1
|
Bedeer HM, Asklany A, Ali WM, Elyounsi M, Mohammed MNA, Youssef MM, El-Shazly M. Outcomes of Xenograft with Platelet-rich Fibrin versus Autogenous Bone in Alveolar Cleft Grafting. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6106. [PMID: 39351181 PMCID: PMC11441918 DOI: 10.1097/gox.0000000000006106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/25/2024] [Indexed: 10/04/2024]
Abstract
Background The use of a suitable graft material helps with sufficient osseointegration. The aim of this study was to compare the clinical and radiographic outcomes of two types of alveolar bone graft materials, xenografts with platelet-rich fibrin (PRF) and autogenous grafts, in patients with alveolar clefts. Methods Thirty-six patients with alveolar clefts were enrolled in this study. Those patients were randomly divided into two groups: group A, where the autogenous iliac bone graft was used to fill the alveolar defect, and group B, where the xenograft with PRF was used to fill the alveolar defect. After 6 months of grafting, patients were assessed in terms of pain, duration of hospital stay, and donor site morbidity associated with iliac crest harvesting, while bone formation was evaluated radiographically using cone beam computed tomography. Results The results showed no statistical differences as regards baseline and perioperative data. Operative duration was significantly lower among xenograft with PRF patients. Both groups had comparable postoperative success scores, and total failure was reported in a total of three patients (one patient in group A and two patients in group B). Conclusions With no potential donor site morbidities, xenograft with PRF is an equivalent bone transplant replacement to the autologous iliac bone graft. Additionally, it is associated with a significant success rate, and a significant decrease in operative time and hospital stay. Many future studies are warranted to draw firm conclusions.
Collapse
Affiliation(s)
- Hager Montaser Bedeer
- From the Plastic and Reconstructive Surgery Department, Assiut University Hospital, Assiut, Egypt
| | - Awny Asklany
- From the Plastic and Reconstructive Surgery Department, Assiut University Hospital, Assiut, Egypt
| | - Wagdi M Ali
- From the Plastic and Reconstructive Surgery Department, Assiut University Hospital, Assiut, Egypt
| | - Mohamed Elyounsi
- From the Plastic and Reconstructive Surgery Department, Assiut University Hospital, Assiut, Egypt
| | | | - Mostafa Mahmoud Youssef
- Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Assiut University Hospital, Assiut, Egypt
| | - Mohamed El-Shazly
- From the Plastic and Reconstructive Surgery Department, Assiut University Hospital, Assiut, Egypt
| |
Collapse
|
2
|
Xiang C, Wang Z, Zhang Q, Guo Z, Li X, Chen W, Wei X, Li P. Tough physically crosslinked poly(vinyl alcohol)-based hydrogels loaded with collagen type I to promote bone regeneration in vitro and in vivo. Int J Biol Macromol 2024; 261:129847. [PMID: 38296142 DOI: 10.1016/j.ijbiomac.2024.129847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/09/2024]
Abstract
Poly(vinyl alcohol) (PVA) hydrogels exhibit great potential as ideal biomaterials for tissue engineering, owing to their non-toxicity, high water content, and strong biocompatibility. However, limited mechanical strength and low bioactivity have constrained their application in bone tissue engineering. In this study, we have developed a tough PVA-based hydrogel using a facile physical crosslinking method, comprising of PVA, tannic acid (TA), and hydroxyapatite (HA). Systematic experiments were conducted to examine the physicochemical properties of PVA/HA/TA hydrogels, including their compositions, microstructures, and mechanical and rheological properties. The results demonstrated that the PVA/HA/TA hydrogels possessed the porous microstructures and excellent mechanical properties. Furthermore, collagen type I (ColI) was used to further improve the biocompatibility and bioactivity of PVA/HA/TA hydrogels. In vitro experiments revealed that PVA/HA/TA/COL hydrogel could offer a suitable microenvironment for the growth of MC3T3-E1 cells and promote their osteogenic differentiation. Meanwhile, the PVA/HA/TA/COL hydrogel demonstrated the ability to promote bone regeneration and osteointegration in a rat femoral defect model. This study provides a potential strategy for the use of PVA-based hydrogels in bone tissue engineering.
Collapse
Affiliation(s)
- Changxin Xiang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zehua Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qing Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zijian Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Wang C, Liu J, Min S, Liu Y, Liu B, Hu Y, Wang Z, Mao F, Wang C, Ma X, Wen P, Zheng Y, Tian Y. The effect of pore size on the mechanical properties, biodegradation and osteogenic effects of additively manufactured magnesium scaffolds after high temperature oxidation: An in vitro and in vivo study. Bioact Mater 2023; 28:537-548. [PMID: 37457041 PMCID: PMC10344631 DOI: 10.1016/j.bioactmat.2023.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The effects of pore size in additively manufactured biodegradable porous magnesium on the mechanical properties and biodegradation of the scaffolds as well as new bone formation have rarely been reported. In this work, we found that high temperature oxidation improves the corrosion resistance of magnesium scaffold. And the effects of pore size on the mechanical characteristics and biodegradation of scaffolds, as well as new bone formation, were investigated using magnesium scaffolds with three different pore sizes, namely, 500, 800, and 1400 μm (P500, P800, and P1400). We discovered that the mechanical characteristics of the P500 group were much better than those of the other two groups. In vitro and in vivo investigations showed that WE43 magnesium alloy scaffolds supported the survival of mesenchymal stem cells and did not cause any local toxicity. Due to their larger specific surface area, the scaffolds in the P500 group released more magnesium ions within reasonable range and improved the osteogenic differentiation of bone mesenchymal stem cells compared with the other two scaffolds. In a rabbit femoral condyle defect model, the P500 group demonstrated unique performance in promoting new bone formation, indicating its great potential for use in bone defect regeneration therapy.
Collapse
Affiliation(s)
- Chaoxin Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jinge Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuyuan Min
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Bingchuan Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Yuanyu Hu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Zhengguang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Fengbiao Mao
- Institute of Medicine Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Caimei Wang
- Beijing AKEC Medical Co., Ltd., Beijing, 102200, China
| | - Xiaolin Ma
- Beijing AKEC Medical Co., Ltd., Beijing, 102200, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
4
|
Wang C, Min S, Tian Y. Injectable and Cell-Laden Hydrogel in the Contained Bone Defect Animal Model: A Systematic Review. Tissue Eng Regen Med 2023; 20:829-837. [PMID: 37563482 PMCID: PMC10519912 DOI: 10.1007/s13770-023-00569-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Due to its high water content and biomimetic properties simulating extracellular matrix (ECM), hydrogels have been used as preferred cell culture and delivery systems. Similarly, cell-loaded hydrogels can be easily injected into target areas in a minimally invasive manner, minimizing surgical trauma, adapting to irregular shaped defects, and benefiting patients. In this study, we systematically reviewed multiple studies on hydrogel-based bone defect research and briefly summarized the progress of injectable and cell-loaded hydrogels in bone defect repair. METHODS A systematic search was conducted in the PubMed and Web of Science databases using selected search terms. RESULTS Initially, 185 articles were retrieved from the databases. After full-text screening based on inclusion and exclusion criteria, 26 articles were included in this systematic review. Data collected from each study included culture model, seed cell type and origin, cell concentration, scaffold material, scaffold shape, experimental animal and site, bioactive agents, and binding method. This injectable and cell-loaded hydrogel shows certain feasibility in bone tissue engineering applications. CONCLUSION Injectable and cell-loaded hydrogels have been widely applied in bone tissue engineering research. The future direction of bone tissue engineering for bone defect treatment involves the use of new hydrogel materials and biochemical stimulation.
Collapse
Affiliation(s)
- Chaoxin Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Shuyuan Min
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
5
|
Rony L, Aguado E, Verlee B, Pascaretti-Grizon F, Chappard D. Microarchitecture of titanium cylinders obtained by additive manufacturing does not influence osseointegration in the sheep. Regen Biomater 2021; 8:rbab021. [PMID: 34188953 PMCID: PMC8226111 DOI: 10.1093/rb/rbab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
Large bone defects are a challenge for orthopedic surgery. Natural (bone grafts) and synthetic biomaterials have been proposed but several problems arise such as biomechanical resistance or viral/bacterial safety. The use of metallic foams could be a solution to improve mechanical resistance and promote osseointegration of large porous metal devices. Titanium cylinders have been prepared by additive manufacturing (3D printing/rapid prototyping) with a geometric or trabecular microarchitecture. They were implanted in the femoral condyles of aged ewes; the animals were left in stabling for 90 and 270 days. A double calcein labeling was done before sacrifice; bones were analyzed by histomorphometry. Neither bone volume, bone/titanium interface nor mineralization rate were influenced by the cylinder's microarchitecture; the morphometric parameters did not significantly increase over time. Bone anchoring occurred on the margins of the cylinders and some trabeculae extended in the core of the cylinders but the amount of bone inside the cylinders remained low. The rigid titanium cylinders preserved bone cells from strains in the core of the cylinders. Additive manufacturing is an interesting tool to prepare 3D metallic scaffolds, but microarchitecture does not seem as crucial as expected and anchoring seems limited to the first millimeters of the graft.
Collapse
Affiliation(s)
- Louis Rony
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Eric Aguado
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Bruno Verlee
- SIRRIS Liège Science Park, Rue du bois St Jean 12, Seraing 4102, Belgium
| | - Florence Pascaretti-Grizon
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Daniel Chappard
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| |
Collapse
|