1
|
Pal TK, Das S. Dynamics search of highly magnetized blood laden with copper-gold-titania nanoparticles in a ciliary artery with catheterization and entropy. Electromagn Biol Med 2025; 44:26-64. [PMID: 39848283 DOI: 10.1080/15368378.2024.2443835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025]
Abstract
Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field. The model incorporates factors like Hall and ion-slip currents (electromagnetic effects on charged particles), metachronal propulsion (movement of cilia for propulsion), viscous dissipation, and entropy. The physical equations in the model are transformed from the laboratory frame to a wave frame and then simplified using conditions like low Reynolds number and long wavelength. Optimal series solutions are obtained through the homotopy perturbation method (HPM). The research explores how various physical parameters shape the bloodstream's features, presenting and analyzing these visually. A notable finding is that an intensification in Hall and ion-slip parameters results in higher blood velocity within the catheterized annulus. Blood cooling is observed with a higher loading of suspended nanoparticles. Entropy generation increases with growing values of Hall and ion-slip parameters, while the reverse trend is noted for the Bejan number. The wall shearing stress (WSS) reduces by 2.84% for 1% increase in Hall parameter. The study also provides a brief overview of how blood boluses (or clumps of blood) are structured under the influence of operating parameters. The modified hybrid nano-blood (MHNB) forms smaller and fewer boluses compared to pure blood (PB). Additionally, longer cilia length results in enhanced trapping of boluses due to stronger recovery motions of the cilia. This research holds potential benefits for practitioners and researchers in diagnosing and assessing conditions such as coronary artery disease, valvular heart disease, and congenital heart abnormalities, as well as for understanding traumatic brain injury and neurological surgeries.
Collapse
Affiliation(s)
- Tilak Kumar Pal
- Department of Mathematics, University of Gour Banga, Malda, India
| | - Sanatan Das
- Department of Mathematics, University of Gour Banga, Malda, India
| |
Collapse
|
2
|
Mandal G, Pal D. Impact of gold and silver nanoparticles on the thermally radiating MHD slip blood flow within the stenotic artery using stability analysis and entropy optimisation. PRAMANA 2024; 98:157. [DOI: 10.1007/s12043-024-02840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/20/2024] [Accepted: 08/13/2024] [Indexed: 01/03/2025]
|
3
|
Karmakar P, Das S. EDL Induced Electro-magnetized Modified Hybrid Nano-blood Circulation in an Endoscopic Fatty Charged Arterial Indented Tract. Cardiovasc Eng Technol 2024; 15:171-198. [PMID: 38148470 DOI: 10.1007/s13239-023-00705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE The electrokinetic process for streaming fluids in magnetic environments is emerging due to its immense applications in medical and biochemical industrial domains. In this context, our proposed model seeks to inquire into the hemodynamic characteristics of electro-magnetized blood blended with trihybrid nanoparticles circulation induced by electro-osmotic forces in an endoscopic charged arterial annular indented tract. This steaming model also invokes the consequences of variable Lorentz attractive force, buoyancy force, heat source, viscous and Joule warming, arterial wall properties, and sliding phenomena for featuring more realistic problems in blood flows. Different shapes of suspended trihybrid nanoparticles, such as spheres, bricks, cylinders, and platelets, are included in the model formation. Electro-magnetized modified hybrid nano-blood is an electro-conductive solution comprising blood as base fluid and magnetized trihybrid nanoparticles (copper, gold, and alumina). METHODS Closed-form solution in terms of Bessel's functions is gotten for electro-osmotic potential due to the electric double layer (EDL). The homotopy perturbation methodology is implemented in order to track down the convergent series solutions of non-linear coupled flow equations being elicited. The physical attributes of distinct evolving parameters on the different dimensionless hemodynamic profiles and quantities of interest are elucidated evocatively via a sort of graphs and charts. RESULTS The ancillary outcomes proved that the Debye-Hückel parameter and Helmholtz-Smoluchowski velocity have a dual impact on the ionized bloodstream. The bloodstream rapidity is alleviated/boosted for the assisting/opposing electroosmosis process. Cooling of ionized blood in the endoscopic arterial conduit is achieved with lower Hartmann numbers. Copper-gold-alumina/blood exhibits a superior heat transmission rate across the arterial wall than copper-gold-blood, copper-blood, and pure blood. Additionally, the contour topology for the bloodstream in the flow domain is briefly elaborated. The contour distribution is significantly amended due to the variant of the Debye-Hückel parameter. CONCLUSION The model's new findings may be invaluable in electro-magneto-endoscopic operation, electro-magneto-treatment for cancer, surgical process, etc.
Collapse
Affiliation(s)
- Poly Karmakar
- Department of Mathematics, University of Gour Banga, Malda, 732 103, India
| | - Sanatan Das
- Department of Mathematics, University of Gour Banga, Malda, 732 103, India.
| |
Collapse
|
4
|
Akbar NS, Rafiq M, Muhammad T, Alghamdi M. Microbic flow analysis of nano fluid with chemical reaction in microchannel with flexural walls under the effects of thermophoretic diffusion. Sci Rep 2024; 14:1474. [PMID: 38233420 PMCID: PMC10794201 DOI: 10.1038/s41598-023-50915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
The current investigation examines the peristaltic flow, in curved conduit, having complaint boundaries for nanofluid. The effects of curvature are taken into account when developing the governing equations for the nano fluid model for curved channels. Nonlinear & coupled differential equations are then simplified by incorporating the long wavelength assumption along with smaller Reynolds number. The homotopy perturbation approach is used to analytically solve the reduced coupled differential equations. The entropy generation can be estimated through examining the contributions of heat and fluid viscosities. The results of velocity, temperature, concentration, entropy number, and stream functions have been plotted graphically in order to discuss the physical attributes of the essential quantities. Increase in fluid velocity within the curved conduit is noticed for higher values of thermophoresis parameter and Brownian motion parameter further entropy generation number is boosted by increasing values of Grashof number.
Collapse
Affiliation(s)
- Noreen Sher Akbar
- DBS&H, CEME, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Maimona Rafiq
- Department of Mathematics, COMSATS University Islamabad, Attock, 43600, Pakistan
| | - Taseer Muhammad
- Department of Mathematics, College of Science, King Khalid University, 61413, Abha, Saudi Arabia
| | - Metib Alghamdi
- Department of Mathematics, College of Science, King Khalid University, 61413, Abha, Saudi Arabia
| |
Collapse
|
5
|
Shah F, Hayat T, Ullah A, Khan SA, Momani S. A dissipative and entropy-optimized MHD nanomaterial mixed convective flow for engineering applications. NANOSCALE ADVANCES 2023; 5:6967-6978. [PMID: 38059016 PMCID: PMC10696936 DOI: 10.1039/d3na00538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Background and objective: Nanomaterials play significant roles in numerous industrial and engineering applications, like nuclear plants, paper production, thermal power plants, glass fibres, manufacturing of medicines, medical instruments, micro-electronics and polymer sheet extrusion. In view of such important applications, in this study, we discuss the magnetohydrodynamic flow of a nanofluid over an inclined surface by employing the Darcy-Forchheimer model. The Buongiorno model is applied to understand the various important aspects of the nanofluid. Radiation, magnetic field, dissipation and entropy generation in a chemically reactive flow are also discussed. Methodology: The governing nonlinear expressions were transformed into a dimensionless system through adequate transformations. The obtained non-dimensional systems were computed by the NDSolve approach. Results: Physical illustrations for the flow, temperature, concentration and entropy rate via emerging variables were examined. Here an enhancement in velocity was seen for the mixed convection variable, while opposite impacts on flow and temperature were noticed through the Hartman number. A higher Eckert number was obtained with a rise in temperature, while a decrease in concentration was noticed for the thermophoresis variable. An augmentation in the entropy rate was detected for radiation, while the thermal transport rate was boosted by thermophoresis.
Collapse
Affiliation(s)
- Faqir Shah
- Department of Mathematical Sciences, Karakoram International University Gilgit Gilgit 15100 Pakistan
| | - Tasawar Hayat
- Department of Mathematics, Quaid-I-Azam University Islamabad 44000 Pakistan
| | - Asad Ullah
- Department of Mathematical Sciences, Karakoram International University Gilgit Gilgit 15100 Pakistan
| | - Sohail A Khan
- Department of Mathematics, Quaid-I-Azam University Islamabad 44000 Pakistan
| | - Shaher Momani
- Nonlinear Dynamics Research (NDRC), Ajman University Ajman United Arab Emirates
| |
Collapse
|
6
|
Akbar NS, Muhammad T. Physical aspects of electro osmotically interactive Cilia propulsion on symmetric plus asymmetric conduit flow of couple stress fluid with thermal radiation and heat transfer. Sci Rep 2023; 13:18491. [PMID: 37898684 PMCID: PMC10613247 DOI: 10.1038/s41598-023-45595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023] Open
Abstract
A novel mathematical analysis is established that summits the key features of Cilia propulsion for a non-Newtonian Couple Stress fluid with the electroosmosis and heat transfer. In such physiological models, the conduit may have a symmetric or asymmetric configuration in accordance with the biological problem. Being mindful of this fact, we have disclosed an integrated analysis on symmetric in addition to asymmetric conduits that incorporates major physiological applications. The creeping flow inference is reviewed to model this realistic problem and exact solutions are computed for both the conduit cases. Graphical illustrations are unveiled to highlight the physical aspects of cilia propulsion on symmetric in addition to asymmetric conduit and an inclusive comparison study is conveyed. The flow profile attains higher values for an asymmetric conduit in relation to the symmetric. Likewise, the pressure rise and pressure gradient also score high for asymmetric conduit in relation to the symmetric conduit. A visual representation of flow inside symmetric as well as asymmetric conduit is provided by streamline graphs and temperature profile as well.
Collapse
Affiliation(s)
- Noreen Sher Akbar
- DBS&H, CEME, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Taseer Muhammad
- Department of Mathematics, College of Science, King Khalid University, 61413, Abha, Saudi Arabia
| |
Collapse
|
7
|
Algehyne EA, Ahammad NA, Elnair ME, Zidan M, Alhusayni YY, El-Bashir BO, Saeed A, Alshomrani AS, Alzahrani F. Entropy optimization and response surface methodology of blood hybrid nanofluid flow through composite stenosis artery with magnetized nanoparticles (Au-Ta) for drug delivery application. Sci Rep 2023; 13:9856. [PMID: 37330555 PMCID: PMC10276882 DOI: 10.1038/s41598-023-36931-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Entropy creation by a blood-hybrid nanofluid flow with gold-tantalum nanoparticles in a tilted cylindrical artery with composite stenosis under the influence of Joule heating, body acceleration, and thermal radiation is the focus of this research. Using the Sisko fluid model, the non-Newtonian behaviour of blood is investigated. The finite difference (FD) approach is used to solve the equations of motion and entropy for a system subject to certain constraints. The optimal heat transfer rate with respect to radiation, Hartmann number, and nanoparticle volume fraction is calculated using a response surface technique and sensitivity analysis. The impacts of significant parameters such as Hartmann number, angle parameter, nanoparticle volume fraction, body acceleration amplitude, radiation, and Reynolds number on the velocity, temperature, entropy generation, flow rate, shear stress of wall, and heat transfer rate are exhibited via the graphs and tables. Present results disclose that the flow rate profile increase by improving the Womersley number and the opposite nature is noticed in nanoparticle volume fraction. The total entropy generation reduces by improving radiation. The Hartmann number expose a positive sensitivity for all level of nanoparticle volume fraction. The sensitivity analysis revealed that the radiation and nanoparticle volume fraction showed a negative sensitivity for all magnetic field levels. It is seen that the presence of hybrid nanoparticles in the bloodstream leads to a more substantial reduction in the axial velocity of blood compared to Sisko blood. An increase in the volume fraction results in a noticeable decrease in the volumetric flow rate in the axial direction, while higher values of infinite shear rate viscosity lead to a significant reduction in the magnitude of the blood flow pattern. The blood temperature exhibits a linear increase with respect to the volume fraction of hybrid nanoparticles. Specifically, utilizing a hybrid nanofluid with a volume fraction of 3% leads to a 2.01316% higher temperature compared to the base fluid (blood). Similarly, a 5% volume fraction corresponds to a temperature increase of 3.45093%.
Collapse
Affiliation(s)
- Ebrahem A Algehyne
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O.Box.741, Tabuk, 71491, Saudi Arabia.
| | - N Ameer Ahammad
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O.Box.741, Tabuk, 71491, Saudi Arabia.
| | - Mohamed E Elnair
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O.Box.741, Tabuk, 71491, Saudi Arabia
| | - Mohamed Zidan
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O.Box.741, Tabuk, 71491, Saudi Arabia
| | - Yasir Y Alhusayni
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O.Box.741, Tabuk, 71491, Saudi Arabia
| | - B O El-Bashir
- Department of Physics, Faculty of Science, University of Tabuk, P.O.Box.741, Tabuk, 71491, Saudi Arabia
| | - Anwar Saeed
- Centre of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok, Thailand
| | - Ali Saleh Alshomrani
- Mathematical Modelling and Applied Computation Research Group (MMAC), Department of Mathematics, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Faris Alzahrani
- Mathematical Modelling and Applied Computation Research Group (MMAC), Department of Mathematics, King Abdul Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Gandhi R, Sharma BK, Mishra NK, Al-Mdallal QM. Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:652. [PMID: 36839020 PMCID: PMC9958988 DOI: 10.3390/nano13040652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
A novel analysis of the electromagnetohydrodynamic (EMHD) non-Newtonian nanofluid blood flow incorporating CuO and Al2O3 nanoparticles through a permeable walled diseased artery having irregular stenosis and an aneurysm is analyzed in this paper. The non-Newtonian behavior of blood flow is addressed by the Casson fluid model. The effective viscosity and thermal conductivity of nanofluids are calculated using the Koo-Kleinstreuer-Li model, which takes into account the Brownian motion of nanoparticles. The mild stenosis approximation is employed to reduce the bi-directional flow of blood to uni-directional. The blood flow is influenced by an electric field along with a magnetic field perpendicular to the blood flow. The governing mathematical equations are solved using Crank-Nicolson finite difference approach. The model has been developed and validated by comparing the current results to previously published benchmarks that are peculiar to this study. The results are utilized to investigate the impact of physical factors on momentum diffusion and heat transfer. The Nusselt number escalates with increasing CuO nanoparticle diameter and diminishing the diameter of Al2O3 nanoparticles. The relative % variation in Nusselt number enhances with Magnetic number, whereas a declining trend is obtained for the electric field parameter. The present study's findings may be helpful in the diagnosis of hemodynamic abnormalities and the fields of nano-hemodynamics, nano-pharmacology, drug delivery, tissue regeneration, wound healing, and blood purification systems.
Collapse
Affiliation(s)
- Rishu Gandhi
- Department of Mathematics, Birla Institute of Technology and Science, Pilani 333031, India
| | - Bhupendra Kumar Sharma
- Department of Mathematics, Birla Institute of Technology and Science, Pilani 333031, India
| | - Nidhish Kumar Mishra
- Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia
| | - Qasem M. Al-Mdallal
- Department of Mathematical Sciences, College of Science, UAE University, Al-Ain P.O. Box 17551, United Arab Emirates
| |
Collapse
|
9
|
Sharma BK, Kumar A, Gandhi R, Bhatti MM, Mishra NK. Entropy Generation and Thermal Radiation Analysis of EMHD Jeffrey Nanofluid Flow: Applications in Solar Energy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:544. [PMID: 36770505 PMCID: PMC9920679 DOI: 10.3390/nano13030544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
This article examines the effects of entropy generation, heat transmission, and mass transfer on the flow of Jeffrey fluid under the influence of solar radiation in the presence of copper nanoparticles and gyrotactic microorganisms, with polyvinyl alcohol-water serving as the base fluid. The impact of source terms such as Joule heating, viscous dissipation, and the exponential heat source is analyzed via a nonlinear elongating surface of nonuniform thickness. The development of an efficient numerical model describing the flow and thermal characteristics of a parabolic trough solar collector (PTSC) installed on a solar plate is underway as the use of solar plates in various devices continues to increase. Governing PDEs are first converted into ODEs using a suitable similarity transformation. The resulting higher-order coupled ODEs are converted into a system of first-order ODEs and then solved using the RK 4th-order method with shooting technique. The remarkable impacts of pertinent parameters such as Deborah number, magnetic field parameter, electric field parameter, Grashof number, solutal Grashof number, Prandtl number, Eckert number, exponential heat source parameter, Lewis number, chemical reaction parameter, bioconvection Lewis number, and Peclet number associated with the flow properties are discussed graphically. The increase in the radiation parameter and volume fraction of the nanoparticles enhances the temperature profile. The Bejan number and entropy generation rate increase with the rise in diffusion parameter and bioconvection diffusion parameter. The novelty of the present work is analyzing the entropy generation and solar radiation effects in the presence of motile gyrotactic microorganisms and copper nanoparticles with polyvinyl alcohol-water as the base fluid under the influence of the source terms, such as viscous dissipation, Ohmic heating, exponential heat source, and chemical reaction of the electromagnetohydrodynamic (EMHD) Jeffrey fluid flow. The non-Newtonian nanofluids have proven their great potential for heat transfer processes, which have various applications in cooling microchips, solar energy systems, and thermal energy technologies.
Collapse
Affiliation(s)
- Bhupendra Kumar Sharma
- Department of Mathematics, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anup Kumar
- Department of Mathematics, Birla Institute of Technology and Science, Pilani 333031, India
| | - Rishu Gandhi
- Department of Mathematics, Birla Institute of Technology and Science, Pilani 333031, India
| | - Muhammad Mubashir Bhatti
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
- Material Science, Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| | - Nidhish Kumar Mishra
- Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia
| |
Collapse
|
10
|
Dolui S, Bhaumik B, De S. Combined effect of induced magnetic field and thermal radiation on ternary hybrid nanofluid flow through an inclined catheterized artery with multiple stenosis. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Entropy generation minimization of higher-order endothermic/exothermic chemical reaction with activation energy on MHD mixed convective flow over a stretching surface. Sci Rep 2022; 12:17688. [PMID: 36271112 PMCID: PMC9587053 DOI: 10.1038/s41598-022-22521-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022] Open
Abstract
The present investigation aims to analyze higher-order endothermic/exothermic chemical reactions with activation energy by considering thermophoresis and Brownian motion effects on MHD mixed convective flow across a vertical stretching surface. The influence of velocity slip, thermal slip, and concentration slip along with an inclined external magnetic field is also considered. The governing coupled non-linear partial differential equations are transformed into ordinary differential equations using similarity transformation. The resulting system of non-linear ODEs is solved by the Newton Raphson shooting technique using the RK-4 algorithm. The impact of various physical parameters discovered in the problem viz. endothermic/exothermic reaction variable, thermophoresis parameter, activation energy parameter, Brownian motion parameter, chemical reaction parameter have been analyzed on velocity profile, temperature profile, and concentration profile. The effects of these parameters on skin-friction coefficient, Nusselt number, and Sherwood number are displayed in tabular form as well as surface plots. The impact of various physical parameters that appeared in the entropy generation is shown using surface and contour plots. The numerical findings are in good agreement with the previously published results. It is observed that an increment in thermophoresis and Brownian motion parameters results in a declination of entropy profiles, whereas an increment in Bejan number profiles is observed. A small region near the surface exhibits an inclination in concentration profiles with an increase in the order of the chemical reaction. In contrast, the opposite effect is analyzed near the boundary layer. Also, the contour and surface plots are displayed to portray real-world applications in industrial and technical processes and the physical depiction of flow characteristics that arise in the current study.
Collapse
|
12
|
Das S, Karmakar P, Ali A. Electrothermal blood streaming conveying hybridized nanoparticles in a non-uniform endoscopic conduit. Med Biol Eng Comput 2022; 60:3125-3151. [DOI: 10.1007/s11517-022-02650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
|
13
|
Poonam, Sharma B, Kumawat C, Vafai K. Computational biomedical simulations of hybrid nanoparticles ( Au-Al2O3/ blood-mediated) transport in a stenosed and aneurysmal curved artery with heat and mass transfer: Hematocrit dependent viscosity approach. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Ramification of Hall and Ion-Slip Currents on Electro-osmosis of Ionic Hybrid Nanofluid in a Peristaltic Microchannel. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|