1
|
Totoiu C, Follmer AH, Oyala PH, Hadt RG. Probing Bioinorganic Electron Spin Decoherence Mechanisms with an Fe 2S 2 Metalloprotein. J Phys Chem B 2024; 128:10417-10426. [PMID: 39392916 PMCID: PMC11514009 DOI: 10.1021/acs.jpcb.4c06186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Recent efforts have sought to develop paramagnetic molecular quantum bits (qubits) as a means to store and manipulate quantum information. Emerging structure-property relationships have shed light on electron spin decoherence mechanisms. While insights within molecular quantum information science have derived from synthetic systems, biomolecular platforms would allow for the study of decoherence phenomena in more complex chemical environments and further leverage molecular biology and protein engineering approaches. Here we have employed the exchange-coupled ST = 1/2 Fe2S2 active site of putidaredoxin, an electron transfer metalloprotein, as a platform for fundamental mechanistic studies of electron spin decoherence toward spin-based biological quantum sensing. At low temperatures, decoherence rates were anisotropic, reflecting a hyperfine-dominated decoherence mechanism, standing in contrast to the anisotropy of molecular systems observed previously. This mechanism provided a pathway for probing spatial effects on decoherence, such as protein vs solvent contributions. Furthermore, we demonstrated spatial sensitivity to single point mutations via site-directed mutagenesis and temporal sensitivity for monitoring solvent isotope exchange. Thus, this study demonstrates a step toward the design and construction of biomolecular quantum sensors.
Collapse
Affiliation(s)
- Christian
A. Totoiu
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Paul H. Oyala
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Kopp SM, Nakamura S, Phelan BT, Poh YR, Tyndall SB, Brown PJ, Huang Y, Yuen-Zhou J, Krzyaniak MD, Wasielewski MR. Luminescent Organic Triplet Diradicals as Optically Addressable Molecular Qubits. J Am Chem Soc 2024; 146:27935-27945. [PMID: 39332019 DOI: 10.1021/jacs.4c11116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Optical-spin interfaces that enable the photoinitialization, coherent microwave manipulation, and optical read-out of ground state spins have been studied extensively in solid-state defects such as diamond nitrogen vacancy (NV) centers and are promising for quantum information science applications. Molecular quantum bits (qubits) offer many advantages over solid-state spin centers through synthetic control of their optical and spin properties and their scalability into well-defined multiqubit arrays. In this work, we report an optical-spin interface in an organic molecular qubit consisting of two luminescent tris(2,4,6-trichlorophenyl)methyl (TTM) radicals connected via the meta-positions of a phenyl linker. The triplet ground state of this system can be photoinitialized in its |T0⟩ state by shelving triplet populations as singlets through spin-selective excited-state intersystem crossing with 80% selectivity from |T+⟩ and |T-⟩. The fluorescence intensity in the triplet manifold is determined by the ground-state polarization, and we show successful optical read-out of the ground-state spin following microwave manipulations by fluorescence-detected magnetic resonance spectroscopy. At 85 K, the lifetime of the polarized ground state is 45 ± 3 μs, and the ground state phase memory time is Tm = 5.9 ± 0.1 μs, which increases to 26.8 ± 1.6 μs at 5 K. These results show that luminescent diradicals with triplet ground states can serve as optically addressable molecular qubits with long spin coherence times, which marks an important step toward the rational design of spin-optical interfaces in organic materials.
Collapse
Affiliation(s)
- Sebastian M Kopp
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Shunta Nakamura
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Brian T Phelan
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Yong Rui Poh
- Department of Chemistry and Biochemistry and Center for Molecular Quantum Transduction, University of California San Diego, La Jolla, California 92093 United States
| | - Samuel B Tyndall
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Paige J Brown
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Yuheng Huang
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry and Center for Molecular Quantum Transduction, University of California San Diego, La Jolla, California 92093 United States
| | - Matthew D Krzyaniak
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Michael R Wasielewski
- Department of Chemistry and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113 United States
| |
Collapse
|
3
|
Laorenza DW, Mullin KR, Weiss LR, Bayliss SL, Deb P, Awschalom DD, Rondinelli JM, Freedman DE. Coherent spin-control of S = 1 vanadium and molybdenum complexes. Chem Sci 2024:d4sc03107e. [PMID: 39144462 PMCID: PMC11318652 DOI: 10.1039/d4sc03107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
The burgeoning field of quantum sensing hinges on the creation and control of quantum bits. To date, the most well-studied quantum sensors are optically active, paramagnetic defects residing in crystalline hosts. We previously developed analogous optically addressable molecules featuring a ground-state spin-triplet centered on a Cr4+ ion with an optical-spin interface. In this work, we evaluate isovalent V3+ and Mo4+ congeners, which offer unique advantages, such as an intrinsic nuclear spin for V3+ or larger spin-orbit coupling for Mo4+, as optically addressable spin systems. We assess the ground-state spin structure and dynamics for each complex, illustrating that all of these spin-triplet species can be coherently controlled. However, unlike the Cr4+ derivatives, these pseudo-tetrahedral V3+ and Mo4+ complexes exhibit no measurable emission. Coupling absorption spectroscopy with computational predictions, we investigate why these complexes exhibit no detectable photoluminescence. These cumulative results suggest that design of future V3+ complexes should target pseudo-tetrahedral symmetries using bidentate or tridentate ligand scaffolds, ideally with deuterated or fluorinated ligand environments. We also suggest that spin-triplet Mo4+, and by extension W4+, complexes may not be suitable candidate optically addressable qubit systems due to their low energy spin-singlet states. By understanding the failures and successes of these systems, we outline additional design features for optically addressable V- or Mo-based molecules to expand the library of tailor-made quantum sensors.
Collapse
Affiliation(s)
- Daniel W Laorenza
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Kathleen R Mullin
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Leah R Weiss
- Pritzker School of Molecular Engineering, University of Chicago Chicago Illinois 60637 USA
- Advanced Institute for Materials Research (AIMR-WPI), Tohoku University Sendai 980-8577 Japan
| | - Sam L Bayliss
- Pritzker School of Molecular Engineering, University of Chicago Chicago Illinois 60637 USA
- James Watt School of Engineering, University of Glasgow Glasgow G12 8QQ UK
| | - Pratiti Deb
- Pritzker School of Molecular Engineering, University of Chicago Chicago Illinois 60637 USA
- Department of Physics, University of Chicago Chicago Illinois 60637 USA
| | - David D Awschalom
- Pritzker School of Molecular Engineering, University of Chicago Chicago Illinois 60637 USA
- Department of Physics, University of Chicago Chicago Illinois 60637 USA
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory Lemont Illinois 60439 USA
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Danna E Freedman
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| |
Collapse
|
4
|
Schumann SL, Kotnig S, Kutin Y, Drosou M, Stratmann LM, Streltsova Y, Schnegg A, Pantazis DA, Clever GH, Kasanmascheff M. Structure and Flexibility of Copper-Modified DNA G-Quadruplexes Investigated by 19 F ENDOR Experiments at 34 GHz. Chemistry 2023; 29:e202302527. [PMID: 37602522 DOI: 10.1002/chem.202302527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
DNA G-quadruplexes (GQs) are of great interest due to their involvement in crucial biological processes such as telomerase maintenance and gene expression. Furthermore, they are reported as catalytically active DNAzymes and building blocks in bio-nanotechnology. GQs exhibit remarkable structural diversity and conformational heterogeneity, necessitating precise and reliable tools to unravel their structure-function relationships. Here, we present insights into the structure and conformational flexibility of a unimolecular GQ with high spatial resolution via electron-nuclear double resonance (ENDOR) experiments combined with Cu(II) and fluorine labeling. These findings showcase the successful application of the 19 F-ENDOR methodology at 34 GHz, overcoming the limitations posed by the complexity and scarcity of higher-frequency spectrometers. Importantly, our approach retains both sensitivity and orientational resolution. This integrated study not only enhances our understanding of GQs but also expands the methodological toolbox for studying other macromolecules.
Collapse
Affiliation(s)
- Simon L Schumann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Simon Kotnig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Drosou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Lukas M Stratmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yana Streltsova
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
5
|
Kazmierczak NP, Luedecke KM, Gallmeier ET, Hadt RG. T1 Anisotropy Elucidates Spin Relaxation Mechanisms in an S = 1 Cr(IV) Optically Addressable Molecular Qubit. J Phys Chem Lett 2023; 14:7658-7664. [PMID: 37603791 DOI: 10.1021/acs.jpclett.3c01964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Paramagnetic molecules offer unique advantages for quantum information science owing to their spatial compactness, synthetic tunability, room-temperature quantum coherence, and potential for optical state initialization and readout. However, current optically addressable molecular qubits are hampered by rapid spin-lattice relaxation (T1) even at sub-liquid nitrogen temperatures. Here, we use temperature- and orientation-dependent pulsed electron paramagnetic resonance (EPR) to elucidate the negative sign of the ground state zero-field splitting (ZFS) and assign T1 anisotropy to specific types of motion in an optically addressable S = 1 Cr(o-tolyl)4 molecular qubit. The anisotropy displays a distinct sin2(2θ) functional form that is not observed in S = 1/2 Cu(acac)2 or other Cu(II)/V(IV) microwave addressable molecular qubits. The Cr(o-tolyl)4 T1 anisotropy is ascribed to couplings between electron spins and rotational motion in low-energy acoustic or pseudoacoustic phonons. Our findings suggest that rotational degrees of freedom should be suppressed to maximize the coherence temperature of optically addressable qubits.
Collapse
Affiliation(s)
- Nathanael P Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Kaitlin M Luedecke
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Elisabeth T Gallmeier
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Kazmierczak NP, Hadt RG. Illuminating Ligand Field Contributions to Molecular Qubit Spin Relaxation via T1 Anisotropy. J Am Chem Soc 2022; 144:20804-20814. [DOI: 10.1021/jacs.2c08729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nathanael P. Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Laorenza DW, Kairalapova A, Bayliss SL, Goldzak T, Greene SM, Weiss LR, Deb P, Mintun PJ, Collins KA, Awschalom DD, Berkelbach TC, Freedman DE. Tunable Cr 4+ Molecular Color Centers. J Am Chem Soc 2021; 143:21350-21363. [PMID: 34817994 DOI: 10.1021/jacs.1c10145] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The inherent atomistic precision of synthetic chemistry enables bottom-up structural control over quantum bits, or qubits, for quantum technologies. Tuning paramagnetic molecular qubits that feature optical-spin initialization and readout is a crucial step toward designing bespoke qubits for applications in quantum sensing, networking, and computing. Here, we demonstrate that the electronic structure that enables optical-spin initialization and readout for S = 1, Cr(aryl)4, where aryl = 2,4-dimethylphenyl (1), o-tolyl (2), and 2,3-dimethylphenyl (3), is readily translated into Cr(alkyl)4 compounds, where alkyl = 2,2,2-triphenylethyl (4), (trimethylsilyl)methyl (5), and cyclohexyl (6). The small ground state zero field splitting values (<5 GHz) for 1-6 allowed for coherent spin manipulation at X-band microwave frequency, enabling temperature-, concentration-, and orientation-dependent investigations of the spin dynamics. Electronic absorption and emission spectroscopy confirmed the desired electronic structures for 4-6, which exhibit photoluminescence from 897 to 923 nm, while theoretical calculations elucidated the varied bonding interactions of the aryl and alkyl Cr4+ compounds. The combined experimental and theoretical comparison of Cr(aryl)4 and Cr(alkyl)4 systems illustrates the impact of the ligand field on both the ground state spin structure and excited state manifold, laying the groundwork for the design of structurally precise optically addressable molecular qubits.
Collapse
Affiliation(s)
- Daniel W Laorenza
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Arailym Kairalapova
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sam L Bayliss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Tamar Goldzak
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Samuel M Greene
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Leah R Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Pratiti Deb
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.,Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Peter J Mintun
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Kelsey A Collins
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David D Awschalom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.,Department of Physics, University of Chicago, Chicago, Illinois 60637, United States.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Danna E Freedman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Mirzoyan R, Kazmierczak NP, Hadt RG. Deconvolving Contributions to Decoherence in Molecular Electron Spin Qubits: A Dynamic Ligand Field Approach. Chemistry 2021; 27:9482-9494. [PMID: 33855760 DOI: 10.1002/chem.202100845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/16/2022]
Abstract
In the past decade, transition metal complexes have gained momentum as electron spin-based quantum bit (qubit) candidates due to their synthetic tunability and long achievable coherence times. The decoherence of magnetic quantum states imposes a limit on the use of these qubits for quantum information technologies, such as quantum computing, sensing, and communication. With rapid recent development in the field of molecular quantum information science, a variety of chemical design principles for prolonging coherence in molecular transition metal qubits have been proposed. Here the spin-spin, motional, and spin-phonon regimes of decoherence are delineated, outlining design principles for each. It is shown how dynamic ligand field models can provide insights into the intramolecular vibrational contributions in the spin-phonon decoherence regime. This minireview aims to inform the development of molecular quantum technologies tailored for different environments and conditions.
Collapse
Affiliation(s)
- Ruben Mirzoyan
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathanael P Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|