group.
Collapse
Affiliation(s)
- Renny Mathew
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Baltzar Stevensson
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Michael Pujari-Palmer
- Applied
Material Science, Department of Engineering, Uppsala University, Uppsala SE-751 21, Sweden
| | - Christopher S. Wood
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Phillip R. A. Chivers
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Hélène Autefage
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Håkan Engqvist
- Applied
Material Science, Department of Engineering, Uppsala University, Uppsala SE-751 21, Sweden
| | - Mattias Edén
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
4
|
Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems. Cells 2022; 11:cells11030388. [PMID: 35159207 PMCID: PMC8833898 DOI: 10.3390/cells11030388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 01/06/2023] Open
Abstract
Bone is one of the most common metastatic sites among breast cancer (BC) patients. Once bone metastasis is developed, patients' survival and quality of life will be significantly declined. At present, there are limited therapeutic options for BC patients with bone metastasis. Different nanotechnology-based delivery systems have been developed aiming to specifically deliver the therapeutic agents to the bone. The conjugation of targeting agents to nanoparticles can enhance the selective delivery of various payloads to the metastatic bone lesion. The current review highlights promising and emerging advanced nanotechnologies designed for targeted delivery of anticancer therapeutics, contrast agents, photodynamic and photothermal materials to the bone to achieve the goal of treatment, diagnosis, and prevention of BC bone metastasis. A better understanding of various properties of these new therapeutic approaches may open up new landscapes in medicine towards improving the quality of life and overall survival of BC patients who experience bone metastasis.
Collapse
|
5
|
Risedronate complexes with Mg2+, Zn2+, Pb2+, and Cu2+: Species thermodynamics and sequestering ability in NaCl(aq) at different ionic strengths and at T = 298.15 K. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Cometa S, Bonifacio MA, Tranquillo E, Gloria A, Domingos M, De Giglio E. A 3D Printed Composite Scaffold Loaded with Clodronate to Regenerate Osteoporotic Bone: In Vitro Characterization. Polymers (Basel) 2021; 13:polym13010150. [PMID: 33401469 PMCID: PMC7795460 DOI: 10.3390/polym13010150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Additive manufacturing (AM) is changing our current approach to the clinical treatment of bone diseases, providing new opportunities to fabricate customized, complex 3D structures with bioactive materials. Among several AM techniques, the BioCell Printing is an advanced, integrated system for material manufacture, sterilization, direct cell seeding and growth, which allows for the production of high-resolution micro-architectures. This work proposes the use of the BioCell Printing to fabricate polymer-based scaffolds reinforced with ceramics and loaded with bisphosphonates for the treatment of osteoporotic bone fractures. In particular, biodegradable poly(ε-caprolactone) was blended with hydroxyapatite particles and clodronate, a bisphosphonate with known efficacy against several bone diseases. The scaffolds' morphology was investigated by means of Scanning Electron Microscopy (SEM) and micro-Computed Tomography (micro-CT) while Energy Dispersive X-ray Spectroscopy (EDX) and X-ray Photoelectron Spectroscopy (XPS) revealed the scaffolds' elemental composition. A thermal characterization of the composites was accomplished by Thermogravimetric analyses (TGA). The mechanical performance of printed scaffolds was investigated under static compression and compared against that of native human bone. The designed 3D scaffolds promoted the attachment and proliferation of human MSCs. In addition, the presence of clodronate supported cell differentiation, as demonstrated by the normalized alkaline phosphatase activity. The obtained results show that the BioCell Printing can easily be employed to generate 3D constructs with pre-defined internal/external shapes capable of acting as a temporary physical template for regeneration of cancellous bone tissues.
Collapse
Affiliation(s)
| | - Maria Addolorata Bonifacio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy;
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Elisabetta Tranquillo
- Department of Mechanical, Aerospace and Civil Engineering & Henry Royce Institute, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Marco Domingos
- Department of Mechanical, Aerospace and Civil Engineering & Henry Royce Institute, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK;
- Correspondence: (M.D.); (E.D.G.)
| | - Elvira De Giglio
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy;
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
- Correspondence: (M.D.); (E.D.G.)
| |
Collapse
|
7
|
Ma J, Xia M, Zhu S, Wang F. A new alendronate doped HAP nanomaterial for Pb 2+, Cu 2+ and Cd 2+ effect absorption. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123143. [PMID: 32585527 DOI: 10.1016/j.jhazmat.2020.123143] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a new nanobiomaterial, alendronate hydroxyapatite (AL-HAP), was synthesized by the conventional co-precipitation method with alendronate (AL) as dopant, and applied in the removal of heavy metal contaminants for the first time. The characterization results showed that the crystallinity of the AL-HAP nanocomposite biomaterials after doping has been greatly deteriorated, and the pore volume and pore size increased. When the doping amount of AL was 10 %, the maximum adsorption capacity of AL-HAP for Pb2+, Cd2+ and Cu2+ can reach 1431.8, 469 and 226.6 mg/g, respectively, which was much higher than that reported in other literature. Meanwhile, the adsorption mechanism of AL-HAP for heavy metal ions was discussed from both the views of experimental and Multiwfn program theoretical calculation based on density functional theory (DFT). Quantitative molecular surface analysis was carried out for the first time to study the minimum points and the positions of electrostatic potential (ESP) and average local ionization energy(ALIE), as well as the exact values, giving more accurate and reliable analysis conclusions for the reaction sites and binding mode. In addition, the independent gradient model (IGM) method was also firstly applied to investigate the interactions between AL and HAP or AL-HAP nanocomposite with metal ions. AL-HAP is a potential adsorption material for heavy metal wastewater treatment and soil remediation because of its advantages such as convenient synthesis, excellent adsorption performance and no secondary pollution.
Collapse
Affiliation(s)
- Jianzhe Ma
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingzhu Xia
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Sidi Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fengyun Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
8
|
Wang Z, Guo X, Dou W, Wang K, Mao F, Wu H, Sun C. High supercapacitive performances of Cu-MOFs dominated by morphologies: Effects of solvents, surfactants and concentrations. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Zhao X, Xue Z, Wang K, Wang X, Xu D. Molecular docking and molecular dynamics simulation studies on the adsorption/desorption behavior of bone morphogenetic protein-7 on the β-tricalcium phosphate surface. Phys Chem Chem Phys 2020; 22:16747-16759. [PMID: 32662481 DOI: 10.1039/d0cp01950j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The adsorption/desorption behavior, and conformational and orientational changes of proteins on the surface of biomaterials are significant parameters for understanding how biomaterials perform their biological functions. In this study, for the first time, the interactions between BMP-7 and β-TCP (001) surface models with different ion-rich terminations (Ca-rich and P-rich) were investigated by molecular dynamics simulation (MD) and steered molecular dynamics simulation (SMD). The results indicated that BMP-7 preferentially interacts with both Ca-rich and P-rich β-TCP (001) surfaces at its wrist epitope residues with certain conformational changes, which led to more exposure of BMP-7 knuckle epitope residues to the environment and facilitation for binding to the type II receptor. Compared to the P-rich surface, it is speculated that the Ca-rich surface was more conducive to BMP-7 signal transduction since the upright orientation of the protein adsorption would lead to smaller hindrance for receptor binding. This study provided more atomistic and molecular information for better understanding the process of Ca-P surfaces affecting BMP-7 biological properties and further interpreted the osteoinductive mechanism from the perspective of growth factor adsorption. Moreover, the docking screening method adopted in this study is of guiding significance to the design and development of bioactive materials.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | | | | | | | | |
Collapse
|
10
|
Fan H, Wang S, Qin Z, Wang H, Zhou S, Liu Y. Effect of Flower‐Like and Spherical Nanostructured MoS
2
on the Adsorption Properties of Cr(VI) Ions. ChemistrySelect 2020. [DOI: 10.1002/slct.202000148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Honglei Fan
- Shanxi Province Key Laboratory of Functional NanocompositesSchool of Materials Science and EngineeringShanxi Province Key Laboratory of Higee-Oriented Chemical Engineeringand School of Chemical Engineering and TechnologyNorth University of China Taiyuan 030051 China
| | - Shuzhan Wang
- Shanxi Province Key Laboratory of Functional NanocompositesSchool of Materials Science and EngineeringShanxi Province Key Laboratory of Higee-Oriented Chemical Engineeringand School of Chemical Engineering and TechnologyNorth University of China Taiyuan 030051 China
| | - Zeyun Qin
- The 54th Research Institute of China Electronics Technology Group Corporation Shijiazhuang 050081 China
| | - Haidong Wang
- The 54th Research Institute of China Electronics Technology Group Corporation Shijiazhuang 050081 China
| | - Shaofeng Zhou
- Shanxi Province Key Laboratory of Functional NanocompositesSchool of Materials Science and EngineeringShanxi Province Key Laboratory of Higee-Oriented Chemical Engineeringand School of Chemical Engineering and TechnologyNorth University of China Taiyuan 030051 China
| | - Yaqing Liu
- Shanxi Province Key Laboratory of Functional NanocompositesSchool of Materials Science and EngineeringShanxi Province Key Laboratory of Higee-Oriented Chemical Engineeringand School of Chemical Engineering and TechnologyNorth University of China Taiyuan 030051 China
| |
Collapse
|
11
|
Rational design of some substituted phenyl azanediyl (bis) methylene phosphonic acid derivatives as potential anticancer agents and imaging probes: Computational inputs, chemical synthesis, radiolabeling, biodistribution and gamma scintigraphy. Bioorg Chem 2019; 92:103282. [DOI: 10.1016/j.bioorg.2019.103282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/13/2023]
|