1
|
Li T, Meng Z, Zhou Z, Huang H, Sun L, Wang Z, Yang Y. A novel fluorescent probe based on coumarin derivatives-grafted cellulose for specific detection of Fe 3+ and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125200. [PMID: 39353251 DOI: 10.1016/j.saa.2024.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Fe3+ is one of the most important ions for maintaining the normal growth of plants and animals. However, imbalance and accumulation of Fe3+ can lead to serious damage to the environmental system. Hence, it is considerably crucial to monitor the concentration of Fe3+. In this paper, a high-performance fluorescent probe CA-NCC for specifically detecting Fe3+ was obtained by grafting cellulose acetate (CA) with coumarin derivative (NCC). The resulted probe displayed a bright blue fluorescence in THF solution and showed a distinct "turn-off" fluorescence response to Fe3+, while the small molecule compound NCC could not realize the detection of Fe3+. CA-NCC displayed excellent response performance to Fe3+ including excellent selectivity and sensitivity, rapid reaction time (2.5 min), wide pH detection range (6-11), and low detection limit (0.178 µM). More importantly, CA-NCC was successfully fabricated into fluorescent film based on the good processability of cellulose acetate, and achieved highly selective recognition of Fe3+ from various metal ions.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihang Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huan Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linfeng Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiqin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Ouyang Y, Nie S, Yang X, Xu X, Zhou M, Amakye WK, Yuan E, Ren J. Peptides with Charged Amino Acids Mitigate nZnO-Induced Growth Inhibition of Lactobacillus rhamnosus LRa05. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:405-415. [PMID: 38149372 DOI: 10.1021/acs.jafc.3c07318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Growing concern is about the potential side effects of nanomaterials from food packaging, notably zinc oxide nanoparticles (nZnO). Previous research revealed that walnut-derived peptides could mitigate this inhibitory effect, but the mechanism involved is unclear. Here, we found that not all peptides have such an effect. Based on the growth inhibition model of Lactobacillus rhamnosus LRa05 induced by nZnO, we assessed the protective effects of various peptides. Notably, four peptides containing charged amino acids (PPKNW, WPPKN, ADIYTE, and WEREEQE) were found to effectively alleviate the growth inhibition phenomenon. We hypothesize that the peptide-nZnO interaction modifies this effect, as confirmed through infrared, Raman, and fluorescence spectroscopy. Our results highlight amide bonds, amino groups, carboxyl groups, and benzene rings as key peptide binding sites on nZnO, with static quenching primarily due to hydrogen bonds and van der Waals forces. This study elucidates peptide characteristics in nZnO interactions, facilitating a deeper exploration of food matrix-nanocomposite interactions.
Collapse
Affiliation(s)
- Yuezhen Ouyang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shiying Nie
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinquan Yang
- Innovation Center for Precision Nutrition and Health, Dongguan 523000, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Miao Zhou
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - William Kwame Amakye
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Erdong Yuan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Mahdiani M, Rouhani S, Zahedi P. Synthesis, Solvatochromism and Fluorescence Quenching Studies of Naphthalene Diimide Dye by Nano graphene oxide. J Fluoresc 2023; 33:2003-2014. [PMID: 36964846 DOI: 10.1007/s10895-023-03197-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
A naphthalene diimide dye with two side amine arm was prepared. Uv-Vis and fluorescence spectroscopic techniques are used for their photophysical and solvatochromic characteristics in different solvents. The Lippert-Mataga plot for naphthalene diimide demonstrated a negative linear dependence by increasing polarity. Results showed naphthalene diimide is more polar in the ground than in the excited state. A quenching study was conducted for interacting the naphthalene diimide as a fluorophore and graphene oxide as a quencher. Fluorescence quenching-based platforms in nanoscale have been used in sensing systems. Raman, FTIR, Uv-Vis and fluorescence spectroscopic techniques were used to study the quenching mechanism. The results indicated that graphene plays an effective quencher against the naphthalene diimide, with a quenching efficiency 91%. The Stern-Volmer analysis results show a mix of static and dynamic quenching mechanisms. The binding constant of the quencher-fluorophore and the number of binding sites have been reported. Thermodynamic parameters of their interaction were evaluated. The negative values of the Gibbs free energy confirm that the complexation process is spontaneous. Meanwhile, the positive entropy value confirms that the favorable pathway process.
Collapse
Affiliation(s)
- Mojgan Mahdiani
- Department of Polymer Engineering, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Shohre Rouhani
- Department of Organic Colorant, Institute for Color Science and Technology, Tehran, Iran.
- Center of Excellence for Color Science and Technology, Institute for Color Science and Technology, Tehran, Iran.
| | - Payam Zahedi
- Department of Polymer Engineering, Kish International Campus, University of Tehran, Kish Island, Iran.
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Cui J, Xu Y, Yu H, Lv Z, Wang J, Zong W. A pipeline to evaluate the discrepant interactions between typical nitrogenous disinfection byproduct haloacetonitriles and human hemoglobin. Biophys Chem 2022; 289:106876. [PMID: 35987097 DOI: 10.1016/j.bpc.2022.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
To evaluate the interaction between haloacetonitriles (HANs) and human hemoglobin (Hb), a pipeline was established based on fluorescence spectra, mass spectra and molecular docking. Fluorescence spectra analysis showed the fluorescence of Hb was statically quenched by HANs in the sequence of TCAN > DBAN > DCAN > IAN > BAN > CAN. HANs could combine to multiple surface sites of Hb accounting for "hydrogen bonds" and "van der Waals forces". The high-resolution mass spectra analysis for Hb with and without HANs further confirmed the formation of multiple HAN-Hb complexes with different conversion rates. With the assistance of MOE molecule docking, the potential combination sites and related interactions parameters between HANs and Hb were filtrated. By analyzing the correlations between the candidate interactions parameters and fluorescence quenching constants/MS conversion rates, the combination sites of HANs were fixed at Asp126 (α1/α2), Lys127 (α1/α2) in the form of "hydrogen bonds" X → Asp126 (α1/α2), N → Lys127 (α1/α2). In this way, the potential interactions between HANs and Hb were effectively evaluated.
Collapse
Affiliation(s)
- Jiyuan Cui
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China
| | - Yixue Xu
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China
| | - Huiqun Yu
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China
| | - Zhe Lv
- Shandong Academy of Environmental Sciences Co., Ltd, 50# Lishan Road, Jinan 7, Shandong 250013, China
| | - Jie Wang
- Shandong Academy of Environmental Sciences Co., Ltd, 50# Lishan Road, Jinan 7, Shandong 250013, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, China.
| |
Collapse
|
5
|
Bao B, You J, Li D, Zhan H, Zhang L, Li M, Wang T. Double benzylidene ketones as photoinitiators for visible light photopolymerization. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Guo Q, Sun H, Chen JL, Zhang J. A graphene oxide-based covalent resorufin-conjugated fluorescence "off-on" probe for detection of hydrazine. Chem Asian J 2022; 17:e202200060. [PMID: 35415962 DOI: 10.1002/asia.202200060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Indexed: 11/11/2022]
Abstract
The unique properties of graphene oxide (GO), such as good water solubility, non-toxicity, biocompatibility and cell permeability, make GO well suited for a number of biological applications. In this study, we explore the application of GO as an efficient fluorescent quencher for a highly fluorescent organic dye, resorufin (RF). The quenching effect of GO on resorufin is studied by noncovalent and covalent bonding of resorufin, respectively. The fluorescence is completely quenched when resorufin is covalently linked to GO; while resorufin's fluorescence could be still observed through noncovalent bonding to GO sheet. Interestingly, addition of hydrazine into RF-GO complex causes the fluorescence recovered, providing a potential ''OFF-ON'' fluorescence responsive probe for detecting hydrazine in vitro and in living cells.
Collapse
Affiliation(s)
- Qiang Guo
- Hong Kong Metropolitan University, Department of Science, HONG KONG
| | - Hongyan Sun
- City University of Hong Kong, Department of Biology and Chemistry, Tat Chee Avenue, NA, Hong Kong, CHINA
| | - Jian Lin Chen
- Hong Kong Metropolitan University, Department of Science, HONG KONG
| | - Jie Zhang
- City University of Hong Kong, Chemistry, HONG KONG
| |
Collapse
|