1
|
Jafari AM, Morsali A, Bozorgmehr MR, Beyramabadi SA, Mohseni S. Modeling and characterization of lenalidomide-loaded tripolyphosphate-crosslinked chitosan nanoparticles for anticancer drug delivery. Int J Biol Macromol 2024; 260:129360. [PMID: 38218265 DOI: 10.1016/j.ijbiomac.2024.129360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Tripolyphosphate-crosslinked chitosan (TPPCS) nanoparticles were employed in the encapsulation of lenalidomide (LND) using a straightforward ionic cross-linking approach. The primary objectives of this technique were to enhance the bioavailability of LND and mitigate inadequate or overloading of hydrophobic and sparingly soluble drug towards cancer cells. In this context, a quantum chemical model was employed to elucidate the characteristics of TPPCS nanoparticles, aiming to assess the efficiency of these nanocarriers for the anticancer drug LND. Fifteen configurations of TPPCS and LND (TPPCS /LND1-15) were optimized using B3LYP density functional level of theory and PCM model (H2O). AIM analysis revealed that the high drug loading capacity of TPPCS can be attributed to hydrogen bonds, as supported by the average binding energy (168 kJ mol-1). The encouraging theoretical results prompted us to fabricate this drug delivery system and characterize it using advanced analytical techniques. The encapsulation efficiency of LND within the TPPCS was remarkably high, reaching approximately 87 %. Cytotoxicity studies showed that TPPCS/LND nanoparticles are more effective than the LND drug. To sum up, TPPCS/LND nanoparticles improved bioavailability of poorly soluble LND through cancerous cell membrane. In light of this accomplishment, the novel drug delivery route enhances efficiency, allowing for lower therapy doses.
Collapse
Affiliation(s)
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran.
| | | | - S Ali Beyramabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sharareh Mohseni
- Department of Chemistry, Quchan Branch, Islamic Azad University, Quchan, Iran
| |
Collapse
|
2
|
Wu S, Li L, Liang Q, Gao H, Tang T, Tang Y. A DFT study of sulforaphane adsorption on the group III nitrides (B12N12, Al12N12 and Ga12N12) nanocages. J Biomol Struct Dyn 2023; 42:12730-12741. [PMID: 37882329 DOI: 10.1080/07391102.2023.2272755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023]
Abstract
In this paper, the adsorption behavior of group III nitrides (B12N12, Al12N12, and Ga12N12) nanocages to sulforaphane (SF) anticancer medicine were studied by density functional theory (DFT). The adsorption energy, solvation energy, desorption time and related quantum molecular descriptors were calculated in neutral and acidic solutions. When the drugs were adsorbed to nanocages, the structure of nanocages and drugs changed after adsorption, indicating that the process was effective adsorption. The adsorption energy and solvation energy of the complexes created after adsorption were negative values, which indicated that the structure of complexes formed by adsorption were stable. According to charge decomposition analysis (CDA) and natural bonding orbitals (NBO), drugs act as charge donors and nanocages act as charge acceptors, so that the charge flows from drugs to nanocages. Thermodynamic calculations demonstrate that drugs adsorption on nanocages is a spontaneous exothermic process. The calculation of quantum molecular descriptors confirmed that drugs adsorption on nanocages increased the chemical reactivity and solubility of drugs, which facilitated its transfer in biological fluids. Both interaction region index (IRI) and topological analysis of atom in molecule (AIM) revealed Van Der Waals interaction between drugs and nanocages. Protonation studies demonstrated that acidic circumstances could improve the polarity of complexes, increase the solvation effect, and boost drugs release in target cancer cells. The results of this work indicate that X12N12(X = B, Al, Ga) nanocages can be used as the delivery vehicle of SF drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- ShiQuan Wu
- School of Physics, Guizhou University, Guiyang, China
| | - Li Li
- School of Physics, Guizhou University, Guiyang, China
| | - QiQi Liang
- School of Physics, Guizhou University, Guiyang, China
| | - HuaXu Gao
- School of Physics, Guizhou University, Guiyang, China
| | - TianYu Tang
- School of Physics, Guizhou University, Guiyang, China
| | - YanLin Tang
- School of Physics, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Harati H, Morsali A, Bozorgmehr MR, Ali Beyramabadi S. β-cyclodextrin-lenalidomide anticancer drug delivery nanosystem: A quantum chemical approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Rezaei A, Morsali A, Bozorgmehr MR, Nasrabadi M. Quantum chemical analysis of 5-aminolevulinic acid anticancer drug delivery systems: Carbon nanotube, –COOH functionalized carbon nanotube and iron oxide nanoparticle. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Mozhdehi AM, Sharifi AH, Ganjali A, Morsali A, Sharifi S, Naghavi F, Bamoharram FF, Sillanpää M. Perception of the reciprocal influences of the formed interactions and hydrogen bonds, and adsorption energies between zinc-titanate nanoparticles/nano-silica/Dawson heteropolyacid hybrid- water on the positive alternation trends of the strength and properties of ordinary and self-compacting concrete: A systematic study through the quantum mechanical theory and experimental engineering studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Nasrabadi M, Morsali A, Beyramabadi SA. An applied quantum-chemical model for genipin-crosslinked chitosan (GCS) nanocarrier. Int J Biol Macromol 2020; 165:1229-1240. [PMID: 33038394 DOI: 10.1016/j.ijbiomac.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
The genipin-crosslinked chitosan (GCS) nanocarrier has received a lot of attention due to its unique biological and chemical properties as an effective drug delivery system. GCS was modeled by considering two chitosan (CS) polymer sequences with six monomer units that are crosslinked by genipin. To investigate the characteristics of this model, we considered it as a nanocarrier of the anti-cancer drug cladribine (2CdA). Seven configurations of GCS and 2CdA (GCS/2CdA1-7) were optimized at M06-2X/6-31G(d,p) in aqueous solution. The average binding energy above 100 kJ mol-1 indicates a high drug loading amount. The high adsorption of the drug on GCS is due to the hydrogen bonds that were investigated by AIM analysis. Hydrogen bonds also allow the drug to be released more slowly. These results were confirmed by experimental evidence and the comparison of this model with the simple model of one polymer chain. Also, the mechanism of GCS formation was investigated by calculating the activation parameters, which indicates that solvent (H2O) molecules are explicitly involved in the formation of GCS.
Collapse
Affiliation(s)
- Marjan Nasrabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran.
| | - S Ali Beyramabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran
| |
Collapse
|
7
|
Sharifi AH, Zahmatkesh I, Mozhdehi AM, Morsali A, Bamoharram FF. Stability appraisement of the alumina-brine nanofluid in the presence of ionic and non-ionic disparents on the alumina nanoparticles surface as heat transfer fluids: Quantum mechanical study and Taguchi-optimized experimental analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Khorrampour R, Raissi H, Shaki H, Morsali A, Hashemzadeh H. The scrutinised DFT and MD studies on the adsorption of D-penicillamine drug on γ-Fe 2O 3 nanoparticle as a highly efficient carrier. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1716979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Heidar Raissi
- Chemistry Department, University of Birjand, Birjand, Iran
| | - Hosien Shaki
- Chemistry Department, Payame Noor University, Mashhad, Iran
| | - Ali Morsali
- Chemistry Department, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
9
|
Nasrabadi M, Beyramabadi SA, Morsali A. Surface functionalization of chitosan with 5-nitroisatin. Int J Biol Macromol 2020; 147:534-546. [PMID: 31935406 DOI: 10.1016/j.ijbiomac.2020.01.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/21/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022]
Abstract
Several possible configurations (CS/NI1-10) for the surface adsorption of 5-nitroisatin (NI) on the chitosan polymer (CS) were investigated using quantum mechanical methods in the gas and solution phases. The values of the binding energies indicate the energetic stability of these configurations. The solvation energies demonstrate that the solubility of NI and CS increases in the presence of each other. The role of hydrogen bonds in noncovalent surface functionalization was determined by AIM analysis. The mechanism of covalent surface functionalization and the explicit solvent effects (methanol) in this mechanism were investigated and it was determined that the covalent functionalization through Schiff base formation is possible. These findings, in addition to the biological applications of the chitosan Schiff bases and their complexes, led us to synthesize a new Schiff base from condensation reaction of CS and NI (CSB) together with its Ni(II) and Cu(II) complexes. The synthesized compounds were characterized by the elemental analysis, infrared spectroscopy (IR), thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Also, optimized geometries, assignment of the IR vibrational bands as well as exploring of the frontier orbitals of the synthesized compounds have been calculated using density functional levels of theory.
Collapse
Affiliation(s)
- Marjan Nasrabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - S Ali Beyramabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran.
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran
| |
Collapse
|
10
|
Quantum chemical studies of chitosan nanoparticles as effective drug delivery systems for 5-fluorouracil anticancer drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112495] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Mozhdehi AM, Bamoharram FF, Morsali A, Sharifi AH, Sharifi S, Ganjali A. Comprehension of the role of created hydrogen bonds and adsorption energy in polyamide-nanosilica- Keggin hybrid/ water on enhancement of concrete compressive strength: DFT calculations and experimental investigations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|