1
|
Rajput M, Bhandaru N, Barui A, Chaudhary A, Paul RR, Mukherjee R, Chatterjee J. Nano-patterned honey incorporated silk fibroin membranes for improving cellular compatibility. RSC Adv 2014. [DOI: 10.1039/c4ra05799f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
2
|
Joseph RM, Barhorst J. Surgical reconstruction and mobilization therapy for a retracted extensor hallucis longus laceration and tendon defect repaired by split extensor hallucis longus tendon lengthening and dermal scaffold augmentation. J Foot Ankle Surg 2012; 51:509-16. [PMID: 22658790 DOI: 10.1053/j.jfas.2012.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Indexed: 02/03/2023]
Abstract
A reconstructive technique and physical therapy protocol is presented for the treatment of extensor hallucis longus (EHL) lacerations with critical size defects caused by tendon retraction. The primary goal of treatment was to restore EHL structure and function without the use of a bridging allograft or tendon transfer. The technique is performed by split lengthening the distal segment of the lacerated EHL and rotating the lengthened segment proximally 180° to bridge the tendon defect. The lengthened tendon is then sutured to the proximal segment of the EHL. The EHL is then tubularized with an acellular dermal scaffold at the region of tendon rotation to improve tendon strength, minimize the probability of tendon overlengthening or re-rupture, and improve the tendon gliding motion, which can be compromised by the tendon irregularity caused by rotation of the tendon. Postoperative range of motion therapy should be initiated at 3 weeks postoperatively. A case report of this technique and postoperative mobilization protocol is presented. The American Orthopaedic Foot and Ankle Society midfoot score at 3 and 6 months postoperatively was 90 of 100. The patient regained active dorsiflexion motion of the hallux without functional limitations, deformity, or contracture of the hallux. The advantages of this technique include that a large cadaveric allograft is not needed to bridge a critical size tendon defect and tendon lengthening provides a biologically active tendon graft without the secondary comorbidities and dysfunction commonly associated with tendon transfer procedures.
Collapse
Affiliation(s)
- Robert M Joseph
- Perspective Advantage Solutions, LLC, Dayton, OH 45409, USA.
| | | |
Collapse
|
3
|
The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials 2012; 33:5524-33. [PMID: 22575834 DOI: 10.1016/j.biomaterials.2012.04.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/07/2012] [Indexed: 12/22/2022]
Abstract
Biologic scaffolds composed of mammalian extracellular matrix (ECM) are routinely used for the repair and reconstruction of injured or missing tissues in a variety of pre-clinical and clinical applications. However, the structural and functional outcomes have varied considerably. An important variable of xenogeneic biologic scaffolds is the age of the animal from which the ECM is derived. The present study compared the in vivo host response and remodeling outcomes of biologic scaffolds composed of small intestinal submucosa (SIS)-ECM harvested from pigs that differed only in age. Results showed that there are distinct differences in the remodeling characteristics as a consequence of source animal age. Scaffolds derived from younger animals were associated with a more constructive, site appropriate, tissue remodeling response than scaffolds derived from older animals. Furthermore, the constructive remodeling response was associated with a dominant M2 macrophage response.
Collapse
|
4
|
Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 2011; 33:1771-81. [PMID: 22137126 DOI: 10.1016/j.biomaterials.2011.10.054] [Citation(s) in RCA: 444] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
Biologic scaffold materials composed of extracellular matrix (ECM) are routinely used for a variety of clinical applications. Despite known variations in tissue remodeling outcomes, quantitative criteria by which decellularization can be assessed were only recently described and as a result, the amount of retained cellular material varies widely among commercial products. The objective of this study was to evaluate the consequences of ineffective decellularization on the host response. Three different methods of decellularization were used to decellularize porcine small intestinal ECM (SIS-ECM). The amount of cell remnants was quantified by the amount and fragmentation of DNA within the scaffold materials. The M1/M2 phenotypic polarization profile of macrophages, activated in response to these ECM scaffolds, was assessed in vitro and in vivo using a rodent model of body wall repair. The results show that, in vitro, more aggressive decellularization is associated with a shift in macrophage phenotype predominance from M1 to M2. While this shift was not quantitatively apparent in vivo, notable differences were found in the distribution of M1 vs. M2 macrophages within the various scaffolds. A clear association between macrophage phenotype and remodeling outcome exists and effective decellularization remains an important component in the processing of ECM-based scaffolds.
Collapse
Affiliation(s)
- Timothy J Keane
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
5
|
Turner NJ, Badylak SF. Regeneration of skeletal muscle. Cell Tissue Res 2011; 347:759-74. [PMID: 21667167 DOI: 10.1007/s00441-011-1185-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/20/2011] [Indexed: 01/12/2023]
Abstract
Skeletal muscle has a robust capacity for regeneration following injury. However, few if any effective therapeutic options for volumetric muscle loss are available. Autologous muscle grafts or muscle transposition represent possible salvage procedures for the restoration of mass and function but these approaches have limited success and are plagued by associated donor site morbidity. Cell-based therapies are in their infancy and, to date, have largely focused on hereditary disorders such as Duchenne muscular dystrophy. An unequivocal need exists for regenerative medicine strategies that can enhance or induce de novo formation of functional skeletal muscle as a treatment for congenital absence or traumatic loss of tissue. In this review, the three stages of skeletal muscle regeneration and the potential pitfalls in the development of regenerative medicine strategies for the restoration of functional skeletal muscle in situ are discussed.
Collapse
Affiliation(s)
- Neill J Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | | |
Collapse
|
6
|
Valentin JE, Turner NJ, Gilbert TW, Badylak SF. Functional skeletal muscle formation with a biologic scaffold. Biomaterials 2010; 31:7475-84. [PMID: 20638716 DOI: 10.1016/j.biomaterials.2010.06.039] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/23/2010] [Indexed: 01/19/2023]
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) have been used to reinforce or replace damaged or missing musculotendinous tissues in both preclinical studies and in human clinical applications. However, most studies have focused upon morphologic endpoints and few studies have assessed the in-situ functionality of newly formed tissue; especially new skeletal muscle tissue. The objective of the present study was to determine both the in-situ tetanic contractile response and histomorphologic characteristics of skeletal muscle tissue reconstructed using one of four test articles in a rodent abdominal wall model: 1) porcine small intestinal submucosa (SIS)-ECM; 2) carbodiimide-crosslinked porcine SIS-ECM; 3) autologous tissue; or 4) polypropylene mesh. Six months after surgery, the remodeled SIS-ECM showed almost complete replacement by islands and sheets of skeletal muscle, which generated a similar maximal contractile force to native tissue but with greater resistance to fatigue. The autologous tissue graft was replaced by a mixture of collagenous connective tissue, adipose tissue with fewer islands of skeletal muscle compared to SIS-ECM and a similar fatigue resistance to native muscle. Carbodiimide-crosslinked SIS-ECM and polypropylene mesh were characterized by a chronic inflammatory response and produced little or no measurable tetanic force. The findings of this study show that non-crosslinked xenogeneic SIS scaffolds and autologous tissue are associated with the restoration of functional skeletal muscle with histomorphologic characteristics that resemble native muscle.
Collapse
Affiliation(s)
- Jolene E Valentin
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3130, USA
| | | | | | | |
Collapse
|
7
|
Gigante A, Cesari E, Busilacchi A, Manzotti S, Kyriakidou K, Greco F, Di Primio R, Mattioli-Belmonte M. Collagen I membranes for tendon repair: effect of collagen fiber orientation on cell behavior. J Orthop Res 2009; 27:826-32. [PMID: 19058185 DOI: 10.1002/jor.20812] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tendons have poor spontaneous regenerative capabilities, and complete regeneration is never achieved despite intensive remodeling. In this in vitro study, we characterized two multilamellar collagen I membranes differing in the arrangement of collagen fiber deposition (oriented vs. nonoriented) and compared their mechanical properties. Human dermal fibroblasts and tenocytes were seeded on the two membranes to evaluate the effect of fiber orientation on cell viability and cytoskeletal organization. Results demonstrate that the multilamellar collagen I membrane with oriented fibers has the better mechanical properties and affords optimum cell proliferation and adhesion. Its fiber arrangement provides an instructive pattern for cell growth and may serve to guide the alignment of cells migrating from the ends of a crushed or frayed tendon to obtain a strong, correctly structured tendon, thus providing a viable clinical option for tendon repair.
Collapse
Affiliation(s)
- Antonio Gigante
- Orthopaedics Clinic, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, Ancona 60020, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 2009; 14:1835-42. [PMID: 18950271 DOI: 10.1089/ten.tea.2007.0264] [Citation(s) in RCA: 553] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophage phenotype can be characterized as proinflammatory (M1) or immunomodulatory and tissue remodeling (M2). The present study used a rat model to determine the macrophage phenotype at the site of implantation of two biologic scaffolds that were derived from porcine small intestinal submucosa (SIS) and that differed mainly according to their method of processing: the Restore device (SIS) and the CuffPatch device (carbodiimide crosslinked form of porcine-derived SIS (CDI-SIS)). An autologous tissue graft was used as a control implant. Immunohistologic methods were used to identify macrophage surface markers CD68 (pan macrophages), CD80 and CCR7 (M1 profile), and CD163 (M2 profile) during the remodeling process. All graft sites were characterized by the dense population of CD68+ mononuclear cells present during the first 4 weeks. The SIS device elicited a predominantly CD163+ response (M2 profile, p < 0.001) and showed constructive remodeling at 16 weeks. The CDI-SIS device showed a predominately CD80+ and CCR7+ response (M1 profile, p < 0.03), and at 16 weeks was characterized by chronic inflammation. The autologous tissue graft showed a predominately CD163+ response (M2) at 1 week, with a dual M1/M2 population (CD80+, CCR7+, and CD163+) by 2 and 4 weeks and moderately well organized connective tissue by 16 weeks. The processing methods used during the manufacturing of a biologic scaffold can have a profound influence upon the macrophage phenotype profile and downstream remodeling events. Routine histologic examination alone is inadequate to determine the phenotype of mononuclear cells that participate in the host response to the scaffold.
Collapse
Affiliation(s)
- Stephen F Badylak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | | | | | | | | |
Collapse
|
9
|
Liu E, Treiser MD, Johnson PA, Patel P, Rege A, Kohn J, Moghe PV. Quantitative biorelevant profiling of material microstructure within 3D porous scaffolds via multiphoton fluorescence microscopy. J Biomed Mater Res B Appl Biomater 2007; 82:284-97. [PMID: 17238159 DOI: 10.1002/jbm.b.30732] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study presents a novel approach, based on fluorescence multiphoton microscopy (MPM), to image and quantitatively characterize the microstructure and cell-substrate interactions within microporous scaffold substrates fabricated from synthetic biodegradable polymers. Using fluorescently dyed scaffolds fabricated from poly(DTE carbonate)/poly(DTO carbonate) blends of varying porosity and complementary green fluorescent protein-engineered fibroblasts, we reconstructed the three-dimensional distribution of the microporous and macroporous regions in 3D scaffolds, as well as cellular morphological patterns. The porosity, pore size and distribution, strut size, pore interconnectivity, and orientation of both macroscale and microscale pores of 3D scaffolds were effectively quantified and validated using complementary imaging techniques. Compared to other scaffold characterizing techniques such as confocal imaging and scanning electron microscopy (SEM), MPM enables the acquisition of images from scaffold thicknesses greater than a hundred microns with high signal-to-noise ratio, reduced bulk photobleaching, and the elimination of the need for deconvolution. In our study, the morphology and cytoskeletal organization of cells within the scaffold interior could be tracked with high resolution within the limits of penetration of MPM. Thus, MPM affords a promising integrated platform for imaging cell-material interactions within the interior of polymeric biomaterials.
Collapse
Affiliation(s)
- Er Liu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
De Deyne PG, Dauria RE, Bruder SP. The introduction of an extracellular matrix-based scaffold to the marketplace. J Shoulder Elbow Surg 2007; 16:S164-70. [PMID: 17448691 DOI: 10.1016/j.jse.2007.02.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 01/15/2007] [Accepted: 02/05/2007] [Indexed: 02/01/2023]
Abstract
Continuous application of new scientific knowledge is a central characteristic of modern medical practice. The current pace of medical innovation creates an environment of rapid change, and the introduction of innovative treatments in the area of regenerative medicine in orthopaedics prompts health care providers, medical device companies, patient advocacy groups, and health insurance payors to study the most optimal method for introducing these treatments to clinical practice. Questions regarding the role and value of preclinical testing, clinical trials, and postmarketing surveillance are pertinent to this discussion, and answers to these questions should culminate in a strategy that benefits patient care.
Collapse
|
11
|
Fini M, Torricelli P, Giavaresi G, Rotini R, Castagna A, Giardino R. In vitro study comparing two collageneous membranes in view of their clinical application for rotator cuff tendon regeneration. J Orthop Res 2007; 25:98-107. [PMID: 17054111 DOI: 10.1002/jor.20295] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tenocytes were isolated from the rotator cuff tendons of healthy (HT) and glucocorticoid (GC)-treated rats (GCT) and were cultured on polystyrene wells (TCP) as control, and on 2 de-cellularized collagen matrices: porcine small intestinal submucosa (SIS), and human dermal matrix (Graftjacket, GJ). At 3 and 7 days cell proliferation and synthesis were evaluated. Proliferation of HT tenocytes increased between experimental times for both tested membranes, but already at 3 days, HT tenocytes cultured on GJ showed the highest WST-1 value. The collagen-I (CICP) synthesis on GJ membrane did not change between experimental times and was significantly higher than TCP and SIS at 7 days. Proteoglycans (PG), and fibronectin (FBN) synthesis increased when HT were cultured on GJ, between experimental times, and both PG and FBN synthesis on GJ membrane were higher than TCP and SIS at 7 days. GC determined decreases in cell proliferation, CICP and PG syntheses at 3 days of culture on TCP when compared to HT tenocytes while a decrease in WST-1 was maintained at 7 days. CICP, PG and FBN (only at 3 days) syntheses were significantly higher in GCT tenocytes cultured on GJ. The negative effects on GC on GCT tenocytes cultured on membrane were particularly evident on SIS for CICP (-18%) and FBN (-67%) synthesis. The obtained results support the conclusion that GJ is more suitable than SIS as a scaffold for in situ tissue engineering and for the in vitro bioengineering of tendons to heal massive tears of the rotator cuff tendon.
Collapse
Affiliation(s)
- Milena Fini
- Laboratory of Experimental Surgery, Research Institute Codivilla-Putti, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|