1
|
Chi H, Cao P, Shi Q, Song C, Lv Y, Peng T. Photocatalytic Degradation of Ciprofloxacin by GO/ZnO/Ag Composite Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:383. [PMID: 40072186 PMCID: PMC11901575 DOI: 10.3390/nano15050383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
This study synthesized graphene oxide (GO)/zinc oxide (ZnO)/silver (Ag) composite materials and investigated their photocatalytic degradation performance for ciprofloxacin (CIP) under visible light irradiation. GO/ZnO/Ag composites with different ratios were prepared via an impregnation and chemical reduction method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that under optimal conditions (20 mg/L CIP concentration, 15 mg catalyst dosage, GO/ZnO-3%/Ag-doping ratio, and pH 5), the GO/ZnO/Ag composite exhibited the highest photocatalytic activity, achieving a maximum degradation rate of 82.13%. This catalyst effectively degraded ciprofloxacin under light irradiation, showing promising potential for water purification applications.
Collapse
Affiliation(s)
- Haonan Chi
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154000, China
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Pan Cao
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Qi Shi
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154000, China
| | - Chaoyu Song
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuguang Lv
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154000, China
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Tai Peng
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154000, China
| |
Collapse
|
2
|
Varghese D, S R N, P JSJ, S M, J M, M VAR. Synergistic design of CuO/CoFe₂O₄/MWCNTs ternary nanocomposite for enhanced photocatalytic degradation of tetracycline under visible light. Sci Rep 2025; 15:320. [PMID: 39747156 PMCID: PMC11696163 DOI: 10.1038/s41598-024-82926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
This study involves a novel CuO/CoFe₂O₄/MWCNTs (CCT) nanocomposite, developed by integrating cobalt ferrite (CoFe₂O₄) and copper oxide (CuO) nanoparticles onto multi-walled carbon nanotubes (MWCNTs), for the degradation of tetracycline (TC) under visible light. The photocatalyst was extensively characterized using XRD, HR-SEM, EDX, HR-TEM, UV-Vis, BET, and PL analysis. The synthesized CoFe₂O₄ and CuO nanoparticles exhibited crystallite sizes of 46.8 nm and 37.5 nm, respectively, while the CCT nanocomposite had a crystallite size of 53 nm. Microscopy confirmed a particle size of 49.2 nm for the nanocomposite, with MWCNTs measuring 15.65 nm in diameter. The band gap energy of the CCT nanocomposite was 1.6 eV, which contributed to its enhanced photocatalytic activity, as evidenced by the lower emission intensity in PL analysis. BET analysis revealed a pore volume of 0.37 cc/g and a surface area of 82.3 m²/g. Photocatalytic performance was tested across various conditions, with adjustments to nanocomposite dosages (0.1-0.5 g/L), TC concentrations (5-25 mg/L), and pH levels (2-10). Under optimized conditions (0.3 g/L CCT, 5 mg/L TC, pH 10, 120 min of visible light exposure), the CCT achieved 98.1% degradation of TC. The optimized parameters were subsequently used to assess TC degradation with individual photocatalysts: CoFe₂O₄, CuO, CT, and CCT. The enhanced photocatalytic efficiency observed can be largely attributed to the improved charge transfer dynamics and effective electron-hole separation facilitated by MWCNT doping. The reaction followed a pseudo-first-order kinetic model, with hydroxyl radicals (OH•) identified as the key species in the degradation process. Moreover, the catalyst exhibited 96% retention of its photocatalytic efficiency after five consecutive cycles, demonstrating exceptional stability and reusability. These results emphasize the CCT composite's potential as a highly efficient and sustainable photocatalyst for the remediation of pharmaceutical pollutants in aquatic systems.
Collapse
Affiliation(s)
- Davis Varghese
- Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India
- Loyola Institute of Frontier Energy, Loyola College, Chennai, 600034, India
| | - Niranjana S R
- Department of Physics, Panimalar Engineering College, Chennai, 600123, India
| | - Joselene Suzan Jennifer P
- Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India
| | - Muthupandi S
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - Madhavan J
- Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India
| | - Victor Antony Raj M
- Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India.
| |
Collapse
|
3
|
Roghani N, Keramati N. Synthesis, photocatalytic activity for tetracycline degradation under visible light, and kinetic study of Ag/AgCl/ZIF-11 nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:811-832. [PMID: 39704977 DOI: 10.1007/s11356-024-35800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
For the first time, Ag/AgCl/zeolitic imidazolate framework-11 nanocomposite (Ag/AgCl/ZIF-11) as photocatalyst was synthesized and investigated on tetracycline (TC) degradation under visible light. ZIF-11 (Z), Ag/AgCl (A), and four composites (AZ0.1Vis, AZ0.1UV24, AZ0.2UV12, AZ0.2UV24) were made and characterized by XRD, FTIR, Raman, BET, SEM, EDS, XPS, and DRS analysis. The characteristic peaks of ZIF-11 and Ag were observed at 4.3 and 38.2° in the XRD pattern of AZ0.2UV24, respectively. A good distribution of Ag/AgCl on the surface of ZIF-11 was observed by FESEM of AZ0.2UV24. The improvement of visible light absorption ability and reduced e-/h+ recombination of AZ0.2UV24 were confirmed by DRS and PL, respectively. The photocatalytic degradation of TC was described using the zero-order kinetic model with a degradation efficiency of 95.4%. The stability and reusability of AZ0.2UV24 were investigated during three consecutive cycles. Finally, the results of this study provide convincing evidence for using Ag/AgCl/ZIF-11 as highly efficient photocatalysts for removing TC from aqueous solutions.
Collapse
Affiliation(s)
- Nasim Roghani
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, 35131-19111, Iran
| | - Narjes Keramati
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, 35131-19111, Iran.
| |
Collapse
|
4
|
Zöngür A, Er Zeybekler S. Evaluation of the effects of zinc oxide (ZnO NPs) nanoparticles synthesized by green synthesis on Caenorhabditis elegans. Biol Futur 2024; 75:411-423. [PMID: 38662325 DOI: 10.1007/s42977-024-00217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
In recent years, the rapid development of nanotechnology has caused the products obtained with this technology to be used more daily. Information on the effects of these products, which provide great advantages in every respect, on human health and the environment is insufficient. It has been suggested that these nanoparticles may have toxic effects on living things, mostly in animal experiments and cell cultures. In this paper, the organism Caenorhabditis elegans (C. elegans), which contains a genome and biochemical ways highly similar to humans, is used to understand and reveal the metabolism of Zinc oxide nanoparticles (ZnO NPs) toxicological effects. The toxicological effects of ZnO NPs on C. elegans organisms were investigated and the results were evaluated in terms of environment and human health. C. elegans was exposed to commercial ZnO NPs and green synthesized ZnO NPs from Olea europaea (olive tree, OLE). LC50 values were determined by probit analysis (green synthesized ZnO NP LC5024h = 84.97 mg/L, LC5072h = 33.27 mg/L, commercial ZnO NPs LC5024h = 5.75 mg/L, LC5072h = 1.91 mg/L). When the survival times of C. elegans were evaluated by the Kaplan-Meier method, it was seen that commercial ZnO NPs were more toxic than green synthesized ZnO NPs. In MTT tests, it was clearly seen that commercial ZnO NPs and green synthesized ZnO NPs entered the cell and caused different cytotoxicity. While there was a difference between control and 0.5, 2.5, 5, 10, 25, and 50 mg/L doses in commercial ZnO NP applications, there were significant differences between control and 25, 50 mg/L concentrations in green synthesized ZnO NP applications.
Collapse
Affiliation(s)
- Alper Zöngür
- Gemerek Vocational School, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Simge Er Zeybekler
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova-Izmir, Turkey
| |
Collapse
|
5
|
Ekinci A, Şahin Ö, Kutluay S, Horoz S, Canpolat G, Çokyaşa M, Baytar O. Designing copper-doped zinc oxide nanoparticle by tobacco stem extract-mediated green synthesis for solar cell efficiency and photocatalytic degradation of methylene blue. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2183-2193. [PMID: 39037035 DOI: 10.1080/15226514.2024.2379605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This study presents the green synthesis of copper-doped zinc oxide (Cu-doped ZnO) nanoparticles using tobacco stem (TS) extract. The environmentally friendly synthesis method ensures distinct features, high efficiency, and applicability in various fields, particularly in solar cell technology and photocatalytic applications. ZnO nanostructures are investigated due to their unique properties, cost-effectiveness, and broad range of applications. The nanoparticles are synthesized with varying Cu concentrations, and their structural, morphological, and compositional characteristics are thoroughly analyzed. The Cu-doped ZnO nanoparticles exhibit improved properties, such as increased surface area and reduced particle size, attributed to the incorporation of Cu dopants. The green synthesis approach using TS extract serves as a stabilizing agent and avoids the toxicity associated with chemical methods. Characterization techniques including SEM, TEM, EDX, FTIR, and XRD confirm the successful synthesis of the nanoparticles. Photocatalytic degradation studies reveal that the 5% Cu-doped ZnO exhibits the highest photocatalytic activity against methylene blue, attributed to synergistic effects between Cu and ZnO, including oxygen vacancy and electron-hole pair recombination rate suppression. The photocatalytic mechanism involves the generation of superoxide and hydroxyl radicals, leading to methylene blue degradation. Furthermore, the Cu-doped ZnO nanoparticles demonstrate promising photovoltaic performance, with the optimal efficiency observed at a 5% Cu concentration. The study suggests that Cu-doped ZnO has the potential to enhance solar cell efficiency and could serve as an alternative material in solar cell applications. Future research should focus on refining Cu-doped ZnO for further improvements in solar energy conversion efficiency.
Collapse
Affiliation(s)
- Arzu Ekinci
- Department of Occupational Health and Safety, Siirt University, Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sabit Horoz
- Department of Metallurgical and Materials, Sivas Science and Technology University, Sivas, Turkey
| | | | - Mine Çokyaşa
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Orhan Baytar
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
6
|
Shabanian-Broujeni E, Nezamzadeh-Ejhieh A. The coupled WO 3-AgBr nanocatalyst, part II: Synthesis, characterization, and the boosted photocatalytic activity towards metronidazole in an aqueous solution. Heliyon 2024; 10:e31353. [PMID: 38813214 PMCID: PMC11133908 DOI: 10.1016/j.heliyon.2024.e31353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
The AgBr and WO3 nanoparticles (NPs) were synthesized and coupled, and the coupled AgBr-WO3 binary catalyst, as well as the individual AgBr and WO3 NPs, were then characterized by XRD, FTIR, DRS, and SEM-EDX. XRD results showed the formation of orthorhombic WO3 cubic AgBr crystals. The crystallite sizes of 45, 28, and 45 nm were estimated by the Scherrer formula for the as-prepared AgBr, WO3, and AgBr-WO3 catalysts, respectively. The DRS study estimated band gap energies using both absorption edge wavelengths and the Kubelka-Munk model. The band gap energies of 2.72, 3.06, and 2.92 eV were obtained for the direct electronic transitions of AgBr, WO3, and AgBr-WO3. The ECB (potential position) of AgBr and WO3 were estimated to be 0.01 and 0.52 V, while their EVB values were 2.60 and 3.55 V, respectively. Typical FTIR absorption bands of W‒OH, the W‒O‒W, and AgBr bonds have appeared at 1637 cm-1, 823 (and 766) cm-1, and 1384 cm-1, respectively. The pHpzc of 4 was estimated for the individual and coupled catalysts. In studying the photocatalytic activity of the catalysts in the photodegradation of metronidazole (MNZ) a boosted activity was achieved for the coupled system. This increased activity depends on the maximum AgBr:WO3 mole ratio in a 1:3 mol ratio. Grinding time applied to prepare the coupled catalyst has also varied the photocatalytic activity.
Collapse
Affiliation(s)
- Elaheh Shabanian-Broujeni
- Department of Chemistry, Shahreza Branch, Islamic Azad University, 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, 311-86145, Shahreza, Isfahan, Iran
- Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
7
|
Norouzi A, Nezamzadeh-Ejhieh A. Synergistic photocatalytic effect of α-Fe 2O 3-ZnO binary nanocatalyst toward methylene blue: An experimental design study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123888. [PMID: 38241932 DOI: 10.1016/j.saa.2024.123888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Due to the potential ecosystem protection and management applications, searching for highly optimized semiconductor-based solar energy photocatalysts is still a significant challenge. Coupled α-Fe2O3-ZnO nanoparticles were prepared in situ and characterized by various identification techniques such as XRD, SEM-EDX, TEM, DRS, and FT-IR. Its pHpzc was about 8.1. The band gap energies of ZnO, α-Fe2O3, and the coupled α-Fe2O3-ZnO system were 3.22, 2.08, and 2.09 eV, respectively. The boosted photocatalytic activity of the coupled catalysts was designed via the RSM approach, and the optimal RSM conditions were pH 5, 25 min irradiation time, and 0.3 g/L of the α-Fe2O3-ZnO containing 75 % ZnO. The center point conditions' run included 0.5 g/L of the coupled catalyst containing 50 % ZnO, pH 7, and 22.5 min illumination time. The study on scavenger agents showed the highest role of hydroxyl radicals in MB photodegradation by the proposed catalyst.
Collapse
Affiliation(s)
- Abbas Norouzi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Department of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
8
|
YarAhmadi G, Keramati N. Reduced electron/hole recombination in Z-scheme nanostructure of zeolitic imidazolate framework-11/graphitic carbon nitride as photocatalyst under visible light. Sci Rep 2023; 13:22547. [PMID: 38110461 PMCID: PMC10728152 DOI: 10.1038/s41598-023-49315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
In this research, for the first time, the synthesis of nanostructure of zeolitic imidazolate framework-11/graphitic carbon nitride (ZIF-11/g-C3N4 X) with different weight of g-C3N4 (X: 0.01, 0.1, 0.3 g) is reported. Their performance was compared in photocatalytic degradation of MB under visible light. Synthetic samples were characterized by X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometer (XPS), diffused reflectance spectroscopy (DRS), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET), Electrochemical Impedance Spectroscopy (EIS) and Photoluminescence (PL) analysis. Based on the results, Z-scheme ZIF-11/g-C3N4 0.3 was selected as the best sample. FESEM and TEM images indicated that g-C3N4 sheets were complicated on the surface of ZIF-11 with rhombic dodecahedron (RHO) morphology. The surface area and band gap of ZIF-11/g-C3N4 0.3 was determined as 174.5 m2/g and 2.58 eV, respectively. The recombination of charge carriers in the ZIF-11/g-C3N4 0.3 nanostructure was reduced. Photocatalytic degradation efficiency of MB (5 ppm), pH = 7, visible irradiation (120 W-60 min) using 0.1 g of ZIF-11/g-C3N4 0.3 was achieved 72.7% with first-order kinetic model and acceptable stability in three consecutive cycles. Further, the total organic carbon (TOC) removal rate by ZIF-11/g-C3N4 0.3 after 5 h were 66.5%.
Collapse
Affiliation(s)
- Goli YarAhmadi
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Narjes Keramati
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
| |
Collapse
|
9
|
Farhadi H, Keramati N. Investigation of kinetics, isotherms, thermodynamics and photocatalytic regeneration of exfoliated graphitic carbon nitride/zeolite as dye adsorbent. Sci Rep 2023; 13:14098. [PMID: 37644162 PMCID: PMC10465547 DOI: 10.1038/s41598-023-41262-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
A novel exfoliated graphitic carbon nitride and clinoptilolite nanocomposites (Ex.g-C3N4/CP and g-C3N4/CP with a various ratios of g-C3N4 to CP) were prepared by facile method. This study evaluates the adsorption of methylene blue (MB) on the surface of synthesized adsorbents. The as-prepared composites were characterized by XRD, FT-IR, FESEM, BET and DRS. Batch experiments were carried out under various conditions, such as the amount of adsorbent and solution pH. The optimum batch experimental conditions were found under the response surface methodology. The Ex.g-C3N4/CP presented maximum removal of MB as compared to others. The removal efficiency of the as-prepared nanocomposite was significantly elevated owing to the synergistic effects. The adsorption capacities of MB (10 ppm) on Ex.g-C3N4/CP was 54.3 mg/g. The adsorption process by both composites (g-C3N4/CP and Ex.g-C3N4/CP) showed well-fitting with the Elovich kinetic model, and Langmuir isotherm. The thermodynamic study suggested that the adsorption of MB was a spontaneous and endothermic process. The reusability of g-C3N4/CP1:2 and Ex. g-C3N4/CP in removing of MB (10 ppm, pH = 9) was studied by photocatalytic regeneration under visible irradiation for three consecutive cycles. The results obtained from the experimental analyses showed that the removal of MB was easy treatment, eco-friendly, and high yield.
Collapse
Affiliation(s)
- Hajar Farhadi
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Narjes Keramati
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
| |
Collapse
|
10
|
Sheikhsamany R, Faghihian H, Shirani M. The MIL100(Fe)/BaTi 0.85Zr 0.15O 3 nanocomposite with the photocatalytic capability for study of tetracycline photodegradation kinetics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122323. [PMID: 36621027 DOI: 10.1016/j.saa.2023.122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The visible light-active nanocomposite with the photocatalytic capability was facile one-pot solvothermal method successfully synthesized. X-ray diffraction (XRD), Thermogravimetry and Derivative Thermogravimetry (TG-DTG), Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM-EDX), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Fourier Transform Infra-Red (FT-IR) analysis were employed to characterize the synthetized BaTi0.85Zr0.15O3, MIL-100(Fe), and the MIL-100(Fe)/BaTi0.85Zr0.15O3 samples. As a result of the Scherrer equations, the size of grains for MIL-100(Fe), BaTi0.85Zr0.15O3, and MIL-100(Fe)/BaTi0.85Zr0.15O3 was estimated to be 40.81, 12.00, and 22.70 nm, respectively. MIL-100(Fe), BaTi0.85Zr0.15O3, and MIL-100(Fe)/BaTi0.85Zr0.15O3 samples showed bandgap values of 1.77, 3.02, and 2.56 determined from their absorption edge wavelengths. In the photodegraded solutions, chemical oxygen demand (COD) data and tetracycline (TC) absorbencies were used to obtain the rate constants of 0.032 min-1 and 0.030 min-1, respectively. This corresponds to t1/2-values of 27.7 min and 21.7 min, respectively, for the degradation and mineralization of TC molecules during photodegradation process.
Collapse
Affiliation(s)
- Raana Sheikhsamany
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Hossein Faghihian
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 7867161167, Iran
| |
Collapse
|
11
|
Bhapkar A, Prasad R, Jaspal D, Shirolkar M, Gheisari K, Bhame S. Visible light driven photocatalytic degradation of methylene blue by ZnO nanostructures synthesized by glycine nitrate auto combustion route. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Palanivel B, Hossain MS, Macadangdang RR, Sahaya Jude Dhas S, Al-Enizi AM, Ubaidullah M, Kim WK, Gedi S, Ignatius Arockiam S. Effect of rGO support on Gd@ZnO for UV–visible-light driven photocatalytic organic pollutant degradation. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Farsi M, Nezamzadeh-Ejhieh A. A coupled Cobalt(II) oxide-Silver Tungstate nano-photocatalyst: Moderate characterization and evaluation of the photocatalysis kinetics towards methylene blue in aqueous solution. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
One-Pot Synthesis of SnO 2-rGO Nanocomposite for Enhanced Photocatalytic and Anticancer Activity. Polymers (Basel) 2022; 14:polym14102036. [PMID: 35631918 PMCID: PMC9144687 DOI: 10.3390/polym14102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 01/26/2023] Open
Abstract
Metal oxide and graphene derivative-based nanocomposites (NCs) are attractive to the fields of environmental remediation, optics, and cancer therapy owing to their remarkable physicochemical characteristics. There is limited information on the environmental and biomedical applications of tin oxide-reduced graphene oxide nanocomposites (SnO2-rGO NCs). The goal of this work was to explore the photocatalytic activity and anticancer efficacy of SnO2-rGO NCs. Pure SnO2 NPs and SnO2-rGO NCs were prepared using the one-pot hydrothermal method. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), UV–Vis spectrometry, photoluminescence (PL), and Raman scattering microscopy were applied to characterize the synthesized samples. The crystallite size of the SnO2 NPs slightly increased after rGO doping. TEM and SEM images show that the SnO2 NPs were tightly anchored onto the rGO sheets. The XPS and EDX data confirmed the chemical state and elemental composition of the SnO2-rGO NCs. Optical data suggest that the bandgap energy of the SnO2-rGO NCs was slightly lower than for the pure SnO2 NPs. In comparison to pure SnO2 NPs, the intensity of the PL spectra of the SnO2-rGO NCs was lower, indicating the decrement of the recombination rate of the surfaces charges (e−/h+) after rGO doping. Hence, the degradation efficiency of methylene blue (MB) dye by SnO2-rGO NCs (93%) was almost 2-fold higher than for pure SnO2 NPs (54%). The anticancer efficacy of SnO2-rGO NCs was also almost 1.5-fold higher against human liver cancer (HepG2) and human lung cancer (A549) cells compared to the SnO2 NPs. This study suggests a unique method to improve the photocatalytic activity and anticancer efficacy of SnO2 NPs by fusion with graphene derivatives.
Collapse
|
15
|
Kumar S, Kaushik R, Purohit L. Hetro-nanostructured Se-ZnO sustained with RGO nanosheets for enhanced photocatalytic degradation of p-Chlorophenol, p-Nitrophenol and Methylene blue. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Photocatalytic degradation of tetracycline in a stirred tank: computational fluid dynamic modeling and data validation. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02062-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
17
|
Effect of ZnO-based nanophotocatalyst on degradation of aniline. J Mol Model 2021; 27:92. [PMID: 33619651 DOI: 10.1007/s00894-021-04710-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
In this research, a zinc oxide/copper oxide/graphene oxide (ZnO/CuO/GO) nanophotocatalyst was synthesized for photodegradation of aniline as a pollutant, upon exposure to ultraviolet light (UV). Three variables including initial aniline concentration, the nanophotocatalyst dosage, and pH were designed. The statistical test and optimal conditions were determined. The consequences specified that the optimum values of pH, initial aniline concentration, the dosage of nanophotocatalyst, and the reaction time were 6, 150 ppm, 1 g/L, and 3 h, respectively. The obtained results revealed that the photodegradation of aniline was enhanced with doping zinc oxide and CuO on the graphene oxide. Under optimal conditions, 97% photodegradation of aniline was observed. The mechanism of aniline degradation with nanophotocatalyst was evaluated by molecular dynamic (MD) graphs. The interactions between nanophotocatalysts and aniline were considered by energy, density graph.
Collapse
|
18
|
Zhai S, Zhu G, Wei X, Ge M. Enhanced catalytic degradation of polyvinyl alcohol from aqueous solutions by novel synthesis of MnCoO3@γ-Al2O3 nanocomposites: Performance, degradation intermediates and mechanism. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
Preparation, characterization, and investigation of the catalytic property of α-Fe2O3-ZnO nanoparticles in the photodegradation and mineralization of methylene blue. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137587] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Chen S, Liu F, Xu M, Yan J, Zhang F, Zhao W, Zhang Z, Deng Z, Yun J, Chen R, Liu C. First-principles calculations and experimental investigation on SnO 2@ZnO heterojunction photocatalyst with enhanced photocatalytic performance. J Colloid Interface Sci 2019; 553:613-621. [PMID: 31247500 DOI: 10.1016/j.jcis.2019.06.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 11/26/2022]
Abstract
In this study, branch-like SnO2@ZnO heterojunction photocatalyst was successfully fabricated via a simple two-step hydrothermal process. The optical and electronic properties were characterized in detail and the results indicated that SnO2@ZnO nanocomposites (TZNCs) exhibited superior photocatalytic performance under visible light irradiation as compared to pure SnO2 and ZnO. The excellent photocatalytic performance of TZNCs can be ascribed to the heterojunction structure between ZnO and SnO2 which depresses the recombination of photogenerated electron-hole pairs. In addition, the branch-like morphology can provide large specific surface. Moreover, the density functional theory (DFT) computation on the Fermi level results confirmed that heterojunction structure between ZnO and SnO2 is more favor of the transfer of photogenerated eletrons from ZnO to SnO2, effectively improving separation of photogenerated electron-hole pairs. Noteworthy, this work would pave the route for the two semiconductor materials with a big work function difference which would lead to the high contact potential difference, surely contributing to improving the performance of photocatalysts.
Collapse
Affiliation(s)
- Sifan Chen
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Fenning Liu
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Manzhang Xu
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Junfeng Yan
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China.
| | - Fuchun Zhang
- College of Physics and Electronic Information, Yan'an University, Yan'an 716000, PR China.
| | - Wu Zhao
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Zhiyong Zhang
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Zhouhu Deng
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Jiangni Yun
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Ruiyong Chen
- Saarland University, Transfercenter Sustainable Electrochemistry, D-66125 Saarbrucken, Germany; KIST Europe, Campus E7 1, D-66123 Saarbrucken, Germany
| | - Chunli Liu
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| |
Collapse
|