1
|
Chan WJ, Urandur S, Li H, Goudar VS. Recent advances in copper sulfide nanoparticles for phototherapy of bacterial infections and cancer. Nanomedicine (Lond) 2023; 18:2185-2204. [PMID: 38116732 DOI: 10.2217/nnm-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Copper sulfide nanoparticles (CuS NPs) have attracted growing interest in biomedical research due to their remarkable properties, such as their high photothermal and thermodynamic capabilities, which are ideal for anticancer and antibacterial applications. This comprehensive review focuses on the current state of antitumor and antibacterial applications of CuS NPs. The initial section provides an overview of the various approaches to synthesizing CuS NPs, highlighting the size, shape and composition of CuS NPs fabricated using different methods. In this review, the mechanisms underlying the antitumor and antibacterial activities of CuS NPs in medical applications are discussed and the clinical challenges associated with the use of CuS NPs are also addressed.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sandeep Urandur
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
2
|
Nancucheo I, Segura A, Hernández P, Canales C, Benito N, Arranz A, Romero-Sáez M, Recio-Sánchez G. Bio-recovery of CuS nanoparticles from the treatment of acid mine drainage with potential photocatalytic and antibacterial applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166194. [PMID: 37567303 DOI: 10.1016/j.scitotenv.2023.166194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In the present work, CuS nanoparticles were biorecovered from a real acid mine drainage (AMD) and its photocatalytic and antibacterial activities were studied. CuS were formed by delivering biogenic H2S produced by a continuous sulfidogenic bioreactor to an off-line vessel containing the AMD. The main physico-chemical properties of CuS nanoparticles were analyzed by UV-vis spectroscopy, TEM, FE-SEM, XRD and XPS. Moreover, its photocatalytic activity on the photodegradation of organic dyes in water and its antibacterial activity against several bacterial strains were studied and compared with CuS nanoparticles synthetized from a CuSO4 aqueous solution based on the same synthesis method. CuS nanoparticles from the real AMD showed similar physico-chemical properties and photocatalytic and antibacterial activities in comparison to CuS nanoparticles formed with the copper solutions. These results open the way to recover valorous CuS nanoparticles from AMD with potential industrial applications using a metal bioremediation process based on sulfidogenic bioreactors.
Collapse
Affiliation(s)
- Iván Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Aileen Segura
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Pedro Hernández
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Christian Canales
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile
| | - Noelia Benito
- Departamento de Física, Universidad de Concepción, Concepción, Chile
| | - Antonio Arranz
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Manuel Romero-Sáez
- Grupo Química Básica, Aplicada y Ambiente-ALQUIMIA, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Gonzalo Recio-Sánchez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1547, Concepción, Chile.
| |
Collapse
|
3
|
Farhan A, Zahid M, Tahir N, Mansha A, Yaseen M, Mustafa G, Alamir MA, Alarifi IM, Shahid I. Investigation of boron-doped graphene oxide anchored with copper sulphide flowers as visible light active photocatalyst for methylene blue degradation. Sci Rep 2023; 13:9497. [PMID: 37308524 DOI: 10.1038/s41598-023-36486-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
The non-biodegradable nature of waste emitted from the agriculture and industrial sector contaminates freshwater reserves. Fabrication of highly effective and low-cost heterogeneous photocatalysts is crucial for sustainable wastewater treatment. The present research study aims to construct a novel photocatalyst using a facile ultrasonication-assisted hydrothermal method. Metal sulphides and doped carbon support materials work well to fabricate hybrid sunlight active systems that efficiently harness green energy and are eco-friendly. Boron-doped graphene oxide-supported copper sulphide nanocomposite was synthesized hydrothermally and was assessed for sunlight-assisted photocatalytic degradation of methylene blue dye. BGO/CuS was characterized through various techniques such as SEM-EDS, XRD, XPS, FTIR, BET, PL, and UV-Vis DRS spectroscopy. The bandgap of BGO-CuS was found to be 2.51 eV as evaluated through the tauc plot method. The enhanced dye degradation was obtained at optimum conditions of pH = 8, catalyst concentration (20 mg/100 mL for BGO-CuS), oxidant dose (10 mM for BGO-CuS), and optimum time of irradiation was 60 min. The novel boron-doped nanocomposite effectively degraded methylene blue up to 95% under sunlight. Holes and hydroxyl radicals were the key reactive species. Response surface methodology was used to analyze the interaction among several interacting parameters to remove dye methylene blue effectively.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Noor Tahir
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Asim Mansha
- Department of Chemistry, G. C. University, Faisalabad, 38040, Pakistan
| | - Muhammad Yaseen
- Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Mohammed A Alamir
- Department of Mechanical Engineering, College of Engineering, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ibrahim M Alarifi
- Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al-Majmaah, Riyadh, 11952, Saudi Arabia
| | - Imran Shahid
- Environmental Science Centre (ESC), Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Gadore V, Mishra SR, Ahmaruzzaman M. One-pot synthesis of CdS/CeO 2 heterojunction nanocomposite with tunable bandgap for the enhanced advanced oxidation process. Sci Rep 2023; 13:7708. [PMID: 37173397 PMCID: PMC10182039 DOI: 10.1038/s41598-023-34742-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Herein, a binary nanocomposite CdS/CeO2 has been fabricated via a one-pot co-precipitation method for the degradation of Rose Bengal (RB) dye. The structure, surface morphology, composition, and surface area of the prepared composite were characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Brunaur-Emmett-Teller analysis UV-Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The prepared CdS/CeO2(1:1) nanocomposite has a particle size of 8.9 ± 0.3 nm and a surface area of 51.30 m2/g. All the tests indicated the agglomeration of CdS nanoparticles over the surface of CeO2. The prepared composite showed excellent photocatalytic activity in the presence of hydrogen peroxide under solar irradiation towards the degradation of Rose Bengal. Near to about complete degradation of 190 ppm of RB dye could be achieved within 60 min under optimum conditions. The enhanced photocatalytic activity was attributed to the delayed charge recombination rate and a lower bandgap of the photocatalyst. The degradation process was found to follow pseudo-first-order kinetics with a rate constant of 0.05824 min-1. The prepared sample showed excellent stability and reusability and maintained about 87% of the photocatalytic efficiency till the fifth cycle. A plausible mechanism for the degradation of the dye is also presented based on the scavenger experiments.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India.
| |
Collapse
|
5
|
Wu S, Han C, Xin L, Li M, Long H, Gao X. Synthesis of triethylenetetramine modified sodium alginate/CuS nanocrystal composite for enhanced Cr(VI) removal: Performance and mechanism. Int J Biol Macromol 2023; 238:124283. [PMID: 37001343 DOI: 10.1016/j.ijbiomac.2023.124283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
Photocatalysis has been widely used for the removal of hexavalent chromium from wastewater as an efficient and environmental friendly method. However, conventional photocatalysts generally exhibit poor adsorption properties toward Cr(VI), resulting in unsatisfactory performance in high concentrated wastewaters. In this study, we synthesized a novel composite material with high Cr(VI) adsorption ability by blending prepared CuS nanocrystals into triethylenetetramine modified sodium alginate for the enhanced photocatalytic removal of Cr(VI). Effect of CuS dosage, pH value, light source and intensity were discussed for the optimum Cr(VI) removal conditions. The synthesized composite has shown good adsorption performance toward Cr(VI) and the overall removal rate reached 98.99 % within 50 min under UV light irradiation with citric acid as hole scavenger. Adsorption isotherm, thermodynamics, and kinetics with corresponding model fitting were discussed, which suggested that the monolayer and chemical adsorption dominated the adsorption process. Characterization results indicated that amino and hydroxyl groups contributed electrons in the photocatalysis reaction for the reduction of Cr(VI) to Cr(III). CuS nanocrystals can enhance the surface charge and light absorbance ability of the composite, and the Cr(VI) removal was governed by electrostatic interaction and photo-induced redox reaction.
Collapse
|
6
|
Aqueous-Based Synthesis of Photocatalytic Copper Sulfide Using Sulfur Waste as Sulfurizing Agent. MATERIALS 2022; 15:ma15155253. [PMID: 35955185 PMCID: PMC9369765 DOI: 10.3390/ma15155253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Most of the copper sulfide synthetic approaches developed until now are still facing issues in their procedure, such as long synthesis duration, high energetic consumption, and high implementation costs. This publication reports a facile and sustainable approach for synthesizing copper sulfides on a large scale. In particular, an industrial by-product of sulfur waste was used as a sulfurizing agent for copper sulfide synthesis in a water medium. The reaction was performed in the hydrothermal environment by following a novel proposed mechanism of copper sulfide formation. The investigation of morphological and optical properties revealed that the target products obtained by using waste possess the resembling properties as the ones synthesized from the most conventional sulfurizing agent. Since the determined band gap of synthesis products varied from 1.72 to 1.81 eV, the photocatalytic properties, triggered under visible light irradiation, were also investigated by degrading the methylene blue as a model pollutant. Importantly, the degradation efficiency of the copper sulfide synthesized from sulfur waste was equivalent to a sample obtained from a reference sulfurizing agent since the value for both samples was 96% in 180 min. This very simple synthetic approach opens up a new way for large-scale sustainable production of visible-light-driven photocatalysts for water purification from organic pollutants.
Collapse
|
7
|
CuS NPs/Zeolite A/ZIF-8 Dual-Action Composite for Removal of Methylene Blue from Aqueous Solutions. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Mohammadi N, Allahresani A, Naghizadeh A. Enhanced photo-catalytic degradation of natural organic matters (NOMs) with a novel fibrous silica-copper sulfide nanocomposite (KCC1-CuS). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Dmap ligand modified [CoW12O40]6− compound photocatalyzed degradation of salicylic acid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Enhanced Photocatalytic Degradation of Ternary Dyes by Copper Sulfide Nanoparticles. NANOMATERIALS 2021; 11:nano11082000. [PMID: 34443834 PMCID: PMC8398049 DOI: 10.3390/nano11082000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/25/2023]
Abstract
We report the effect of thermolysis time on the morphological and optical properties of CuS nanoparticles prepared from Cu(II) dithiocarbamate single-source precursor. The as-prepared copper sulfide nanoparticles were used as photocatalysts for the degradation of crystal violet (CV), methylene blue (MB), rhodamine B (RhB), and a ternary mixture of the three dyes (CV/MB/RhB). Powder XRD patterns confirmed the hexagonal covellite phase for the CuS nanoparticles. At the same time, HRTEM images revealed mixed shapes with a particle size of 31.47 nm for CuS1 prepared at 30 min while CuS2 prepared at 1 h consists of mixtures of hexagonal and nanorods shaped particles with an average size of 21.59 nm. Mixed hexagonal and spherically shaped particles with a size of 17.77 nm were obtained for CuS3 prepared at 2 h. The optical bandgaps of the nanoparticles are 3.00 eV for CuS1, 3.26 eV for CuS2 and 3.13 eV for CuS3. The photocatalytic degradation efficiency showed that CuS3 with the smallest particle size is the most efficient photocatalyst and degraded 85% of CV, 100% of MB, and 81% of RhB. The as-prepared CuS showed good stability and recyclability and also degraded ternary dyes mixture (CV/MB/RhB) effectively. The byproducts of the dye degradation were evaluated using ESI-mass spectrometry.
Collapse
|
11
|
Zhou SL, Gong LG, Zhao XY, Wang CX, Liang QL, Zhang WJ, Wang LY, Yu K, Dai Y, Zhou BB. Copper sulfide nanoparticles with potential bifunctional properties: supercapacitor and photocatalysis. CrystEngComm 2021. [DOI: 10.1039/d1ce00433f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pure hexagonal CuS nanoparticles with stable high capacitance and photocatalytic activity were obtained by a mild solvothermal method.
Collapse
|