1
|
Molnár BJ, Dékány AÁ, Czakó G. Automated potential energy surface development and quasi-classical dynamics for the F- + SiH3I system. J Chem Phys 2024; 161:194306. [PMID: 39560085 DOI: 10.1063/5.0238366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
We report a potential energy surface (PES) development for the F- + SiH3I system to study its gas-phase reactions through quasi-classical dynamics simulations. The PES is represented by a full-dimensional permutationally invariant polynomial fitted to composite coupled cluster energy points obtained at the ManyHF-[CCSD-F12b + BCCD(T) - BCCD]/aug-cc-pVTZ(-PP) level of theory. The development was automated by Robosurfer, which samples the configurational space, manages ab initio calculations, and iteratively extends the fitting set. When selecting the ab initio method, we address two types of electronic structure calculation issues: first, the gold standard CCSD(T)-F12b is prone to occasional breakdown due to the perturbative (T) contribution, whereas CCSD-F12b + BCCD(T) - BCCD, with the Brueckner (T) term, is more robust; second, the underlying Hartree-Fock calculation may not always converge to the global minimum, resulting in highly erroneous energies. To mitigate this, we employed ManyHF, configuring the Hartree-Fock calculations with multiple initial guess orbitals and selecting the solution with the lowest energy. According to the simulations, the title system exhibits exceptionally high and diverse reactivity. We observe two dominant product formations: SN2 and proton abstraction. Moreover, SiH2F- + HI, SiHFI- + H2, SiH2FI + H-, SiH2 + FHI-, SiH2 + HF + I-, and SiHF + H2 + I- formations are found at lower probabilities. We differentiated inversion and retention for SN2, both being significant throughout the entire collision energy range. Opacity- and excitation functions are reported, and the details of the atomistic dynamics are visually examined via trajectory animations.
Collapse
Affiliation(s)
- Balázs J Molnár
- MTA-SZTE Lendület "Momentum" Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Attila Á Dékány
- MTA-SZTE Lendület "Momentum" Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület "Momentum" Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
2
|
Remmerswaal WA, de Jong T, van de Vrande KNA, Louwersheimer R, Verwaal T, Filippov DV, Codée JDC, Hansen T. Backside versus Frontside S N2 Reactions of Alkyl Triflates and Alcohols. Chemistry 2024; 30:e202400590. [PMID: 38385647 DOI: 10.1002/chem.202400590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
Nucleophilic substitution reactions are elementary reactions in organic chemistry that are used in many synthetic routes. By quantum chemical methods, we have investigated the intrinsic competition between the backside SN2 (SN2-b) and frontside SN2 (SN2-f) pathways using a set of simple alkyl triflates as the electrophile in combination with a systematic series of phenols and partially fluorinated ethanol nucleophiles. It is revealed how and why the well-established mechanistic preference for the SN2-b pathway slowly erodes and can even be overruled by the unusual SN2-f substitution mechanism going from strong to weak alcohol nucleophiles. Activation strain analyses disclose that the SN2-b pathway is favored for strong alcohol nucleophiles because of the well-known intrinsically more efficient approach to the electrophile resulting in a more stabilizing nucleophile-electrophile interaction. In contrast, the preference of weaker alcohol nucleophiles shifts to the SN2-f pathway, benefiting from a stabilizing hydrogen bond interaction between the incoming alcohol and the leaving group. This hydrogen bond interaction is strengthened by the increased acidity of the weaker alcohol nucleophiles, thereby steering the mechanistic preference toward the frontside SN2 pathway.
Collapse
Affiliation(s)
- Wouter A Remmerswaal
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Tjeerd de Jong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Koen N A van de Vrande
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Rick Louwersheimer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Thomas Verwaal
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Thomas Hansen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The, Netherlands
| |
Collapse
|
3
|
Tasi DA, Czakó G. Vibrational mode-specificity in the dynamics of the OH- + CH3I multi-channel reaction. J Chem Phys 2024; 160:044305. [PMID: 38265083 DOI: 10.1063/5.0189561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
We report a comprehensive characterization of the vibrational mode-specific dynamics of the OH- + CH3I reaction. Quasi-classical trajectory simulations are performed at four different collision energies on our previously-developed full-dimensional high-level ab initio potential energy surface in order to examine the impact of four different normal-mode excitations in the reactants. Considering the 11 possible pathways of OH- + CH3I, pronounced mode-specificity is observed in reactivity: In general, the excitations of the OH- stretching and CH stretching exert the greatest influence on the channels. For the SN2 and proton-abstraction products, the reactant initial attack angle and the product scattering angle distributions do not show major mode-specific features, except for SN2 at higher collision energies, where forward scattering is promoted by the CI stretching and CH stretching excitations. The post-reaction energy flow is also examined for SN2 and proton abstraction, and it is unveiled that the excess vibrational excitation energies rather transfer into the product vibrational energy because the translational and rotational energy distributions of the products do not represent significant mode-specificity. Moreover, in the course of proton abstraction, the surplus vibrational energy in the OH- reactant mostly remains in the H2O product owing to the prevailing dominance of the direct stripping mechanism.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
4
|
Dékány AÁ, Czakó G. Exploring the versatile reactivity of the F- + SiH3Cl system on a full-dimensional coupled-cluster potential energy surface. J Chem Phys 2023; 158:2895234. [PMID: 37290077 DOI: 10.1063/5.0153083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
We develop a full-dimensional analytical potential energy surface (PES) for the F- + SiH3Cl reaction using Robosurfer for automatically sampling the configuration space, the robust [CCSD-F12b + BCCD(T) - BCCD]/aug-cc-pVTZ composite level of theory for computing the energy points, and the permutationally invariant polynomial method for fitting. Evolution of the fitting error and the percentage of the unphysical trajectories are monitored as a function of the iteration steps/number of energy points and polynomial order. Quasi-classical trajectory simulations on the new PES reveal rich dynamics resulting in high-probability SN2 (SiH3F + Cl-) and proton-transfer (SiH2Cl- + HF) products as well as several lower-probability channels, such as SiH2F- + HCl, SiH2FCl + H-, SiH2 + FHCl-, SiHFCl- + H2, SiHF + H2 + Cl-, and SiH2 + HF + Cl-. The Walden-inversion and front-side-attack-retention SN2 pathways are found to be competitive, producing nearly racemic products at high collision energies. The detailed atomic-level mechanisms of the various reaction pathways and channels as well as the accuracy of the analytical PES are analyzed along representative trajectories.
Collapse
Affiliation(s)
- Attila Á Dékány
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
5
|
Robinson HT, Corkish TR, Haakansson CT, Watson PD, McKinley AJ, Wild DA. Spectroscopic Study of the Br - +CH 3 I→I - +CH 3 Br S N 2 Reaction. Chemphyschem 2022; 23:e202200278. [PMID: 35708114 PMCID: PMC9804238 DOI: 10.1002/cphc.202200278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Indexed: 01/05/2023]
Abstract
Mass spectrometry and anion photoelectron spectroscopy have been used to study the gas-phaseS N 2 ${{{\rm S}}_{{\rm N}}2}$ reaction involvingB r - ${{{\rm B}{\rm r}}^{-}}$ andC H 3 I ${{{\rm C}{\rm H}}_{3}{\rm I}}$ . The anion photoelectron spectra associated with the reaction intermediates of thisS N 2 ${{{\rm S}}_{{\rm N}}2}$ reaction are presented. High-level CCSD(T) calculations have been utilised to investigate the reaction intermediates that may form as a result of theS N 2 ${{{\rm S}}_{{\rm N}}2}$ reaction along various different reaction pathways, including back-side attack and front-side attack. In addition, simulated vertical detachment energies of each reaction intermediate have been calculated to rationalise the photoelectron spectra.
Collapse
Affiliation(s)
- Hayden T. Robinson
- School of Molecular SciencesThe University of Western AustraliaCrawleyWestern Australia6009
| | - Timothy R. Corkish
- School of Molecular SciencesThe University of Western AustraliaCrawleyWestern Australia6009
| | | | - Peter D. Watson
- School of Molecular SciencesThe University of Western AustraliaCrawleyWestern Australia6009
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordUnited KingdomOX1 3QZ
| | - Allan J. McKinley
- School of Molecular SciencesThe University of Western AustraliaCrawleyWestern Australia6009
| | - Duncan A. Wild
- School of Molecular SciencesThe University of Western AustraliaCrawleyWestern Australia6009
- School of ScienceEdith Cowan UniversityJoondalupWestern Australia6027
| |
Collapse
|
6
|
Lu X, Li L, Zhang X, Fu B, Xu X, Zhang DH. Dynamical Effects of S N2 Reactivity Suppression by Microsolvation: Dynamics Simulations of the F -(H 2O) + CH 3I Reaction on a 21-Dimensional Potential Energy Surface. J Phys Chem Lett 2022; 13:5253-5259. [PMID: 35674277 DOI: 10.1021/acs.jpclett.2c01323] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A comparison of atomistic dynamics between microsolvated and unsolvated reactions can expose the precise role of solvent molecules and thus provide deep insight into how solvation influences chemical reactions. Here we developed the first full-dimensional analytical potential energy surface of the F-(H2O) + CH3I reaction, which facilitates the efficient dynamics simulations on a quantitatively accurate level. The computed SN2 reactivity suppression ratio of the monosolvated F-(H2O) + CH3I reaction relative to the unsolvated F- + CH3I reaction as a function of collision energy first increases and then decreases steadily, forming an inverted-V shape, due to the combined dynamical effects of interaction time, steric hindrance, and collision-induced dehydration. Moreover, further analysis reveals that the steric effect of the F-(H2O) + CH3I reaction resulting from the single water molecule is manifested mainly in dragging the F- anion away from the central C atom, rather than shielding F- from C. Our study shows there is great potential in rigorously studying the role of the solvent in more complicated reactions.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lulu Li
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoren Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Xu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Tasi DA, Czakó G. Unconventional S N2 retention pathways induced by complex formation: High-level dynamics investigation of the NH 2 - + CH 3I polyatomic reaction. J Chem Phys 2022; 156:184306. [PMID: 35568546 DOI: 10.1063/5.0091789] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Investigations on the dynamics of chemical reactions have been a hot topic for experimental and theoretical studies over the last few decades. Here, we carry out the first high-level dynamical characterization for the polyatom-polyatom reaction between NH2 - and CH3I. A global analytical potential energy surface is developed to describe the possible pathways with the quasi-classical trajectory method at several collision energies. In addition to SN2 and proton abstraction, a significant iodine abstraction is identified, leading to the CH3 + [NH2⋯I]- products. For SN2, our computations reveal an indirect character as well, promoting the formation of [CH3⋯NH2] complexes. Two novel dominant SN2 retention pathways are uncovered induced by the rotation of the CH3 fragment in these latter [CH3⋯NH2] complexes. Moreover, these uncommon routes turn out to be the most dominant retention paths for the NH2 - + CH3I SN2 reaction.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
8
|
Tajti V, Czakó G. Vibrational mode-specific dynamics of the F - + CH 3CH 2Cl multi-channel reaction. Phys Chem Chem Phys 2022; 24:8166-8181. [PMID: 35343535 DOI: 10.1039/d2cp00685e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the mode-specific dynamics of the ground-state, C-Cl stretching (v10), CH2 wagging (v7), sym-CH2 stretching (v1), and sym-CH3 stretching (v3) excited F- + CH3CH2Cl(vk = 0, 1) [k = 10, 7, 1, 3] → Cl- + CH3CH2F (SN2), HF + CH3CHCl-, FH⋯Cl- + C2H4, and Cl- + HF + C2H4 (E2) reactions using a full-dimensional high-level analytical global potential energy surface and the quasi-classical trajectory method. Excitation of the C-Cl stretching, CH2 stretching, and CH2/CH3 stretching modes enhances the SN2, proton abstraction, and FH⋯Cl- and E2 channels, respectively. Anti-E2 dominates over syn-E2 (kinetic anti-E2 preference) and the thermodynamically-favored SN2 (wider reactive anti-E2 attack angle range). The direct (a) SN2, (b) proton abstraction, (c) FH⋯Cl- + C2H4, (d) syn-E2, and (e) anti-E2 channels proceed with (a) back-side/backward, (b) isotropic/forward, (c) side-on/forward, (d) front-side/forward, and (e) back-side/forward attack/scattering, respectively. The HF products are vibrationally cold, especially for proton abstraction, and their rotational excitation increases for proton abstraction, anti-E2, and syn-E2, in order. Product internal-energy and mode-specific vibrational distributions show that CH3CH2F is internally hot with significant C-F stretching and CH2 wagging excitations, whereas C2H4 is colder. One-dimensional Gaussian binning technique is proved to solve the normal mode analysis failure caused by methyl internal rotation.
Collapse
Affiliation(s)
- Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
9
|
Meng F, Li Y, Wang D. Predicting atomic-level reaction mechanisms for S N2 reactions via machine learning. J Chem Phys 2021; 155:224111. [PMID: 34911303 DOI: 10.1063/5.0074422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Identifying atomic-level reaction mechanisms is an essential step in chemistry. In this study, we develop a joint-voting model based on three parallel machine-learning algorithms to predict atomic-level and dynamical mechanisms trained with 1700 trajectories. Three predictive experiments are carried out with the training trajectories divided into ten, seven, and five classes. The results indicate that, as the number of trajectories in each class increases from the ten- to five-class model, the five-class model converges the fastest and the prediction success rate increases. The number of trajectories in each experiment to get the predictive models converged is 100, 100, and 70, respectively. The prediction accuracy increases from 88.3% for the ten-class experiment, to 91.0% for the seven-class, and to 92.0% for the five-class. Our study demonstrates that machine learning can also be used to predict elementary dynamical processes of structural evolution along time, that is, atomic-level reaction mechanisms.
Collapse
Affiliation(s)
- Fanbin Meng
- School of Medical Information Engineering, Jining Medical University, Jining 272067, Shandong, China
| | - Yan Li
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, Shandong, China
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
10
|
Dékány AÁ, Kovács GZ, Czakó G. High-Level Systematic Ab Initio Comparison of Carbon- and Silicon-Centered S N2 Reactions. J Phys Chem A 2021; 125:9645-9657. [PMID: 34709818 PMCID: PMC8591615 DOI: 10.1021/acs.jpca.1c07574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We characterize the
stationary points along the Walden inversion,
front-side attack, and double-inversion pathways of the X– + CH3Y and X– + SiH3Y [X,
Y = F, Cl, Br, I] SN2 reactions using chemically accurate
CCSD(T)-F12b/aug-cc-pVnZ [n = D,
T, Q] levels of theory. At the carbon center, Walden inversion dominates
and proceeds via prereaction (X–···H3CY) and postreaction (XCH3···Y–) ion-dipole wells separated by a usually submerged
transition state (X–H3C–Y)−, front-side attack occurs over high barriers, double inversion is
the lowest-energy retention pathway for X = F, and hydrogen- (F–···HCH2Y) and halogen-bonded
(X–···YCH3) complexes
exist in the entrance channel. At the silicon center, Walden inversion
proceeds through a single minimum (X–SiH3–Y)−, the front-side attack is competitive via a usually
submerged transition state separating pre- and postreaction minima
having X–Si–Y angles close to 90°, double inversion
occurs over positive, often high barriers, and hydrogen- and halogen-bonded
complexes are not found. In addition to the SN2 channels
(Y– + CH3X/SiH3X), we report
reaction enthalpies for proton abstraction (HX + CH2Y–/SiH2Y–), hydride substitution
(H– + CH2XY/SiH2XY), XH···Y– complex formation (XH···Y– + 1CH2/1SiH2), and halogen
abstraction (XY + CH3–/SiH3– and XY– + CH3/SiH3).
Collapse
Affiliation(s)
- Attila Á Dékány
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gyula Z Kovács
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
11
|
Tasi DA, Czakó G. Uncovering an oxide ion substitution for the OH - + CH 3F reaction. Chem Sci 2021; 12:14369-14375. [PMID: 34880987 PMCID: PMC8580036 DOI: 10.1039/d1sc03834f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Theoretical investigations on chemical reactions allow us to understand the dynamics of the possible pathways and identify new unexpected routes. Here, we develop a global analytical potential energy surface (PES) for the OH− + CH3F reaction in order to perform high-level dynamics simulations. Besides bimolecular nucleophilic substitution (SN2) and proton abstraction, our quasi-classical trajectory computations reveal a novel oxide ion substitution leading to the HF + CH3O− products. This exothermic reaction pathway occurs via the CH3OH⋯F− deep potential well of the SN2 product channel as a result of a proton abstraction from the hydroxyl group by the fluoride ion. The present detailed dynamics study of the OH− + CH3F reaction focusing on the surprising oxide ion substitution demonstrates how incomplete our knowledge is of fundamental chemical reactions. Reaction dynamics simulations on a high-level ab initio analytical potential energy surface reveal a novel oxide ion substitution channel for the OH− + CH3F reaction.![]()
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| |
Collapse
|
12
|
Tajti V, Győri T, Czakó G. Detailed quasiclassical dynamics of the F - + CH 3Br reaction on an ab initio analytical potential energy surface. J Chem Phys 2021; 155:124301. [PMID: 34598562 DOI: 10.1063/5.0065209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dynamics and mechanisms of the F- + CH3Br(v = 0) → Br- + CH3F (SN2 via Walden inversion, front-side attack, and double inversion), F- + inverted-CH3Br (induced inversion), HF + CH2Br- (proton abstraction), and FH⋯Br- + 1CH2 reactions are investigated using a high-level global ab initio potential energy surface, the quasiclassical trajectory method, as well as non-standard configuration- and mode-specific analysis techniques. A vector-projection method is used to identify inversion and retention trajectories; then, a transition-state-attack-angle-based approach unambiguously separates the front-side attack and the double-inversion retention pathways. The Walden-inversion SN2 channel becomes direct rebound dominated with increasing collision energy as indicated by backward scattering, initial back-side attack preference, and the redshifting of product internal energy peaks in accord with CF stretching populations. In the minor retention and induced-inversion pathways, almost the entire available energy transfers into product rotation-vibration, and retention mainly proceeds with indirect, slow double inversion following induced inversion with about 50% probability. Proton abstraction is dominated by direct stripping (evidenced by forward scattering) with CH3-side initial attack preference, providing mainly vibrationally ground state products with significant zero-point energy violation.
Collapse
Affiliation(s)
- Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Tibor Győri
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
13
|
Papp D, Czakó G. Facilitated inversion complicates the stereodynamics of an S N2 reaction at nitrogen center. Chem Sci 2021; 12:5410-5418. [PMID: 34168784 PMCID: PMC8179618 DOI: 10.1039/d1sc00490e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bimolecular nucleophilic substitution (SN2) reactions at carbon center are well known to proceed with the stereospecific Walden-inversion mechanism. Reaction dynamics simulations on a newly developed high-level ab initio analytical potential energy surface for the F− + NH2Cl nitrogen-centered SN2 and proton-transfer reactions reveal a hydrogen-bond-formation-induced multiple-inversion mechanism undermining the stereospecificity of the N-centered SN2 channel. Unlike the analogous F− + CH3Cl SN2 reaction, F− + NH2Cl → Cl− + NH2F is indirect, producing a significant amount of NH2F with retention, as well as inverted NH2Cl during the timescale within the unperturbed NH2Cl molecule gets inverted with only low probability, showing the important role of facilitated inversions via an FH…NHCl−-like transition state. Proton transfer leading to HF + NHCl− is more direct and becomes the dominant product channel at higher collision energies. Multiple-inversion, the analogue of the double-inversion pathway recently revealed for SN2@C, is the key mechanism in SN2 at N center undermining stereospecificity.![]()
Collapse
Affiliation(s)
- Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| |
Collapse
|