1
|
Himanshi, Makasana J, Ganesan S, Lal B, Naidu KS, Ahmed J, Prakash J, Verma A, Lakshmaiya N, Jasrotia R, Yong X, Chan CK. Insights into the enhanced photocatalytic degradation of congo red using advanced BaDy xFe 12-xO 19 catalytic hexamaterials. Sci Rep 2025; 15:8978. [PMID: 40089536 PMCID: PMC11910638 DOI: 10.1038/s41598-025-92145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Water pollution from the industrial dyes is a serious hazard to ecosystems, and addressing this issue is a significant challenge. To address these issues, we are fabricated BaDyxFe12-xO19 (x = 0.02 to 0.06) by sol-gel auto-ignition (SGA) technique. Several characterizations were used to scrutinize the structural, optical, photocatalytic, and magnetic traits of the produced samples. The X-ray diffraction (XRD) of the sample revels the hexagonal crystal structure. The field emission scanning electron microscopy (FESEM) of both samples reveal the existence of agglomerated grains showing hexagonal shapes. X-ray photoelectron spectroscopy (XPS) analyses confirm the oxidation state of every element present in the synthesized nanomaterials. The specific surface area was found to be 1.069 m2/g for BDF1 and 1.466 m2/g for BDF3. The band gap of the BDF1, BDF2, and BDF3 samples are found 2.16, 2.12, and 1.99 eV. The photocatalytic efficacy of the catalysts was examined by removal of the CR in natural light. A notable degradation efficiency of 89.29% are achieved by the BDF3 catalyst within 90 minutes under natural sunlight irradiation. The results demonstrate a straightforward and efficient approach for producing photocatalytic materials that are highly effective for the elimination of dye pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Himanshi
- School of Physics and Materials Science, Shoolini University, Solan, H.P., India
| | - Jayanti Makasana
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Basant Lal
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jyoti Prakash
- School of Physics and Materials Science, Shoolini University, Solan, H.P., India
| | - Ankit Verma
- Faculty of Science and Technology, ICFAI University, Himachal Pradesh, India
| | - Natrayan Lakshmaiya
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, 602105, India
| | - Rohit Jasrotia
- School of Physics and Materials Science, Shoolini University, Solan, H.P., India.
- Department of Physics, Graphic Gra (Deemed to be University), Dehradun, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Xu Yong
- School of Artificial Intelligence and Smart Manufacturing, Hechi University, Yizhou, China.
| | - Choon Kit Chan
- School of Artificial Intelligence and Smart Manufacturing, Hechi University, Yizhou, China
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, Negeri Sembilan, 71800, Malaysia
| |
Collapse
|
2
|
Bhardwaj A, Bansal M, Garima, Wilson K, Gupta S, Dhanawat M. Lignocellulose biosorbents: Unlocking the potential for sustainable environmental cleanup. Int J Biol Macromol 2025; 294:139497. [PMID: 39756760 DOI: 10.1016/j.ijbiomac.2025.139497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health. To counteract hazardous chemicals in wastewater and promote ecological sustainability, there has been a significant deal of interest in finding environmentally benign and renewable materials. Because of its constituents' distinct physical and chemical qualities, lignocellulose stands out among the many possibilities as the most appealing possibility for water cleanup. It is an abundant, biocompatible, and renewable substance. Sustainable social development requires wastewater cleanup using renewable lignocellulosic resources. However, the generation of lignocellulose-based materials is restricted by the byproducts that are produced and the complicated, expensive, and environmentally harmful synthetic process. It has been determined that biosorption on lignocellulosic wastes and by-products is a suitable substitute for the current technologies used to remove hazardous metal ions and dye from wastewater streams. Lignocellulose is highly effective at adsorbing heavy metals like arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), and lead (Pb). Beyond heavy metals, it can also capture various organic pollutants, that includes dyes (like methylene blue, methyl orange and malachite green), and pharmaceutical residues, and pesticides. Additionally, lignocellulosic materials are valuable for adsorbing oil and hydrocarbons from water, playing a crucial role in addressing environmental concerns related to oil spills. The pollutant removal efficiency of lignocellulose can be greatly improved through a range of physical, chemical, and biological modification methods, including thermal and ultrasound treatments, acid and alkali processing, ammoniation, amination, grafting, crosslinking, enzymatic modifications, and microbial colonization. In this article, we examine the most recent developments in lignocellulose-based adsorbent research, with an emphasis on lignocellulosic composition, adsorbent application, and material modification. A methodical and thorough presentation of the preparation and modification techniques for lignin, cellulose, and hemicellulose, as well as their utilization for treating various types of contaminated water, is provided. Additionally, a great resource for comprehending the specified adsorption mechanism and recycling of adsorbents is the thorough explanation of the mechanism of adsorption, the adsorbent renewal process, and the adsorption model.
Collapse
Affiliation(s)
- Anjali Bhardwaj
- HRIT University, 8 Km Stone Delhi Meerut Road NH-58 Morta, Ghaziabad, Uttar Pradesh 201003, India
| | - Mukesh Bansal
- HRIT University, 8 Km Stone Delhi Meerut Road NH-58 Morta, Ghaziabad, Uttar Pradesh 201003, India
| | - Garima
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Kashish Wilson
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Sumeet Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India.
| |
Collapse
|
3
|
Shah SSA, Sohail M, Murtza G, Waseem A, Rehman AU, Hussain I, Bashir MS, Alarfaji SS, Hassan AM, Nazir MA, Javed MS, Najam T. Recent trends in wastewater treatment by using metal-organic frameworks (MOFs) and their composites: A critical view-point. CHEMOSPHERE 2024; 349:140729. [PMID: 37989439 DOI: 10.1016/j.chemosphere.2023.140729] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Respecting the basic need of clean and safe water on earth for every individual, it is necessary to take auspicious steps for waste-water treatment. Recently, metal-organic frameworks (MOFs) are considered as promising material because of their intrinsic features including the porosity and high surface area. Further, structural tunability of MOFs by following the principles of reticular chemistry, the MOFs can be functionalized for the high adsorption performance as well as adsorptive removal of target materials. However, there are still some major concerns associated with MOFs limiting their commercialization as promising adsorbents for waste-water treatment. The cost, toxicity and regenerability are the major issues to be addressed for MOFs to get insightful results. In this article, we have concise the current strategies to enhance the adsorption capacity of MOFs during the water-treatment for the removal of toxic dyes, pharmaceuticals, and heavy metals. Further, we have also discussed the role of metallic nodes, linkers and associated functional groups for effective removal of toxic water pollutants. In addition to conformist overview, we have critically analyzed the MOFs as adsorbents in terms of toxicity, cost and regenerability. These factors are utmost important to address before commercialization of MOFs as adsorbents for water-treatment. Finally, some future perspectives are discussed to give directions for potential research.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ghulam Murtza
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhammad Sohail Bashir
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Saleh S Alarfaji
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmed M Hassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Tayyaba Najam
- College of Chemistry and Environmental Sciences, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
4
|
YarAhmadi G, Keramati N. Reduced electron/hole recombination in Z-scheme nanostructure of zeolitic imidazolate framework-11/graphitic carbon nitride as photocatalyst under visible light. Sci Rep 2023; 13:22547. [PMID: 38110461 PMCID: PMC10728152 DOI: 10.1038/s41598-023-49315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
In this research, for the first time, the synthesis of nanostructure of zeolitic imidazolate framework-11/graphitic carbon nitride (ZIF-11/g-C3N4 X) with different weight of g-C3N4 (X: 0.01, 0.1, 0.3 g) is reported. Their performance was compared in photocatalytic degradation of MB under visible light. Synthetic samples were characterized by X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometer (XPS), diffused reflectance spectroscopy (DRS), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET), Electrochemical Impedance Spectroscopy (EIS) and Photoluminescence (PL) analysis. Based on the results, Z-scheme ZIF-11/g-C3N4 0.3 was selected as the best sample. FESEM and TEM images indicated that g-C3N4 sheets were complicated on the surface of ZIF-11 with rhombic dodecahedron (RHO) morphology. The surface area and band gap of ZIF-11/g-C3N4 0.3 was determined as 174.5 m2/g and 2.58 eV, respectively. The recombination of charge carriers in the ZIF-11/g-C3N4 0.3 nanostructure was reduced. Photocatalytic degradation efficiency of MB (5 ppm), pH = 7, visible irradiation (120 W-60 min) using 0.1 g of ZIF-11/g-C3N4 0.3 was achieved 72.7% with first-order kinetic model and acceptable stability in three consecutive cycles. Further, the total organic carbon (TOC) removal rate by ZIF-11/g-C3N4 0.3 after 5 h were 66.5%.
Collapse
Affiliation(s)
- Goli YarAhmadi
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Narjes Keramati
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
| |
Collapse
|
5
|
Bondarev A, Popovici DR, Călin C, Mihai S, Sȋrbu EE, Doukeh R. Black Tea Waste as Green Adsorbent for Nitrate Removal from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4285. [PMID: 37374469 DOI: 10.3390/ma16124285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The aim of the study was to prepare effective low-cost green adsorbents based on spent black tea leaves for the removal of nitrate ions from aqueous solutions. These adsorbents were obtained either by thermally treating spent tea to produce biochar (UBT-TT), or by employing the untreated tea waste (UBT) to obtain convenient bio-sorbents. The adsorbents were characterized before and after adsorption by Scanning Electron Microscopy (SEM), Energy Dispersed X-ray analysis (EDX), Infrared Spectroscopy (FTIR), and Thermal Gravimetric Analysis (TGA). The experimental conditions, such as pH, temperature, and nitrate ions concentration were studied to evaluate the interaction of nitrates with adsorbents and the potential of the adsorbents for the nitrate removal from synthetic solutions. The Langmuir, Freundlich and Temkin isotherms were applied to derive the adsorption parameters based on the obtained data. The maximum adsorption intakes for UBT and UBT-TT were 59.44 mg/g and 61.425 mg/g, respectively. The data obtained from this study were best fitted to the Freundlich adsorption isotherm applied to equilibrium (the values R2 = 0.9431 for UBT and R2 = 0.9414 for UBT-TT), this assuming the multi-layer adsorption onto a surface with a finite number of sites. The Freundlich isotherm model could explain the adsorption mechanism. These results indicated that UBT and UBT-TT could serve as novel biowaste and low-cost materials for the removal of nitrate ions from aqueous solutions.
Collapse
Affiliation(s)
- Andreea Bondarev
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
| | - Daniela Roxana Popovici
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
| | - Cătalina Călin
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
| | - Sonia Mihai
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
| | - Elena-Emilia Sȋrbu
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 060021 Bucharest, Romania
| | - Rami Doukeh
- Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania
| |
Collapse
|
6
|
Fatehmulla A, Shamsan BA, El-Naggar AM, Aldhafiri AM, Qureshi N, Kim T, Atif M, Mahmood A, Asif M. Physical Characteristics, Blue-Green Band Emission and Photocatalytic Activity of Au-Decorated ZnO Quantum Dots-Based Thick Films Prepared Using the Doctor Blade Technique. Molecules 2023; 28:4644. [PMID: 37375199 DOI: 10.3390/molecules28124644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Nanoscale ZnO is a vital semiconductor material whose versatility can be enhanced by sensitizing it with metals, especially noble metals, such as gold (Au). ZnO quantum dots were prepared via a simple co-precipitation technique using 2-methoxy ethanol as the solvent and KOH as the pH regulator for hydrolysis. The synthesized ZnO quantum dots were deposited onto glass slides using a simple doctor blade technique. Subsequently, the films were decorated with gold nanoparticles of different sizes using a drop-casting method. The resultant films were characterized via various strategies to obtain structural, optical, morphological, and particle size information. The X-ray diffraction (XRD) reveals the formation of the hexagonal crystal structure of ZnO. Upon Au nanoparticles loading, peaks due to gold are also observed. The optical properties study shows a slight change in the band gap due to Au loading. Nanoscale sizes of particles have been confirmed through electron microscope studies. P.L. studies display blue and blue-green band emissions. The significant degradation efficiency of 90.2% methylene blue (M.B.) was attained in natural pH in 120 min using pure ZnO catalyst while one drop gold-loaded catalysts, ZnO: Au 5 nm, ZnO: Au 7 nm, ZnO: Au 10 nm and ZnO: Au 15 nm, delivered M.B. degradation efficiency of 74.5% (in 245 min), 63.8% (240 min), 49.6% (240 min) and 34.0% (170 min) in natural pH, respectively. Such films can be helpful in conventional catalysis, photocatalysis, gas sensing, biosensing, and photoactive applications.
Collapse
Affiliation(s)
- Amanullah Fatehmulla
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Belqes A Shamsan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M El-Naggar
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Aldhafiri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nilam Qureshi
- Nano Particles Technology Laboratory, School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Taesung Kim
- Nano Particles Technology Laboratory, School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Muhammad Atif
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asif Mahmood
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Mohammad Asif
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
7
|
Liu Y, Liu N, Lin M, Huang C, Lei Z, Cao H, Qi F, Ouyang X. Efficient visible-light-driven S-scheme AgVO 3/Ag 2S heterojunction photocatalyst for boosting degradation of organic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121436. [PMID: 36907242 DOI: 10.1016/j.envpol.2023.121436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The traditional semiconductor photocatalysts for solving the related environmental aggravation are often challenged by the recombination of photogenerated carriers. Designing an S-scheme heterojunction photocatalyst is one of the keys to tackling its practical application problems. This paper reports an S-scheme AgVO3/Ag2S heterojunction photocatalyst constructed via a straightforward hydrothermal approach that exhibits outstanding photocatalytic degradation performances to the organic dye Rhodamine B (RhB) and antibiotic Tetracycline hydrochloride (TC-HCl) driven by visible light. The results show that AgVO3/Ag2S heterojunction with a molar ratio of 6:1 (V6S) possesses the highest photocatalytic performances, 99% of RhB can be almost degraded by 0.1 g/L V6S within 25 min light illumination, and about 72% of TC-HCl can be photodegraded with the act of 0.3 g/L V6S under 120 min light irradiation. Meanwhile, the AgVO3/Ag2S system exhibits superior stability and maintains high photocatalytic activity after 5 repeated tests. Moreover, the EPR measurement and radical capture test identify that superoxide radicals and hydroxyl radicals mainly contribute to the photodegradation process. The present work demonstrates that constructing an S-scheme heterojunction can effectively inhibit the recombination of carriers, providing insights into the fabrication of applied photocatalysts for practical wastewater purification treatment.
Collapse
Affiliation(s)
- Yangbin Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China
| | - Nian Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China
| | - Minghua Lin
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China
| | - Caifeng Huang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhijun Lei
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China
| | - Hongshuai Cao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China
| | - Fugang Qi
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, 411105, PR China
| |
Collapse
|
8
|
Piszter G, Nagy G, Kertész K, Baji Z, Kovács K, Bálint Z, Horváth ZE, Pap JS, Biró LP. Investigating the Effect of Reflectance Tuning on Photocatalytic Dye Degradation with Biotemplated ZnO Photonic Nanoarchitectures Based on Morpho Butterfly Wings. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093584. [PMID: 37176465 PMCID: PMC10179795 DOI: 10.3390/ma16093584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Photonic nanoarchitectures of butterfly wings can serve as biotemplates to prepare semiconductor thin films of ZnO by atomic layer deposition. The resulting biotemplated ZnO nanoarchitecture preserves the structural and optical properties of the natural system, while it will also have the features of the functional material. The ZnO-coated wings can be used directly in heterogeneous photocatalysis to decompose pollutants dissolved in water upon visible light illumination. We used the photonic nanoarchitectures of different Morpho butterflies with different structural colors as biotemplates and examined the dependence of decomposition rates of methyl orange and rhodamine B dyes on the structural color of the biotemplates and the thickness of the ZnO coating. Using methyl orange, we measured a ten-fold increase in photodegradation rate when the 20 nm ZnO-coated wings were compared to similarly coated glass substrates. Using rhodamine B, a saturating relationship was found between the degradation rate and the thickness of the deposited ZnO on butterfly wings. We concluded that the enhancement of the catalytic efficiency can be attributed to the slow light effect due to a spectral overlap between the ZnO-coated Morpho butterfly wings reflectance with the absorption band of dyes, thus the photocatalytic performance could be changed by the tuning of the structural color of the butterfly biotemplates. The photodegradation mechanism of the dyes was investigated by liquid chromatography-mass spectroscopy.
Collapse
Affiliation(s)
- Gábor Piszter
- Institute of Technical Physics and Materials Science, Centre for Energy Research, 29-33 Konkoly Thege Miklos St., 1121 Budapest, Hungary
| | - Gergely Nagy
- Surface Chemistry and Catalysis Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, 29-33 Konkoly Thege Miklos St., 1121 Budapest, Hungary
| | - Krisztián Kertész
- Institute of Technical Physics and Materials Science, Centre for Energy Research, 29-33 Konkoly Thege Miklos St., 1121 Budapest, Hungary
| | - Zsófia Baji
- Institute of Technical Physics and Materials Science, Centre for Energy Research, 29-33 Konkoly Thege Miklos St., 1121 Budapest, Hungary
| | - Krisztina Kovács
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, 29-33 Konkoly Thege Miklos St., 1121 Budapest, Hungary
| | - Zsolt Bálint
- Institute of Technical Physics and Materials Science, Centre for Energy Research, 29-33 Konkoly Thege Miklos St., 1121 Budapest, Hungary
- Department of Zoology, Hungarian Natural History Museum, 13 Baross St., 1088 Budapest, Hungary
| | - Zsolt Endre Horváth
- Institute of Technical Physics and Materials Science, Centre for Energy Research, 29-33 Konkoly Thege Miklos St., 1121 Budapest, Hungary
| | - József Sándor Pap
- Surface Chemistry and Catalysis Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, 29-33 Konkoly Thege Miklos St., 1121 Budapest, Hungary
| | - László Péter Biró
- Institute of Technical Physics and Materials Science, Centre for Energy Research, 29-33 Konkoly Thege Miklos St., 1121 Budapest, Hungary
| |
Collapse
|
9
|
Qin F, Zhang L, Luo Y, He L, Lu S, Xu L, Zhu X, Feng W. Effect of Ag Modification on the Structure and Photocatalytic Performance of TiO2/Muscovite Composites. Molecules 2023; 28:molecules28073187. [PMID: 37049946 PMCID: PMC10095781 DOI: 10.3390/molecules28073187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Ag/TiO2/muscovite (ATM) composites were prepared by the sol–gel method and the effects of Ag modification on the structure and photocatalytic performance were investigated. The photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), photoluminescence spectra (PL) and ultraviolet–visible diffuse reflectance spectra (DRS). The photocatalytic activity of the obtained composites was evaluated by taking 100 mL (10 mg/L) of Rhodamine B (RhB) aqueous solution as the target pollutant. The muscovite (Mus) loading releases the agglomeration of TiO2 particles and the specific surface area increases from 17.6 m2/g (pure TiO2) to 39.5 m2/g (TiO2/Mus). The first-order reaction rate constant increases from 0.0009 min−1 (pure TiO2) to 0.0074 min−1 (150%TiO2/Mus). Ag element exists in elemental silver. The specific surface area of 1-ATM further increases to 66.5 m2/g. Ag modification promotes the separation of photogenerated electrons and holes and increases the visible light absorption. 1%Ag-TiO2/Mus (1-ATM) exhibits the highest photocatalytic activity. After 100 min, the rhodamine B (RhB) degradation degrees of PT, 150%TiO2/Mus and 1-ATM are 10.4%, 48.6% and 90.6%, respectively. The first-order reaction rate constant of 1-ATM reaches 0.0225 min−1, which is 25 times higher than that of pure TiO2.
Collapse
Affiliation(s)
- Fengqiu Qin
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Ling Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yuhao Luo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610051, China
| | - Lili He
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Shiji Lu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Li Xu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610051, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
10
|
Ma X, Tao S, Fu S, Yang H, Lin B, Lou Y, Li Y. Adsorption of Pyrethroids in Water by Calcined Shell Powder: Preparation, Characterization, and Mechanistic Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2802. [PMID: 37049096 PMCID: PMC10096194 DOI: 10.3390/ma16072802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Pyrethroids are common contaminants in water bodies. In this study, an efficient mussel shell-based adsorbent was prepared, the effects of factors (calcination temperature, calcination time, and sieved particle size) on the pyrethroid adsorption capacity from calcined shell powder were investigated via Box-Behnken design, and the prediction results of the model were verified. By characterizing (scanning electron microscopy, X-ray diffraction, Fourier infrared spectroscopy, and Brunauer-Emmett-Teller measurements) the adsorbent before and after the optimized preparation process, the results showed that calcined shell powder had a loose and porous structure, and the main component of the shell powder under optimized condition was calcium oxide. The adsorption mechanism was also investigated, and the analysis of adsorption data showed that the Langmuir, pseudo second-order, and intra-particle diffusion models were more suitable for describing the adsorption process. The adsorbent had good adsorption potential for pyrethroids, the adsorption capacity of the two pesticides was 1.05 and 1.79 mg/g, and the removal efficiency was over 40 and 70% at the maximum initial concentration, respectively.
Collapse
Affiliation(s)
- Xiaohan Ma
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Siyuan Tao
- Hangzhou Yuhang Food and Drug Monitoring & Testing Center, Hangzhou 311112, China
| | - Shiqian Fu
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Bangchu Lin
- Zhejiang Yulin Technology Co., Ltd., Ningbo 315021, China
| | - Yongjiang Lou
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yongyong Li
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
11
|
Cui W, Fang J, Wan Y, Tao X, Guo L, Feng Q. Fast Degradation of Rhodamine B by In Situ H 2O 2 Fenton System with Co and N Co-Doped Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2606. [PMID: 37048900 PMCID: PMC10095408 DOI: 10.3390/ma16072606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In this study, an E-fenton oxidation system based on Co-N co-doped carbon nanotubes (Co-N-CNTs) was designed. The Co-N-CNTs system showed fast degradation efficiency and reusability for the degradation of rhodamine B (RhB). The XRD and SEM results showed that the Co-N co-doped carbon nanotubes with diameters ranging from 40 to 400 nm were successfully prepared. The E-Fenton degradation performance of Co-N-CNTs was investigated via CV, LSV and AC impedance spectroscopy. The yield of H2O2 could reach 80 mg/L/h within 60 min, and the optimal voltage and preparation temperature for H2O2 yield in this system was -0.7 V (vs. SCE) and 800 °C. For the target pollutant of RhB, the fast removal of RhB was obtained via the Co-N-CNTS/E-Fenton system (about 91% RhB degradation occurred during 60 min), and the •OH played a major role in the RhB degradation. When the Fe2+ concentrations increased from 0.3 to 0.4 mM, the RhB degradation efficiency decreased from 91% to about 87%. The valence state of Co in the Co-N-C catalyst drove a Co2+/Co3+ cycle, which ensured the catalyst had good E-Fenton degradation efficiency. This work provides new insight into the mechanism of an E-Fenton system with carbon-based catalysts for the efficient degradation of RhB.
Collapse
Affiliation(s)
- Wei Cui
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiahui Fang
- School of Materials and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuanyuan Wan
- School of Materials and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xueyu Tao
- School of Materials and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Litong Guo
- School of Materials and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qiyan Feng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
12
|
Waste-Extracted Zn and Ag Co-Doped Spent Catalyst-Extracted V2O5 for Photocatalytic Degradation of Congo Red Dye: Effect of Metal-Nonmetal Co-Doping. Catalysts 2023. [DOI: 10.3390/catal13030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The current study applies the eco-friendly principle of “wastes treat wastes”. By swift methods, a composite photocatalyst was prepared from waste-extracted oxides, namely V2O5, Ag, and ZnO. The metal–lixiviant complexes were used as metal precursors, where the lixiviants act as auto-templates and increase the compatibility between the mixed metallic species, and their controlled thermal removal generates pores. The tri-constitute composite catalyst was doped with nitrogen. The constitution, surface composition, and optical properties of the doped catalysts were investigated by XRD, SEM, TEM, BET surface analysis, XPS, diffuse reflectance, and PL spectra. The as-prepared catalysts were employed in the photodegradation of Congo red dye (CR) under visible irradiation at ambient temperature. The degree of Ag dispersion had a significant effect on the bandgap, as did metal and metal-nonmetal co-doping. The efficiency of dye removal changes dramatically with time up to 120 min, after which it begins to decrease. According to the pH effect, the normal pH of Congo red dye (6.12) is optimal. At a catalyst dose of 1 g L−1 and an irradiation period of 120 min, photodegradation efficiency reached 89.9% and 83.4% over [Ag0.05 ZnO0.05 V2O5(0.90)] and [Ag0.05 ZnO0.05 V2O5(0.90)]N, respectively. The kinetic study depicted the significant role of mass transfer in the reaction rate. The obtained rate constants were 0.995 mole L−1 S−1 and 0.998 mole L−1 S−1 for [Ag0.05 ZnO0.05 V2O5(0.90)] and [Ag0.05 ZnO0.05 V2O5(0.90)]N, respectively.
Collapse
|
13
|
Recent Developments and Perspectives of Cobalt Sulfide-Based Composite Materials in Photocatalysis. Catalysts 2023. [DOI: 10.3390/catal13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Photocatalysis, as an inexpensive and safe technology to convert solar energy, is essential for the efficient utilization of sustainable renewable energy sources. Earth-abundant cobalt sulfide-based composites have generated great interest in the field of solar fuel conversion because of their cheap, diverse structures and facile preparation. Over the past 10 years, the number of reports on cobalt sulfide-based photocatalysts has increased year by year, and more than 500 publications on the application of cobalt sulfide groups in photocatalysis can be found in the last three years. In this review, we initially summarize the four common strategies for preparing cobalt sulfide-based composite materials. Then, the multiple roles of cobalt sulfide-based cocatalysts in photocatalysis have been discussed. After that, we present the latest progress of cobalt sulfide in four fields of photocatalysis application, including photocatalytic hydrogen production, carbon dioxide reduction, nitrogen fixation, and photocatalytic degradation of pollutants. Finally, the development prospects and challenges of cobalt sulfide-based photocatalysts are discussed. This review is expected to provide useful reference for the construction of high-performance cobalt sulfide-based composite photocatalytic materials for sustainable solar-chemical energy conversion.
Collapse
|
14
|
Hydrothermal Synthesis of Bimetallic (Zn, Co) Co-Doped Tungstate Nanocomposite with Direct Z-Scheme for Enhanced Photodegradation of Xylenol Orange. Catalysts 2023. [DOI: 10.3390/catal13020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
In the present study, pristine ZnWO4, CoWO4, and mixed metal Zn0.5Co0.5WO4 were synthesized through the hydrothermal process using a Teflon-lined autoclave at 180 ℃. The synthesized nanomaterials were characterized by various spectroscopic techniques, such as TEM, FTIR, UV–vis, XRD, and SEM-EDX-mapping to confirm the formation of nanocomposite material. The synthesized materials were explored as photocatalysts for the degradation of xylenol orange (XO) under a visible light source and a comparative study was explored to check the efficiency of the bimetallic co-doped nanocomposite to the pristine metal tungstate NPs. XRD analysis proved that reinforcement of Co2+ in ZnWO4 lattice results in a reduction in interplanar distance from 0.203 nm to 0.185 nm, which is reflected in its crystallite size, which reduced from 32 nm to 24 nm. Contraction in crystallite size reflects on the optical properties as the energy bandgap of ZnWO4 reduced from 3.49 eV to 3.33 eV in Zn0.5Co0.5WO4, which is due to the formation of a Z-scheme for charge transfer and enhancement in photocatalytic efficiency. The experimental results suggested that ZnWO4, CoWO4, and Zn0.5Co0.5WO4 NPs achieved a photocatalytic efficiency of 97.89%, 98.10%, and 98.77% towards XO in 120 min of visible solar light irradiation. The kinetics of photodegradation was best explained by pseudo-first-order kinetics and the values of apparent rate const (kapp) also supported the enhanced photocatalytic efficiency of mixed metal Zn0.5Co0.5WO4 NPs towards XO degradation.
Collapse
|
15
|
Liu Q, Deng WY, Zhang LY, Liu CX, Jie WW, Su RX, Zhou B, Lu LM, Liu SW, Huang XG. Modified Bamboo Charcoal as a Bifunctional Material for Methylene Blue Removal. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1528. [PMID: 36837157 PMCID: PMC9964798 DOI: 10.3390/ma16041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Biomass-derived raw bamboo charcoal (BC), NaOH-impregnated bamboo charcoal (BC-I), and magnetic bamboo charcoal (BC-IM) were fabricated and used as bio-adsorbents and Fenton-like catalysts for methylene blue removal. Compared to the raw biochar, a simple NaOH impregnation process significantly optimized the crystal structure, pore size distribution, and surface functional groups and increase the specific surface area from 1.4 to 63.0 m2/g. Further magnetization of the BC-I sample not only enhanced the surface area to 84.7 m2/g, but also improved the recycling convenience due to the superparamagnetism. The maximum adsorption capacity of BC, BC-I, and BC-IM for methylene blue at 328 K was 135.13, 220.26 and 497.51 mg/g, respectively. The pseudo-first-order rate constants k at 308 K for BC, BC-I, and BC-IM catalytic degradation in the presence of H2O2 were 0.198, 0.351, and 1.542 h-1, respectively. A synergistic mechanism between adsorption and radical processes was proposed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Yong Deng
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lie-Yuan Zhang
- Technical Center of Nanchang Customs, Nanchang 330038, China
| | - Chang-Xiang Liu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei-Wei Jie
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rui-Xuan Su
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zhou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li-Min Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shu-Wu Liu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Gen Huang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
16
|
F. Y. Matsushita A, R. V. Nascimento J, M. A. Leite J, Pessoa CA, Garcia JR. Incorporation of ZnO / Ag-ZnO nanoparticles into a cotton fiber by the LbL method for Self-Cleaning applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Photocatalytic Activity of the V 2O 5 Catalyst toward Selected Pharmaceuticals and Their Mixture: Influence of the Molecular Structure on the Efficiency of the Process. Molecules 2023; 28:molecules28020655. [PMID: 36677711 PMCID: PMC9863256 DOI: 10.3390/molecules28020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Due to the inability of conventional wastewater treatment procedures to remove organic pharmaceutical pollutants, active pharmaceutical components remain in wastewater and even reach tap water. In terms of pharmaceutical pollutants, the scientific community focuses on β-blockers due to their extensive (over)usage and moderately high solubility. In this study, the photocatalytic activity of V2O5 was investigated through the degradation of nadolol (NAD), pindolol (PIN), metoprolol (MET), and their mixture under ultraviolet (UV) irradiation in water. For the preparation of V2O5, facile hydrothermal synthesis was used. The structural, morphological, and surface properties and purity of synthesized V2O5 powder were investigated by scanning electron microscopy (SEM), X-ray, and Raman spectroscopy. SEM micrographs showed hexagonal-shaped platelets with well-defined morphology of materials with diameters in the range of 10−65 µm and thickness of around a few microns. X-ray diffraction identified only one crystalline phase in the sample. The Raman scattering measurements taken on the catalyst confirmed the result of XRPD. Degradation kinetics were monitored by ultra-fast liquid chromatography with diode array detection. The results showed that in individual solutions, photocatalytic degradation of MET and NAD was relatively insignificant (<10%). However, in the PIN case, the degradation was significant (64%). In the mixture, the photodegradation efficiency of MET and NAD slightly increased (15% and 13%). Conversely, it reduced the PIN to the still satisfactory value of 40%. Computational analysis based on molecular and periodic density functional theory calculations was used to complement our experimental findings. Calculations of the average local ionization energy indicate that the PIN is the most reactive of all three considered molecules in terms of removing an electron from it.
Collapse
|
18
|
Altaf Nazir M, Najam T, Jabeen S, Ahmad Wattoo M, Sohail Bashir M, Shoaib Ahmad Shah S, ur Rehman A. Facile synthesis of Tri-metallic Layered Double Hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and Methyl orange from water. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|