1
|
Correction of Inverted Nipples with Fat Grafting: A Novel Technique for a Challenging Problem. Plast Reconstr Surg 2023; 151:347e-348e. [PMID: 36696342 DOI: 10.1097/prs.0000000000009872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
2
|
Abbasi K, Tavakolizadeh S, Hadi A, Hosseini M, Soufdoost RS, Heboyan A, Alam M, Fani‐Hanifeh S. The wound healing effect of collagen/adipose-derived stem cells (ADSCs) hydrogel: In vivo study. Vet Med Sci 2022; 9:282-289. [PMID: 36571812 PMCID: PMC9856998 DOI: 10.1002/vms3.1059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The complex wound healing process involves activating and synchronizing intracellular, intercellular, and extracellular components. Adipose tissue is attracting attention to promote wound healing. Within subcutaneous adipose tissue, stromal vascular cells and their subsets release growth factors and cytokines critical for neovascularization and wound repair. OBJECTIVES This study evaluated human placental collagen/adipose-derived stem cells (ADSCs) hydrogel for wound healing in rats. METHODS In this study, ADSCs were harvested, cultured, and mixed with placental collagen. Twelve rats were used, and their backs were excised three times each. Group one received collagen/ADSCs, group two collagen, and group three non-filled (control) excisions. The healing processes were assessed by histological analysis, taking photographs, and calculating the percentage of wound contraction in mentioned times. RESULTS Histopathological analysis revealed that the content of fibroblasts, follicles of the hair, and angiogenesis in group one was significantly more than in other groups. Group one had a significant result compared with the collagen and control groups. In group one, significant wound healing and wound contraction were observed with 52% and 80% wound contraction at 7 and 14 days, respectively. CONCLUSION Collagen/ADSCs can be considered a suitable candidate hydrogel in wound healing with a high potential for enhancing wound repairing.
Collapse
Affiliation(s)
- Kamyar Abbasi
- Department of ProsthodonticsSchool of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Sara Tavakolizadeh
- Department of ProsthodonticsSchool of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Alireza Hadi
- Department of ProsthodonticsSchool of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Maryam Hosseini
- Dental Research Center, Research Institute of Dental Sciences, School of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | | | - Artak Heboyan
- Department of ProsthodonticsFaculty of StomatologyYerevan State Medical University after Mkhitar HeratsiYerevanArmenia
| | - Mostafa Alam
- Department of Oral and Maxillofacial SurgerySchool of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Sadaf Fani‐Hanifeh
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Viability of Fat Cells in Frozen Fat Tissue in Relation to Thawing Technique. Plast Reconstr Surg Glob Open 2022; 10:e4505. [PMID: 36119383 PMCID: PMC9473790 DOI: 10.1097/gox.0000000000004505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Damage of frozen fat, which will be used for retransplantation, is inevitable. Reuse of frozen fat requires a thawing process. No standardized method has yet been established for thawing frozen fat.
Collapse
|
4
|
Lee TH, Wani WA, Lee CH, Cheng KK, Shreaz S, Wong S, Hamdan N, Azmi NA. Edible Bird's Nest: The Functional Values of the Prized Animal-Based Bioproduct From Southeast Asia-A Review. Front Pharmacol 2021; 12:626233. [PMID: 33953670 PMCID: PMC8089372 DOI: 10.3389/fphar.2021.626233] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Edible Bird's Nest (EBN) is the most prized health delicacy among the Chinese population in the world. Although some scientific characterization and its bioactivities have been studied and researched, no lights have been shed on its actual composition or mechanism. The aim of this review paper is to address the advances of EBN as a therapeutic animal bioproduct, challenges and future perspectives of research involving EBN. The methodology of this review primarily involved a thorough search from the literature undertaken on Web of Science (WoS) using the keyword "edible bird nest". Other information were obtained from the field/market in Malaysia, one of the largest EBN-producing countries. This article collects and describes the publications related to EBN and its therapeutic with diverse functional values. EBN extracts display anti-aging effects, inhibition of influenza virus infection, alternative traditional medicine in athletes and cancer patients, corneal wound healing effects, stimulation of proliferation of human adipose-derived stem cells, potentiate of mitogenic response, epidermal growth factor-like activities, enhancement of bone strength and dermal thickness, eye care, neuroprotective and antioxidant effects. In-depth literature study based on scientific findings were carried out on EBN and its properties. More importantly, the future direction of EBN in research and development as health-promoting ingredients in food and the potential treatment of certain diseases have been outlined.
Collapse
Affiliation(s)
- Ting Hun Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.,Innovation Centre in Agritechnology for Advanced Bioprocessing, Universiti Teknologi Malaysia, Pagoh Research Center, Johor Darul Takzim, Malaysia
| | - Waseem A Wani
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Chia Hau Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Kian Kai Cheng
- Innovation Centre in Agritechnology for Advanced Bioprocessing, Universiti Teknologi Malaysia, Pagoh Research Center, Johor Darul Takzim, Malaysia
| | - Sheikh Shreaz
- Oral Microbiology General Facility Laboratory, Faculty of Dentistry, Health Sciences Center, Kuwait University, Safat, Kuwait
| | - Syieluing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Norfadilah Hamdan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Nurul Alia Azmi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
5
|
Sun B, Qu R, Fan T, Yang Y, Jiang X, Khan AU, Zhou Z, Zhang J, Wei K, Ouyang J, Dai J. Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells. Cell Mol Biol Lett 2021; 26:15. [PMID: 33858321 PMCID: PMC8048231 DOI: 10.1186/s11658-021-00259-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. METHODS In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). The hASCs were treated for 7 days with different concentrations (0, 1, 5, 10, 20, and 50 nM) of jasplakinolide (JAS), a reagent that directly polymerizes F-actin. The effects of the actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. RESULTS Cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groups were higher than in the control group and the JAS (50 nM) group. The FAK, vinculin, paxillin, and talin protein expression levels were highest in the JAS (20 nM) group, while zyxin expression was highest in the JAS (50 nM) group. Western blotting showed that osteogenic differentiation in the JAS (0, 1, 5, 10, 20, and 50 nM) group was enhanced compared with that in the control group, and was strongest in the JAS (50 nM) group. CONCLUSIONS In summary, our data suggest that the actin polymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiation in hASCs.
Collapse
Affiliation(s)
- Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xin Jiang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zhitao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jingliao Zhang
- Department of Foot and Ankle Surgery, Henan Luoyang Orthopedic Hospital, Zhengzhou, China
| | - Kuanhai Wei
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Chen TY, Wen TK, Dai NT, Hsu SH. Cryogel/hydrogel biomaterials and acupuncture combined to promote diabetic skin wound healing through immunomodulation. Biomaterials 2020; 269:120608. [PMID: 33388690 DOI: 10.1016/j.biomaterials.2020.120608] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
Unhealed chronic wounds often deteriorate into multiple infection with several kinds of bacteria and excessive proteolytic wound exudate and remains one of the common healthcare issues. Here, the functional and antimicrobial hydrogel and cryogel biomaterials were prepared from glycol chitosan and a novel biodegradable Schiff base crosslinker difunctional polyurethane (DF-PU). The cryogel exhibited ~2730 ± 400% of water absorption with abundant macropores and 86.5 ± 1.6% of porosity formed by ice crystal as well as ~240% cell proliferation effect; while the hydrogel demonstrated considerable antimicrobial activity and biodegradability. As an optimized procedure to treat the diabetic skin wound in a rat model, the combined application of adipose stem cell-seeded cryogel/hydrogel biomaterials on the wound and acupuncture surrounding the wound may attain 90.34 ± 2.3% of wound closure and secure the formation of granulation tissue with sufficient microvessels and complete re-epithelialization in 8 days. The average increases in the superficial temperature of wounded animals after acupuncture were about 1-2 °C. Through the activation of C3a and C5a, the increased secretion of cytokines SDF-1 and TGFβ-1, as well as the down-regulation of proinflammatory cytokines TNF-α and IL-1β, the combined treatment of stem cell-seeded cryogel/hydrogel biomaterials and acupuncture on wounds produced synergistic immunomodulatory effects. The strategy using the combined treatment of biomaterials, stem cells, and acupuncture reveals a perspective new approach to accelerate the tissue regeneration.
Collapse
Affiliation(s)
- Tsai-Yu Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Tsung-Kai Wen
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan, ROC.
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
7
|
Klinger M, Marazzi M, Vigo D, Torre M. Fat Injection for Cases of Severe Burn Outcomes: A New Perspective of Scar Remodeling and Reduction. Aesthetic Plast Surg 2020; 44:1278-1282. [PMID: 32844266 DOI: 10.1007/s00266-020-01813-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite civilization and progress, burns occur frequently in the world. Remarkable discoveries of wound healing mechanisms have been reported. On the other hand, long-term outcomes from burn injuries represent a barrier to improvement of patients' social, functional, and psychological condition. Lipofilling, described since the 1980s, currently is used for several clinical applications. This study aimed to verify whether lipofilling could ameliorate scar remodeling in three clinical cases. METHODS Three adult patients with hemifacial hypertrophic scars and keloids resulting from severe burns 2 to 13 years previously were selected. The patients were treated by injection of adipose tissue harvested from abdominal subcutaneous fat and processed according to Coleman's technique. Two injections (with a 13-month interval between) were administered at the dermohypodermal junction. Histologic examination of scar tissue punch biopsies (hematoxylin-eosin staining) before and after the treatment was performed as well as magnetic resonance scan with contrast. RESULTS The clinical appearance and subjective patient feelings after a 6-month follow-up period suggest considerable improvement in the mimic features, skin texture, and thickness. Histologic examination shows patterns of new collagen deposition, local hypervascularity, and dermal hyperplasia in the context of new tissue, with high correspondence to the original. CONCLUSIONS The preliminary results show that lipofilling improves scar quality and suggest a tissue regeneration enhancing process.
Collapse
Affiliation(s)
- M Klinger
- Università degli Studi di Milano, Istituto di Chirurgia Plastica, Unità Operativa di Chirurgia Plastica, IRCCS Istituto Clinico Humanitas, Via Manzoni 56, 20089, Rozzano, Italy.
| | - M Marazzi
- Centro di Riferimento Regionale Colture Cellulari, Ospedale Niguarda ''Ca' Granda'', Milano, Italy
| | - D Vigo
- Dipartimento di Scienze e Tecnologie Veterinarie per la Sicurezza Alimentare, Università degli Studi di Milano, Milano, Italy
| | - M Torre
- Dipartimento di Chimica Farmaceutica, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
8
|
Shen T, Zheng Q, Luo H, Li X, Chen Z, Song Z, Zhou G, Hong C. Exosomal miR-19a from adipose-derived stem cells suppresses differentiation of corneal keratocytes into myofibroblasts. Aging (Albany NY) 2020; 12:4093-4110. [PMID: 32112551 PMCID: PMC7093196 DOI: 10.18632/aging.102802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/19/2020] [Indexed: 04/11/2023]
Abstract
In this study, we investigated the effects of exosomal microRNAs (miRNAs) from adipose-derived stem cells (ADSCs) on the differentiation of rabbit corneal keratocytes. Keratocytes grown in 10% FBS differentiated into myofibroblasts by increasing HIPK2 kinase levels and activity. HIPK2 enhanced p53 and Smad3 pathways in FBS-induced keratocytes. Keratocytes grown in 10% FBS also showed increased levels of pro-fibrotic proteins, including collagen III, MMP9, fibronectin, and α-SMA. These effects were reversed by knocking down HIPK2. Moreover, ADSCs and exosomes derived from ADSCs (ADSCs-Exo) suppressed FBS-induced differentiation of keratocytes into myofibroblasts by inhibiting HIPK2. Quantitative RT-PCR analysis showed that ADSCs-Exos were significantly enriched in miRNA-19a as compared to ADSCs. Targetscan and dual luciferase reporter assays confirmed that the HIPK2 3'UTR is a direct binding target of miR-19a. Keratocytes treated with 10% FBS and ADSCs-Exo-miR-19a-agomir or ADSCs-Exo-NC-antagomir showed significantly lower levels of HIPK2, phospho-Smad3, phospho-p53, collagen III, MMP9, fibronectin and α-SMA than those treated with 10% FBS plus ADSCs-Exo-NC-agomir or ADSCs-Exo-miR-19a-antagomir. Thus, exosomal miR-19a derived from the ADSCs suppresses FBS-induced differentiation of rabbit corneal keratocytes into myofibroblasts by inhibiting HIPK2 expression. This suggests their potential use in the treatment of corneal fibrosis.
Collapse
Affiliation(s)
- Ting Shen
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China
| | - Qingqing Zheng
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China
| | - Hongbo Luo
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China
| | - Xin Li
- Wenzhou School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zhuo Chen
- Bengbu Medical College, Bengbu 233030, Anhui, P. R. China
| | - Zeyu Song
- Wenzhou School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Guanfang Zhou
- Bengbu Medical College, Bengbu 233030, Anhui, P. R. China
| | - Chaoyang Hong
- Wenzhou School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Department of Ophthalmology, Zhejiang Hospital, Hangzhou 310007, Zhejiang, P. R. China
| |
Collapse
|
9
|
Khan S, Chan YT, Revelo XS, Winer DA. The Immune Landscape of Visceral Adipose Tissue During Obesity and Aging. Front Endocrinol (Lausanne) 2020; 11:267. [PMID: 32499756 PMCID: PMC7243349 DOI: 10.3389/fendo.2020.00267] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity and aging represent major health burdens to the global adult population. Both conditions promote the development of associated metabolic diseases such as insulin resistance. The visceral adipose tissue (VAT) is a site that becomes dysfunctional during obesity and aging, and plays a significant role during their pathophysiology. The changes in obese and aging VAT are now recognized to be partly driven by a chronic local inflammatory state, characterized by immune cells that typically adopt an inflammatory phenotype during metabolic disease. Here, we summarize the current knowledge on the immune cell landscape of the VAT during lean, obese, and aged conditions, highlighting their similarities and differences. We also briefly discuss possible linked mechanisms that fuel obesity- and age-associated VAT dysfunction.
Collapse
Affiliation(s)
- Saad Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Yi Tao Chan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Xavier S. Revelo
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Xavier S. Revelo
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Daniel A. Winer
| |
Collapse
|
10
|
Samberg M, Stone R, Natesan S, Kowalczewski A, Becerra S, Wrice N, Cap A, Christy R. Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta Biomater 2019; 87:76-87. [PMID: 30665019 DOI: 10.1016/j.actbio.2019.01.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Despite great advances in skin wound care utilizing grafting techniques, the resulting severe scarring, deformity and ineffective vascularization remains a challenge. Alternatively, tissue engineering of new skin using patient-derived stem cells and scaffolding materials promises to greatly increase the functional and aesthetic outcome of skin wound healing. This work focused on the optimization of a polyethylene glycol modified (PEGylated) platelet-rich plasma (PRP) hydrogel for the protracted release of cytokines, growth factors, and signaling molecules and also the delivery of a provisional physical framework for stem cell angiogenesis. Freshly collected whole blood was utilized to synthesize PEGylated PRP hydrogels containing platelet concentrations ranging from 0 to 200,000 platelets/µl. Hydrogels were characterized using thromboelastography and impedance aggregometry for platelet function and were visualized using scanning electron microscopy. To assess the effects of PEGylated PRP hydrogels on cells, PRP solutions were seeded with human adipose-derived stem cells (ASCs) prior to gelation. Following 14 days of incubation in vitro, increased platelet concentrations resulted in higher ASC proliferation and vascular gene and protein expression (assessed via RT-PCR, ELISA, and immunochemistry). Using a rat skin excision model, wounds treated with PRP + ASC hydrogels increased the number of vessels in the wound by day 8 (80.2 vs. 62.6 vessels/mm2) compared to controls. In conclusion, the proposed PEGylated PRP hydrogel promoted both in vitro and transient in vivo angiogenesis of ASCs for improved wound healing. STATEMENT OF SIGNIFICANCE: Our findings support an innovative means of cellular therapy intervention to improve surgical wound healing in a normal wound model. ASCs seeded within PEGylated PRP could be an efficacious and completely autologous therapy for treating patients who have poorly healing wounds caused by vascular insufficiency, previous irradiation, or full-thickness burns. Because wound healing is a dynamic and complex process, the application of more than one growth factor with ASCs demonstrates an advantageous way of improving healing.
Collapse
Affiliation(s)
- Meghan Samberg
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Randolph Stone
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Shanmugasundaram Natesan
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Andrew Kowalczewski
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Sandra Becerra
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Nicole Wrice
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA
| | - Andrew Cap
- U.S. Army Institute of Surgical Research, Coagulation and Blood Research, JBSA Fort Sam Houston, TX, USA
| | - Robert Christy
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, JBSA Fort Sam Houston, TX, USA.
| |
Collapse
|
11
|
Dziedzic DSM, Mogharbel BF, Ferreira PE, Irioda AC, de Carvalho KAT. Transplantation of Adipose-derived Cells for Periodontal Regeneration: A Systematic Review. Curr Stem Cell Res Ther 2019; 14:504-518. [PMID: 30394216 DOI: 10.2174/1574888x13666181105144430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords "ADIPOSE", "CELLS", and "PERIODONTAL", with the Boolean operator "AND". A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
- Dentistry Faculty, Universidade Positivo, Curitiba, Brazil
| | - Bassam Felipe Mogharbel
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Priscila Elias Ferreira
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Ana Carolina Irioda
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | | |
Collapse
|
12
|
La Padula S, Hersant B, Meningaud J, D’Andrea F. Use of autologous fat graft and fractiononal co2 laser to optimize the aesthetic and functional results in patients with severe burn outcomes of the face. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2018; 119:279-283. [DOI: 10.1016/j.jormas.2018.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022]
|
13
|
Wolf DA, Beeson W, Rachel JD, Keller GS, Hanke CW, Waibel J, Leavitt M, Sacopulos M. Mesothelial Stem Cells and Stromal Vascular Fraction for Skin Rejuvenation. Facial Plast Surg Clin North Am 2018; 26:513-532. [PMID: 30213431 DOI: 10.1016/j.fsc.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of stem cells in regenerative medicine and specifically facial rejuvenation is thought provoking and controversial. Today there is increased emphasis on tissue engineering and regenerative medicine, which translates into a need for a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue is currently recognized as an accessible and abundant source for adult stem cells. Cellular therapies and tissue engineering are still in their infancy, and additional basic science and preclinical studies are needed before cosmetic and reconstructive surgical applications can be routinely undertaken and satisfactory levels of patient safety achieved.
Collapse
Affiliation(s)
- David A Wolf
- Johnson Space Center, Houston, TX, USA; EarthTomorrow, Inc, 1714 Neptune Lane, Houston, TX 77062, USA; Purdue University, West Lafayette, IN, USA
| | - William Beeson
- Facial Plastics, Indianapolis, IN, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | - Gregory S Keller
- Facial Plastics, Santa Barbara, CA, USA; Facial Plastics, Los Angeles, CA, USA
| | - C William Hanke
- Dermatology, Indianapolis, IN, USA; Laser and Skin Center of Indiana, 13400 North Meridian Street, Suite 290, Carmel, IN 46032, USA; ACGME Micrographic Surgery, Dermatologic Oncology Fellowship Training Program, St. Vincent Hospital, Indianapolis, IN, USA; University of Iowa-Carver College of Medicine, Iowa City, IA, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jill Waibel
- Dermatology, Miami Dermatology and Laser Institute, 7800 Southwest 87th Avenue, Suite B200, Miami, FL 33173, USA; Baptist Hospital of Miami, Miami, FL, USA; Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Matt Leavitt
- Dermatology, Orlando, FL, USA; Advanced Dermatology and Cosmetic Surgery, The Hair Foundation, 260 Lookout Place Suite 103, Maitland, FL 32751, USA; University of Central Florida, 6850 Lake Nona Boulevard, Orlando, FL 32827, USA; Nova Southeastern University, 4850 Millenium Boulevard, Orlando, FL 32839, USA
| | - Michael Sacopulos
- Medical Risk Management, Medical Risk Institute, 676 Ohio Street, Terre Haute, IN 47807, USA
| |
Collapse
|
14
|
Effect of Cryopreservation on Human Adipose Tissue and Isolated Stromal Vascular Fraction Cells: In Vitro and In Vivo Analyses. Plast Reconstr Surg 2018; 141:232e-243e. [PMID: 29369990 DOI: 10.1097/prs.0000000000004030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Adipose tissue is a source of adipose-derived stromal/stem cells for tissue engineering and reconstruction and a tissue source for fat grafts. Although liposuction is a simple procedure for the harvest of adipose tissue, the repetition of this surgical intervention can cause adverse effects to the patient and can be a limiting factor for immediate use. Cryopreservation can avoid the morbidity associated with repetitive liposuction, allowing the use of stored tissue after the initial harvest procedure. This article focuses on the characterization of fresh and cryopreserved human adipose tissue. METHODS Lipoaspirates from eight donors were processed as fresh adipose tissue or cryopreserved for 4 to 6 weeks. Fresh and cryopreserved tissues were collagenase digested and the stromal vascular fraction cells were characterized immediately or cryopreserved. Characterization was based on stromal vascular fraction cell proliferation and immunophenotype. In vivo fat grafting was performed in C57BL/6 green fluorescent protein mice to analyze morphology of the tissue and its adiposity using confocal microscopy, histochemical staining (i.e., hematoxylin and eosin and Masson trichrome), and immunohistochemistry (i.e., green fluorescent protein, perilipin, and CD31). RESULTS Although tissue and stromal vascular fraction cell cryopreservation reduced the total cell yield, the remaining viable cells retained their adhesive and proliferative properties. The stromal vascular fraction cell immunophenotype showed a significant reduction in the hematopoietic surface markers and increased expression of stromal and adipogenic markers following cryopreservation. In vivo cryopreserved fat grafts showed morphology similar to that of freshly implanted fat grafts. CONCLUSION In this study, the authors demonstrated that cryopreserved adipose tissue is a potential source of stromal vascular fraction cells and a suitable source for fat grafts.
Collapse
|
15
|
Bajek A, Olkowska J, Walentowicz-Sadłecka M, Sadłecki P, Grabiec M, Porowińska D, Drewa T, Roszkowski K. Human Adipose-Derived and Amniotic Fluid-Derived Stem Cells: A Preliminary In Vitro Study Comparing Myogenic Differentiation Capability. Med Sci Monit 2018; 24:1733-1741. [PMID: 29573382 PMCID: PMC5882157 DOI: 10.12659/msm.905826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Around the world, disabilities due to musculoskeletal disorders have increased and are a major health problem worldwide. In recent years, stem cells have been considered to be powerful tools for musculoskeletal tissue engineering. Human adipose-derived stem cells (hADSCs) and amniotic fluid-derived stem cells (hAFSCs) undergo typical differentiation process into cells of mesodermal origin and can be used to treat muscular system diseases. The aim of the present study was to compare the biological characteristic of stem cells isolated from different human tissues (adipose tissue and amniotic fluid) with respect to myogenic capacity and skeletal and smooth muscle differentiation under the same conditions. Material/Methods hAFSCs and hADSCs were isolated during standard medical procedures and widely characterized by specific markers expression and differentiation potential. Both cell types were induced toward smooth and striated muscles differentiation, which was assessed with the use of molecular techniques. Results For phenotypic characterization, both stem cell types were assessed for the expression of OCT-4, SOX2, CD34, CD44, CD45, and CD90. Muscle-specific markers appeared in both stem cell types, but the proportion of positive cells showed differences depending on the experimental conditions used and the source from which the stem cells were isolated. Conclusions In this study, we demonstrated that hADSCs and hAFSCs have different capability of differentiation toward both muscle types. However, hADSCs seem to be a better source for myogenic protocols and can promote skeletal and smooth muscle regeneration through either direct muscle differentiation or by paracrine mechanism.
Collapse
Affiliation(s)
- Anna Bajek
- Department of Tissue Engineering, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Joanna Olkowska
- Department of Tissue Engineering, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Paweł Sadłecki
- Department of Obstetrics and Gynecology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marek Grabiec
- Department of Obstetrics and Gynecology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Dorota Porowińska
- Department of Biochemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Drewa
- Department of Tissue Engineering, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Urology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Krzysztof Roszkowski
- Department of Oncology, Radiotherapy and Oncological Gynecology, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
16
|
Diepenbrock RM, Green JM. Autologous Fat Transfer for Maxillofacial Reconstruction. Atlas Oral Maxillofac Surg Clin North Am 2018; 26:59-68. [PMID: 29362072 DOI: 10.1016/j.cxom.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Ryan M Diepenbrock
- Oral and Maxillofacial Surgery, David Grant USAF Medical Center, 101 Bodin Cir, Travis AFB, CA 94535, USA; Diepenbrock Facial Cosmetic Surgery, 171 Butcher Road, Suite A, Vacaville, CA 95687, USA.
| | - J Marshall Green
- Oral and Maxillofacial Surgery, Naval Medical Center Portsmouth, 620 John Paul Jone Cir, Portsmouth, VA 23708, USA; Coastal Facial Aesthetic Surgery, 5408 Discovery Park Boulevard #101, Williamsburg, VA 23118, USA
| |
Collapse
|
17
|
Ishiy FAA, Fanganiello RD, Kobayashi GS, Kague E, Kuriki PS, Passos-Bueno MR. CD105 is regulated by hsa-miR-1287 and its expression is inversely correlated with osteopotential in SHED. Bone 2018; 106:112-120. [PMID: 29033380 DOI: 10.1016/j.bone.2017.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
A more accurate understanding of the molecular mechanisms and signaling pathways underpinning human mesenchymal stem cell (MSC) plasticity and differentiation properties is pivotal for accomplishing solid and diligent translation of MSC-based experimental therapeutics and clinical trials to broad clinical practice. In addition, this knowledge enables selection of MSC subpopulations with increased differentiation potential and/or use of exogenous factors to boost this potential. Here, we report that CD105 (ENG) is a predictive biomarker of osteogenic potential in two types of MSCs: stem cells from human exfoliated deciduous teeth (SHED) and human adipose-derived stem cells (hASC). We also validate that CD105 can be used to select and enrich for subpopulations of SHED and hASC with higher in vitro osteogenic potential. In addition, we show that hsa-mir-1287 regulates CD105 expression, and propose that fine-tuning hsa-mir-1287 levels could be used to control osteopotential in SHED. These findings provide better discernment of the molecular bases behind MSC osteogenic plasticity and open up new perspectives to leverage osteogenic potential in MSCs by modulation of a specific miRNA.
Collapse
Affiliation(s)
- Felipe Augusto André Ishiy
- Departamento de Genética e Evolução, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Dalto Fanganiello
- Departamento de Genética e Evolução, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Gerson Shigeru Kobayashi
- Departamento de Genética e Evolução, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Erika Kague
- Departamento de Genética e Evolução, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Semedo Kuriki
- Departamento de Genética e Evolução, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Evolução, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Xu Y, Hadjiargyrou M, Rafailovich M, Mironava T. Cell-based cytotoxicity assays for engineered nanomaterials safety screening: exposure of adipose derived stromal cells to titanium dioxide nanoparticles. J Nanobiotechnology 2017; 15:50. [PMID: 28693576 PMCID: PMC5504822 DOI: 10.1186/s12951-017-0285-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Increasing production of nanomaterials requires fast and proper assessment of its potential toxicity. Therefore, there is a need to develop new assays that can be performed in vitro, be cost effective, and allow faster screening of engineered nanomaterials (ENMs). RESULTS Herein, we report that titanium dioxide (TiO2) nanoparticles (NPs) can induce damage to adipose derived stromal cells (ADSCs) at concentrations which are rated as safe by standard assays such as measuring proliferation, reactive oxygen species (ROS), and lactate dehydrogenase (LDH) levels. Specifically, we demonstrated that low concentrations of TiO2 NPs, at which cellular LDH, ROS, or proliferation profiles were not affected, induced changes in the ADSCs secretory function and differentiation capability. These two functions are essential for ADSCs in wound healing, energy expenditure, and metabolism with serious health implications in vivo. CONCLUSIONS We demonstrated that cytotoxicity assays based on specialized cell functions exhibit greater sensitivity and reveal damage induced by ENMs that was not otherwise detected by traditional ROS, LDH, and proliferation assays. For proper toxicological assessment of ENMs standard ROS, LDH, and proliferation assays should be combined with assays that investigate cellular functions relevant to the specific cell type.
Collapse
Affiliation(s)
- Yan Xu
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY USA
| | - M. Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY USA
| | - Miriam Rafailovich
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY USA
| | - Tatsiana Mironava
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY USA
| |
Collapse
|
19
|
Chen L, Deng ZJ, Zhou JS, Ji RJ, Zhang X, Zhang CS, Li YQ, Yang XQ. Tbx18-dependent differentiation of brown adipose tissue-derived stem cells toward cardiac pacemaker cells. Mol Cell Biochem 2017; 433:61-77. [PMID: 28382491 DOI: 10.1007/s11010-017-3016-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/15/2017] [Indexed: 12/24/2022]
Abstract
A cell-sourced biological pacemaker is a promising therapeutic approach for sick sinus syndrome (SSS) or severe atrial ventricular block (AVB). Adipose tissue-derived stem cells (ATSCs), which are optimal candidate cells for possible use in regenerative therapy for acute or chronic myocardial injury, have the potential to differentiate into spontaneous beating cardiomyocytes. However, the pacemaker characteristics of the beating cells need to be confirmed, and little is known about the underlying differential mechanism. In this study, we found that brown adipose tissue-derived stem cells (BATSCs) in mice could differentiate into spontaneous beating cells in 15% FBS Dulbecco's modified Eagle's medium (DMEM) without additional treatment. Subsequently, we provide additional evidence, including data regarding ultrastructure, protein expression, electrophysiology, and pharmacology, to support the differentiation of BATSCs into a cardiac pacemaker phenotype during the course of early cultivation. Furthermore, we found that silencing Tbx18, a key transcription factor in the development of pacemaker cells, terminated the differentiation of BATSCs into a pacemaker phenotype, suggesting that Tbx18 is required to direct BATSCs toward a cardiac pacemaker fate. The expression of Tbx3 and shox2, the other two important transcription factors in the development of pacemaker cells, was decreased by silencing Tbx18, which suggests that Tbx18 mediates the differentiation of BATSCs into a pacemaker phenotype via these two downstream transcription factors.
Collapse
Affiliation(s)
- Lei Chen
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China
| | - Zi-Jun Deng
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China
| | - Jian-Sheng Zhou
- Biochemistry and Molecular Biology Department, Second Military Medical University, Shanghai, China
| | - Rui-Juan Ji
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China
| | - Xi Zhang
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China
| | - Chuan-Sen Zhang
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China
| | - Yu-Quan Li
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China.
- Department of Anatomy, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| | - Xiang-Qun Yang
- Research Center of Regenerative Medicine, Second Military Medical University, Shanghai, China.
- Department of Anatomy, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
20
|
Ell J, Regn S, Buchberger AM, von Bomhard A, Stark T, Schantz JT, Storck K. Donor-dependent variances of human adipose-derived stem cells in respect to the in-vitro endothelial cell differentiation capability. Adipocyte 2017; 6:20-32. [PMID: 28452591 DOI: 10.1080/21623945.2016.1273299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human adipose-derived stem cells (ASC) have been shown to differentiate into mature adipocytes and to play an important role in creating the vasculature, necessary for white adipose tissue to function. To study the stimulatory capacity of ASC on endothelial progenitor cells we used a commercially available co-culture system (V2a - assay). ASC, isolated from lipoaspirates of 18 healthy patients, were co-cultured for 13 d on endothelial progenitor cells. Using anti CD31 immunostaining, cells that had undergone endothelial differentiation were quantified after the defined co-cultivation period. Endothelial cell differentiation was observed and demonstrated by an increase in area covered by CD31+ cells compared with less to no endothelial cell differentiation in negative and media-only controls. Enzyme-linked immunosorbent assay (ELISA) for vascular endothelial growth factor (VEGF) in supernatant medium collected during the co-cultivation period revealed elevated VEGF levels in the co-culture samples as compared with ASC cultures alone, whereas no increase in adiponectin was detected by ELISA. These findings help to provide further insights in the complex interplay of adipose derived cells and endothelial cells and to better understand the diversity of ASCs in respect of their stimulatory capacity to promote angiogenesis in vitro.
Collapse
Affiliation(s)
- Jascha Ell
- Department of ENT, Head and Neck Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sybille Regn
- Department of ENT, Head and Neck Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anna-Maria Buchberger
- Department of ENT, Head and Neck Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Achim von Bomhard
- Department of Maxillofacial Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Stark
- Department of ENT, Head and Neck Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan-Thorsten Schantz
- Department of Plastic and Reconstructive Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- School of Chemical and Biochemical Engineering, Nanyang University of Technology, Singapore
| | - Katharina Storck
- Department of ENT, Head and Neck Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
21
|
|
22
|
Prins HJ, Schulten EAJM, Ten Bruggenkate CM, Klein-Nulend J, Helder MN. Bone Regeneration Using the Freshly Isolated Autologous Stromal Vascular Fraction of Adipose Tissue in Combination With Calcium Phosphate Ceramics. Stem Cells Transl Med 2016; 5:1362-1374. [PMID: 27388241 DOI: 10.5966/sctm.2015-0369] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
: In patients undergoing maxillary sinus floor elevation (MSFE) for dental implant placement, bone substitutes are currently evaluated as alternatives for autologous bone. However, bone substitutes have only osteoconductive properties and lack osteoinductive potential. Therefore, this phase I study evaluated the potential additive effect on bone regeneration by the addition of freshly isolated, autologous but heterologous stromal vascular fraction (SVF), which is highly enriched with adipose stromal/stem cells when compared with native adipose tissue. From 10 patients, SVF was procured using automatic processing, seeded on either β-tricalcium phosphate (n = 5) or biphasic calcium phosphate carriers (n = 5), and used for MSFE in a one-step surgical procedure. Primary objectives were feasibility and safety. The secondary objective was efficacy, evaluated by using biopsies of the augmented area taken 6 months postoperatively, concomitant with dental implant placement. Biopsies were assessed for bone, graft, and osteoid volumes. No adverse effects were reported during the procedure or follow-up (≥3 years). Bone and osteoid percentages were higher in study biopsies (SVF supplemented) than in control biopsies (ceramic only on contralateral side), in particular in β-tricalcium phosphate-treated patients. Paired analysis on the six bilaterally treated patients revealed markedly higher bone and osteoid volumes using microcomputed tomography or histomorphometric evaluations, demonstrating an additive effect of SVF supplementation, independent of the bone substitute. This study demonstrated for the first time the feasibility, safety, and potential efficacy of SVF seeded on bone substitutes for MSFE, providing the first step toward a novel treatment concept that might offer broad potential for SVF-based regenerative medicine applications. SIGNIFICANCE This is the first-in-human study using freshly isolated, autologous adipose stem cell preparations (the stromal vascular fraction [SVF] of adipose tissue) applied in a one-step surgical procedure with calcium phosphate ceramics (CaP) to increase maxillary bone height for dental implantations. All 10 patients received CaP plus SVF on one side, whereas bilaterally treated patients (6 of 10) received CaP only on the opposite side. This allowed intrapatient evaluation of the potential added value of SVF supplementation, assessed in biopsies obtained after 6 months. Feasibility, safety, and potential efficacy of SVF for bone regeneration were demonstrated, showing high potential for this novel concept.
Collapse
Affiliation(s)
- Henk-Jan Prins
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands Department of Oral and Maxillofacial Surgery, MOVE Research Institute Amsterdam, VU University Medical Center/ACTA, Amsterdam, The Netherlands
| | - Engelbert A J M Schulten
- Department of Oral and Maxillofacial Surgery, MOVE Research Institute Amsterdam, VU University Medical Center/ACTA, Amsterdam, The Netherlands
| | - Christiaan M Ten Bruggenkate
- Department of Oral and Maxillofacial Surgery, MOVE Research Institute Amsterdam, VU University Medical Center/ACTA, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marco N Helder
- Department of Orthopedic Surgery, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Yun H, Zhou Y, Wills A, Du Y. Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure. J Ocul Pharmacol Ther 2016; 32:253-60. [PMID: 27183473 DOI: 10.1089/jop.2016.0005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraocular pressure (IOP) is still the main treatment target for glaucoma. Outflow resistance mainly exists at the trabecular meshwork (TM) outflow pathway, which is responsible for IOP regulation. Changes of TM cellularity and TM extracellular matrix turnover may play important roles in IOP regulation. In this article, we review basic anatomy and physiology of the outflow pathway and TM stem cell characteristics regarding the location, isolation, identification and function. TM stem cells are localized at the insert region of the TM and are label-retaining in vivo. They can be isolated by side-population cell sorting, cloning culture, or sphere culture. TM stem cells are multipotent with the ability to home to the TM region and differentiate into TM cells in vivo. Other stem cell types, such as adipose-derived stem cells, mesenchymal stem cells and induced pluripotent stem cells have been discovered for TM cell differentiation and TM regeneration. We also review glaucomatous animal models, which are suitable to study stem cell-based therapies for TM regeneration.
Collapse
Affiliation(s)
- Hongmin Yun
- 1 Department of Ophthalmology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yi Zhou
- 1 Department of Ophthalmology, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Ophthalmology, Xiangya Hospital, Central South University , Changsha, China
| | - Andrew Wills
- 1 Department of Ophthalmology, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Chemistry, CUNY-City College of Technology , Brooklyn, New York
| | - Yiqin Du
- 1 Department of Ophthalmology, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Department of Developmental Biology, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Louis J. Fox Center for Vision Restoration, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells. Stem Cells Int 2016; 2016:5786257. [PMID: 26977158 PMCID: PMC4764745 DOI: 10.1155/2016/5786257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022] Open
Abstract
Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.
Collapse
|
25
|
Fodor PB, Paulseth SG. Adipose Derived Stromal Cell (ADSC) Injections for Pain Management of Osteoarthritis in the Human Knee Joint. Aesthet Surg J 2016; 36:229-36. [PMID: 26238455 DOI: 10.1093/asj/sjv135] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This safety and feasibility study used autologous adipose-derived stromal vascular cells (the stromal vascular fraction [SVF] of adipose tissue), to treat 8 osteoarthritic knees in 6 patients of grade I to III (K-L scale) with initial pain of 4 or greater on a 10-point Visual Analog Scale (VAS). OBJECTIVES The primary objective of the study was evaluation of the safety of intra-articular injection of SVF. The secondary objective was to assess initial feasibility for reduction of pain in osteoarthritic knees. METHODS Adipose-derived SVF cells were obtained through enzymatic disaggregation of lipoaspirate, resuspension in 3 mL of Lactated Ringer's Solution, and injection directly into the intra-articular space of the knee, with a mean of 14.1 million viable, nucleated SVF cells per knee. Metrics included monitoring of adverse events and preoperative to postoperative changes in the Western Ontario and McMaster Universities Arthritis Index (WOMAC), the VAS pain scale, range of motion (ROM), timed up-and-go (TUG), and MRI. RESULTS No infections, acute pain flares, or other adverse events were reported. At 3-months postoperative, there was a statistically significant improvement in WOMAC and VAS scores (P < .02 and P < .001, respectively), which was maintained at 1 year. Physical therapy measurements for ROM and TUG both improved from preoperative to 3-months postoperative. Standard MRI assessment from preoperative to 3-months postoperative showed no detectable structural differences. All patients attained full activity with decreased knee pain. CONCLUSIONS Autologous SVF was shown to be safe and to present a new potential therapy for reduction of pain for osteoarthritis of the knee. LEVEL OF EVIDENCE 4: Therapeutic.
Collapse
Affiliation(s)
- Peter B Fodor
- Dr Fodor is an Associate Clinical Professor of Plastic Surgery, UCLA Medical Center, Los Angeles, California. Dr Paulseth is an Adjunct Instructor of Clinical Physical Therapy, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Stephen G Paulseth
- Dr Fodor is an Associate Clinical Professor of Plastic Surgery, UCLA Medical Center, Los Angeles, California. Dr Paulseth is an Adjunct Instructor of Clinical Physical Therapy, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| |
Collapse
|
26
|
Reproducible Volume Restoration and Efficient Long-term Volume Retention after Point-of-care Standardized Cell-enhanced Fat Grafting in Breast Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e547. [PMID: 26579353 PMCID: PMC4634184 DOI: 10.1097/gox.0000000000000511] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/06/2015] [Indexed: 01/14/2023]
Abstract
UNLABELLED Lipoaspirated fat grafts are used to reconstruct volume defects in breast surgery. Although intraoperative treatment decisions are influenced by volume changes observed immediately after grafting, clinical effect and patient satisfaction are dependent on volume retention over time. The study objectives were to determine how immediate breast volume changes correlate to implanted graft volumes, to understand long-term adipose graft volume changes, and to study the "dose" effect of adding autologous stromal vascular fraction (SVF) cells to fat grafts on long-term volume retention. METHODS A total of 74 patients underwent 77 cell-enhanced fat grafting procedures to restore breast volume deficits associated with cosmetic and reconstructive indications. Although all procedures used standardized fat grafts, 21 of the fat grafts were enriched with a low dose of SVF cells and 56 were enriched with a high SVF cell dose. Three-dimensional imaging was used to quantify volume retention over time. RESULTS For each milliliter of injected fat graft, immediate changes in breast volume were shown to be lower than the actual volume implanted for all methods and clinical indications treated. Long-term breast volume changes stabilize by 90-120 days after grafting. Final volume retention in the long-term was higher with high cell-enhanced fat grafts. CONCLUSIONS Intraoperative immediate breast volume changes do not correspond with implanted fat graft volumes. In the early postoperative period (7-21 days), breast volume increases more than the implanted volume and then rapidly decreases in the subsequent 30-60 days. High-dose cell-enhanced fat grafts decrease early postsurgical breast edema and significantly improve long-term volume retention.
Collapse
|
27
|
Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration. BIOMED RESEARCH INTERNATIONAL 2015; 2015:842975. [PMID: 26448947 PMCID: PMC4584039 DOI: 10.1155/2015/842975] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/02/2015] [Indexed: 12/31/2022]
Abstract
Bone is one of the most dynamic tissues in the human body that can heal following injury without leaving a scar. However, in instances of extensive bone loss, this intrinsic capacity of bone to heal may not be sufficient and external intervention becomes necessary. Several techniques are available to address this problem, including autogenous bone grafts and allografts. However, all these techniques have their own limitations. An alternative method is the technique of distraction osteogenesis, where gradual and controlled distraction of two bony segments after osteotomy leads to induction of new bone formation. Although distraction osteogenesis usually gives satisfactory results, its major limitation is the prolonged duration of time required before the external fixator is removed, which may lead to numerous complications. Numerous methods to accelerate bone formation in the context of distraction osteogenesis have been reported. A viable alternative to autogenous bone grafts for a source of osteogenic cells is mesenchymal stem cells from bone marrow. However, there are certain problems with bone marrow aspirate. Hence, scientists have investigated other sources for mesenchymal stem cells, specifically adipose tissue, which has been shown to be an excellent source of mesenchymal stem cells. In this paper, the potential use of adipose stem cells to stimulate bone formation is discussed.
Collapse
|
28
|
Fat grafting: a citation analysis of the seminal articles. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e295. [PMID: 25674376 PMCID: PMC4323399 DOI: 10.1097/gox.0000000000000269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023]
Abstract
Background: There has been substantial rise in the volume of published works on fat transfer in the medical literature in the past 25 years, and this is indicative of its growing popularity. However, many unanswered questions remain, and there is no consensus as to the optimum technique. Consequently, the scientific and clinical research on fat grafting continues to increase rapidly. The purpose of our study was to perform a bibliometric analysis of the most-cited articles in fat transfer. Methods: Through the Web of Science, all articles relating to fat grafting were identified in the plastic and reconstructive literature. The 100 most-cited articles were identified and analyzed individually. Results: Total citations ranged from 35 to 363 and the most-cited paper by Sidney Coleman was published in Plastic and Reconstructive Surgery. The United States produced 46% of the most-cited papers, and the University of California was the most prolific institution. Twenty-one articles focused on lipofilling to the face while 14 articles looked at fat grafting to the breast. Conclusions: The scientific relevance of a published work is reflected in the number of citations from peers that it receives. Therefore, the 100 most-cited papers in fat grafting have been the most influential articles on this field, and they are likely to be the ones that are remembered most.
Collapse
|
29
|
Xu Y, Zhang JA, Xu Y, Guo SL, Wang S, Wu D, Wang Y, Luo D, Zhou BR. Antiphotoaging effect of conditioned medium of dedifferentiated adipocytes on skin in vivo and in vitro: a mechanistic study. Stem Cells Dev 2015; 24:1096-111. [PMID: 25517994 DOI: 10.1089/scd.2014.0321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Photoaging of skin occurs partially due to decreased synthesis and increased degradation of dermal collagen. Antiphotoaging therapy aims to counteract these effects. This study aimed to investigate whether secretory factors from dedifferentiated adipocytes (DAs) could alleviate photoaging in human dermal fibroblasts (HDFs) and in mice and to clarify the underlying mechanism. DAs were acquired and verified based on cellular biomarkers and multilineage differentiation potential. The concentrations of several cytokines in conditioned medium from DAs (DA-CM) were determined. In vivo pathological changes, collagen types I and III, and matrix metalloproteinase (MMP)-1 and -3 were evaluated following the injection of 10-fold concentrated DA-CM into photoaged mice. In vitro, the effect of DA-CM on stress-induced premature senescence in HDFs was investigated by 5-ethynyl-2'-deoxyuridine (EdU) staining and β-galactosidase staining. The influence of DA-CM and transforming growth factor-β1 (TGF-β1) on the secretion of collagen types I and III, MMP-1, and MMP-3 in HDFs was evaluated by ELISA. In vivo, we found that subcutaneously injected 10-fold concentrated DA-CM increased the expression of collagen types I and III. In vitro, DA-CM clearly mitigated the decreased cell proliferation and delayed the senescence status in HDFs induced by ultraviolet B (UVB). HDFs treated with DA-CM exhibited higher collagen types I and III secretion and significantly lower MMP-1 and MMP-3 secretion. The TGF-β1-neutralizing antibody could partially reduce the recovery effect. Our results suggest that DAs may be useful for aging skin and their effects are mainly due to secreted factors, especially TGF-β1, which stimulate collagen synthesis and alleviate collagen degradation in HDFs.
Collapse
Affiliation(s)
- Yang Xu
- 1 Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Human Adipose-Derived Stem Cells (ASC): Their Efficacy in Clinical Applications. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
31
|
Yueying M, Shuolong Y, yue Z, liangwei X, Weiwei G, Lidong Z, suoqiang Z, Shiming Y. Isolation and Induction of Differentiation of Seine Adipose-Derived Mesenchymal Stem Cells. J Otol 2014. [DOI: 10.1016/s1672-2930(14)50023-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Ha CW, Park YB. Mesenchymal Stem Cell Injection for Osteochondral Lesions of the Talus: Letter to the Editor. Am J Sports Med 2014; 42:NP34-5. [PMID: 24879675 DOI: 10.1177/0363546514536687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Choi JR, Pingguan-Murphy B, Wan Abas WAB, Noor Azmi MA, Omar SZ, Chua KH, Wan Safwani WKZ. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells. Biochem Biophys Res Commun 2014; 448:218-224. [PMID: 24785372 DOI: 10.1016/j.bbrc.2014.04.096] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 01/09/2023]
Abstract
Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O2 tension on their functional properties has not been well determined. In this study, we investigated the effects of O2 tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O2) and hypoxia (2% O2). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O2 tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Mat Adenan Noor Azmi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Gierloff M, Petersen L, Oberg HH, Quabius ES, Wiltfang J, Açil Y. Adipogenic differentiation potential of rat adipose tissue-derived subpopulations of stromal cells. J Plast Reconstr Aesthet Surg 2014; 67:1427-35. [PMID: 24947082 DOI: 10.1016/j.bjps.2014.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023]
Abstract
Adipose-derived stromal cells (ASCs) are mostly isolated by enzymatic digestion, centrifugation and adherent growth resulting in a very heterogeneous cell population. Therefore, other cell types in the cell culture can comprise the differentiation and proliferation potential of the ASC population. Recent studies indicated that an antibody-aided isolation of distinct ASC subpopulations provides advantages over the conventional method of ASC isolation. The aim of this study was to investigate the adipogenic differentiation potential of CD29-, CD71-, CD73- and CD90-selected ASCs in vitro. The stromal vascular fraction (SVF) was obtained from rat adipose tissue by enzymatic digestion and centrifugation. Subsequently, CD29(+)-, CD71(+)-, CD73(+)- and CD90(+) cells were isolated by magnetic activated cell sorting (MACS), seeded into culture plates and differentiated into the adipogenic lineage. ASCs isolated by adherent growth only served as controls. Adipogenic differentiation was assessed by Oil Red O staining and quantification of the adiponectin and leptin concentrations in the cell culture supernatants. Statistical analysis was carried out using one-way analysis of variance (ANOVA) followed by the Scheffe's post hoc procedure. The results showed that different subpopulations with different adipogenic differentiation potentials can be isolated by the MACS procedure. The highest adipogenic differentiation potential was determined in the CD29-selected ASC population followed by the unsorted ASC population. The CD71-, CD73- and CD90-selected cells exhibited significantly the lowest adipogenic differentiation potential. In conclusion, the CD29-selected ASCs and the unsorted ASCs exhibited a similar adipogenic differentiation potential. Therefore, we do not see a clear advantage in the application of an anti-CD29-based isolation of ASCs over the conventional technique using adherent growth. However, the research on isolation/purification methods of adipogenic ASCs should continue in order to make this stem cell source even more attractive for future adipose tissue engineering applications.
Collapse
Affiliation(s)
- M Gierloff
- Department of Oral & Maxillofacial Surgery, Christian-Albrechts-University, Kiel, Germany.
| | - L Petersen
- Department of Oral & Maxillofacial Surgery, Christian-Albrechts-University, Kiel, Germany
| | - H-H Oberg
- Department of Immunology, Christian-Albrechts-University, Kiel, Germany
| | - E S Quabius
- Department of Immunology, Christian-Albrechts-University, Kiel, Germany; Department of Othorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University, Kiel, Germany
| | - J Wiltfang
- Department of Oral & Maxillofacial Surgery, Christian-Albrechts-University, Kiel, Germany
| | - Y Açil
- Department of Oral & Maxillofacial Surgery, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
35
|
Gugerell A, Kober J, Schmid M, Nickl S, Kamolz LP, Keck M. Botulinum toxin A and lidocaine have an impact on adipose-derived stem cells, fibroblasts, and mature adipocytes in vitro. J Plast Reconstr Aesthet Surg 2014; 67:1276-81. [PMID: 24953444 DOI: 10.1016/j.bjps.2014.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/26/2014] [Accepted: 05/14/2014] [Indexed: 01/23/2023]
Abstract
Lipofilling with autologous fat tissue is widely used in plastic and reconstructive surgery to treat soft-tissue deficiency. Unfortunately, implanted cells disappear gradually and make it difficult to predict the resorption rate. Several adjuvants are used to improve the success of fat tissue grafting. In this study, the effect of botulinum toxin (BoNT) on mature adipocytes, as well as adipose-derived stem cells (ASC) and fibroblasts was evaluated. As lidocaine is the most prevalent drug to anesthetize the donor site as well as the area to be treated with autologous fat, this local anesthetic was examined too. Primary ASCs, fibroblasts, and mature adipocytes were exposed to 1, 10, and 20 IU/ml BoNT A and 1% lidocaine. Cells were tested on proliferation, viability, and LDH release. Adipogenic differentiation potential was evaluated by quantitative real-time PCR analyzing the expression of FABP4. BoNT had no significant influence on the proliferation or viability of tested cells. By trend, low concentrations of BoNT improved adipogenic potential of ASCs. Lidocaine had a strong diminishing effect on the proliferation of ASCs and fibroblasts and on the viability of these cells. Mature adipocytes show no significant inferior viability after BoNT or lidocaine treatment. BoNT has no negative effect on ASCs, mature adipocytes, or fibroblasts in vitro. Lidocaine (1%) negatively influences the proliferation and viability of fibroblasts and partly of ASCs but not of mature adipocytes.
Collapse
Affiliation(s)
- A Gugerell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria.
| | - J Kober
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| | - M Schmid
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| | - S Nickl
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| | - L P Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University Graz, Graz, Austria
| | - M Keck
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University Vienna, Vienna, Austria
| |
Collapse
|
36
|
Abstract
Adipose stem cells (ASCs) are a type of adult stem cells that share common characteristics with typical mesenchymal stem cells. In the last decade, ASCs have been shown to be a useful cell resource for tissue regeneration. The major role of regenerative medicine in this century is based on cell therapy in which ASCs hold a key position. Active research on this new type of adult stem cell has been ongoing and these cells now have several clinical applications, including fat grafting, overcoming wound healing difficulties, recovery from local tissue ischemia, and scar remodeling. The application of cultured cells will increase the efficiency of cell therapy. However, the use of cultured stem cells is strictly controlled by government regulation to ensure patient safety. Government regulation is a factor that can limit more versatile clinical application of ASCs. In this review, current clinical applications of ASCs in plastic surgery are introduced. Future stem cell applications in clinical field including culturing and banking of ASCs are also discussed in this review.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Department of Pathology, College of Medicine, Yeungnam University, Daegu, Korea
| | | |
Collapse
|
37
|
Alharbi Z, Almakadi S, Opländer C, Vogt M, Rennekampff HO, Pallua N. Intraoperative use of enriched collagen and elastin matrices with freshly isolated adipose-derived stem/stromal cells: a potential clinical approach for soft tissue reconstruction. BMC Surg 2014; 14:10. [PMID: 24555437 PMCID: PMC3936703 DOI: 10.1186/1471-2482-14-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 02/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adipose tissue contains a large number of multipotent cells, which are essential for stem cell-based therapies. The combination of this therapy with suitable commercial clinically used matrices, such as collagen and elastin matrices (i.e. dermal matrices), is a promising approach for soft tissue reconstruction. We previously demonstrated that the liposuction method affects the adherence behaviour of freshly isolated adipose-derived stem/stromal cells (ASCs) on collagen and elastin matrices. However, it remains unclear whether freshly isolated and uncultured ASCs could be directly transferred to matrices during a single transplantation operation without additional cell culture steps. METHODS After each fat harvesting procedure, ASCs were isolated and directly seeded onto collagen and elastin matrices. Different time intervals (i.e. 1, 3 and 24 h) were investigated to determine the time interval needed for cellular attachment to the collagen and elastin matrices. Resazurin-based vitality assays were performed after seeding the cells onto the collagen and elastin matrices. In addition, the adhesion and migration of ASCs on the collagen and elastin matrices were visualised using histology and two-photon microscopy. RESULTS A time-dependent increase in the number of viable ASCs attached to the collagen and elastin matrices was observed. This finding was supported by mitochondrial activity and histology results. Importantly, the ASCs attached and adhered to the collagen and elastin matrices after only 1 h of ex vivo enrichment. This finding was also supported by two-photon microscopy, which revealed the presence and attachment of viable cells on the upper layer of the construct. CONCLUSION Freshly isolated uncultured ASCs can be safely seeded onto collagen and elastin matrices for ex vivo cellular enrichment of these constructs after liposuction. Although we observed a significant number of seeded cells on the matrices after a 3-h enrichment time, we also observed an adequate number of isolated cells after a 1-h enrichment time. However, this approach must be optimised for clinical use. Thus, in vivo studies and clinical trials are needed to investigate the feasibility of this approach.
Collapse
Affiliation(s)
- Ziyad Alharbi
- Department of Plastic, Reconstructive and Hand Surgery - Burn Center, Medical Faculty, RWTH Aachen University, Pauwelsstr, 30, Aachen D-52074, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Equine adipose-derived stem cell (ASC) expresses BAFF and its receptors, which may be associated with the differentiation process of ASC towards adipocyte. Int Immunopharmacol 2014; 18:365-72. [DOI: 10.1016/j.intimp.2013.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
|
39
|
Ryu YJ, Cho TJ, Lee DS, Choi JY, Cho J. Phenotypic characterization and in vivo localization of human adipose-derived mesenchymal stem cells. Mol Cells 2013; 35:557-64. [PMID: 23677376 PMCID: PMC3887876 DOI: 10.1007/s10059-013-0112-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 12/31/2022] Open
Abstract
Human adipose-derived mesenchymal stem cells (hADMSCs) are a potential cell source for autologous cell therapy due to their regenerative ability. However, detailed cytological or phenotypic characteristics of these cells are still unclear. Therefore, we determined and compared cell size, morphology, ultrastructure, and immunohistochemical (IHC) expression profiles of isolated hADMSCs and cells located in human adipose tissues. We also characterized the localization of these cells in vivo. Light microscopy examination at low power revealed that hADMSCs acquired a spindle-shaped morphology after four passages. Additionally, high power views showed that these cells had various sizes, nuclear contours, and cytoplasmic textures. To further evaluate cell morphology, transmission electron microscopy was performed. hADMSCs typically had ultrastructural characteristics similar to those of primitive mesenchymal cells including a relatively high nuclear/cytosol ratio, prominent nucleoli, immature cytoplasmic organelles, and numerous filipodia. Some cells contained various numbers of lamellar bodies and lipid droplets. IHC staining demonstrated that PDGFR and CD10 were constitutively expressed in most hADMSCs regardless of passage number but expression levels of α-SMA, CD68, Oct4 and c-kit varied. IHC staining of adipose tissue showed that cells with immunophenotypic characteristics identical to those of hADMSCs were located mainly in the perivascular adventitia not in smooth muscle area. In summary, hADMSCs were found to represent a heterogeneous cell population with primitive mesenchymal cells that were mainly found in the perivascular adventitia. Furthermore, the cell surface markers would be CD10/PDGFR. To obtain defined cell populations for therapeutic purposes, further studies will be required to establish more specific isolation methods.
Collapse
Affiliation(s)
- Young-Joon Ryu
- Department of Pathology, College of medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Tae-Jun Cho
- Department of Dental Regenerative Biotechnology, Seoul National University, Seoul 110-749,
Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749,
Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799,
Korea
| | - Jin-Young Choi
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749,
Korea
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul 110-768,
Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, Seoul National University, Seoul 110-749,
Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749,
Korea
| |
Collapse
|
40
|
Evaluation of the Histologic Changes in the Fat-Grafted Facial Skin: Clinical Trial. Aesthetic Plast Surg 2013; 37:778-83. [DOI: 10.1007/s00266-013-0126-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/25/2013] [Indexed: 11/27/2022]
|
41
|
The role of adipose derived stem cells, smooth muscle cells and low intensity laser irradiation (LILI) in tissue engineering and regenerative medicine. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTissue engineering and regenerative medicine has become the treatment of choice for several degenerative diseases. It involves the repairing or replacing of diseased or damaged cells or tissues. Stem cells have a key role to play in this multidisciplinary science because of their capacity to differentiate into several lineages. Adipose derived stem cells (ADSCs) are adult mesenchymal stem cells that are easily harvested and have the capacity to differentiate into cartilage, bone, smooth muscle, fat, liver and nerve cells. ADSCs have been found to differentiate into smooth muscle cells which play major roles in diseases such as asthma, hypertension, cancer and arteriosclerosis. Low Intensity Laser Irradiation (LILI), which involves the application of monochromatic light, has been found to increase viability, proliferation and differentiation in several types of cells including ADSCs. This review discusses the role of ADSCs, smooth muscle cells and LILI in the science of tissue engineering and regenerative medicine.
Collapse
|
42
|
Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH. Gold nanoparticles cellular toxicity and recovery: Adipose Derived Stromal cells. Nanotoxicology 2013; 8:189-201. [DOI: 10.3109/17435390.2013.769128] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Abstract
Chronic wounds continue to be a major challenge for the medical profession, and plastic surgeons are frequently called in to help in the management of such wounds. Apart from the obvious morbidity to the patient, these problem wounds can be a major drain on the already scarce hospital resources. Sometimes, these chronic wounds can be more taxing than the underlying disease itself. Although many newer methods are available to handle such situations, the role of stem cells in the management of such wounds is an exciting area that needs to be explored further. A review of literature has been done regarding the role of stem cells in the management of chronic wounds. The abnormal pathology in such wounds is discussed and the possible role of stem cells for optimal healing in such cases would be detailed.
Collapse
Affiliation(s)
- Ramesh Kumar Sharma
- Department of Plastic Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
44
|
Custódio CA, Frias AM, del Campo A, Reis RL, Mano JF. Selective cell recruitment and spatially controlled cell attachment on instructive chitosan surfaces functionalized with antibodies. Biointerphases 2012; 7:65. [PMID: 23109106 DOI: 10.1007/s13758-012-0065-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/09/2012] [Indexed: 11/27/2022] Open
Abstract
Bioactive constructs to guide cellular mobilization and function have been proposed as an approach for a new generation of biomaterials in functional tissue engineering. Adult mesenchymal stem cells have been widely used as a source for cell based therapeutic strategies, namely tissue engineering. This is a heterogeneous cell population containing many subpopulations with distinct regenerative capacity. Thus, one of the issues for the effective clinical use of stem cells in tissue engineering is the isolation of a highly purified, expandable specific subpopulation of stem cells. Antibody functionalized biomaterials could be promising candidates to isolate and recruit specific cell types. Here we propose a new concept of instructive biomaterials that are able to recruit and purify specific cell types from a mixed cell population. This biomimetic concept uses a target-specific chitosan substrate to capture specific adipose derived stem cells. Specific antibodies were covalently immobilized onto chitosan membranes using bis[sulfosuccinimidyl] suberate (BS3). Quartz crystal microbalance (QCM) was used to monitor antibody immobilization/adsorption onto the chitosan films. Specific antibodies covalently immobilized, kept their bioactivity and captured specific cell types from a mixed cell population. Microcontact printing allowed to covalently immobilize antibodies in patterns and simultaneously a spatial control in cell attachment.
Collapse
Affiliation(s)
- C A Custódio
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco Guimarães, Caldas das Taipas, 4806-909 Guimaraães, Portugal
| | | | | | | | | |
Collapse
|
45
|
Huang SJ, Fu RH, Shyu WC, Liu SP, Jong GP, Chiu YW, Wu HS, Tsou YA, Cheng CW, Lin SZ. Adipose-derived stem cells: isolation, characterization, and differentiation potential. Cell Transplant 2012; 22:701-709. [PMID: 23068312 DOI: 10.3727/096368912x655127] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, the two main types of adipose tissues, white and brown adipose tissues, exert different physiological functions. White adipose tissue (WAT) is for storing energy, while brown adipose tissue (BAT) is for energy consumption. Adipose-derived stem cells (ADSCs) are abundant in WAT and BAT, have multipotent characteristics, and are easily extracted. ADSCs can be differentiated into several cell lineages, including adipocytes, osteoblasts, chondrocytes (cartilage cells), myocytes, and neuronal cells. Therefore, ADSC could be considered as a strategy for future regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Shyh-Jer Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Human platelet lysate as a fetal bovine serum substitute improves human adipose-derived stromal cell culture for future cardiac repair applications. Cell Tissue Res 2012; 348:119-30. [PMID: 22395775 PMCID: PMC3316780 DOI: 10.1007/s00441-012-1360-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/02/2012] [Indexed: 12/15/2022]
Abstract
Adipose-derived stromal cells (ASC) are promising candidates for cell therapy, for example to treat myocardial infarction. Commonly, fetal bovine serum (FBS) is used in ASC culturing. However, FBS has several disadvantages. Its effects differ between batches and, when applied clinically, transmission of pathogens and antibody development against FBS are possible. In this study, we investigated whether FBS can be substituted by human platelet lysate (PL) in ASC culture, without affecting functional capacities particularly important for cardiac repair application of ASC. We found that PL-cultured ASC had a significant 3-fold increased proliferation rate and a significantly higher attachment to tissue culture plastic as well as to endothelial cells compared with FBS-cultured ASC. PL-cultured ASC remained a significant 25% smaller than FBS-cultured ASC. Both showed a comparable surface marker profile, with the exception of significantly higher levels of CD73, CD90, and CD166 on PL-cultured ASC. PL-cultured ASC showed a significantly higher migration rate compared with FBS-cultured ASC in a transwell assay. Finally, FBS- and PL-cultured ASC had a similar high capacity to differentiate towards cardiomyocytes. In conclusion, this study showed that culturing ASC is more favorable in PL-supplemented medium compared with FBS-supplemented medium.
Collapse
|
47
|
Potential for neural differentiation of mesenchymal stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 129:89-115. [PMID: 22899379 DOI: 10.1007/10_2012_152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adult human stem cells have gained progressive interest as a promising source of autologous cells to be used as therapeutic vehicles. Particularly, mesenchymal stem cells (MSCs) represent a great tool in regenerative medicine because of their ability to differentiate into a variety of specialized cells. Among adult tissues in which MSCs are resident, adipose tissue has shown clear advantages over other sources of MSCs (ease of surgical access, availability, and isolation), making adipose tissue the ideal large-scale source for research on clinical applications. Stem cells derived from the adipose tissue (adipose-derived stem cells = ADSCs) possess a great and unique regenerative potential: they are self-renewing and can differentiate along several mesenchymal tissue lineages (adipocytes, osteoblasts, myocytes, chondrocytes, endothelial cells, and cardiomyocytes), among which neuronal-like cells gained particular interest. In view of the promising clinical applications in tissue regeneration, research has been conducted towards the creation of a successful protocol for achieving cells with a well-defined neural phenotype from adipose tissue. The promising results obtained open new scenarios for innovative approaches for a cell-based treatment of neurological degenerative disorders.
Collapse
|
48
|
Rhie JW. Adipose-derived stem cells: characterization and clinical application. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2012. [DOI: 10.5124/jkma.2012.55.8.757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Jong Won Rhie
- Department of Plastic Surgery, Seoul St. Mary Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
49
|
Josh F, Kobe K, Tobita M, Tanaka R, Suzuki K, Ono K, Hyakusoku H, Mizuno H. Accelerated and Safe Proliferation of Human Adipose-derived Stem Cells in Medium Supplemented with Human Serum. J NIPPON MED SCH 2012; 79:444-52. [DOI: 10.1272/jnms.79.444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Fonny Josh
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine
| | - Kyoko Kobe
- Department of Plastic and Reconstructive Surgery, Nippon Medical School
| | - Morikuni Tobita
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine
| | - Rica Tanaka
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine
| | - Koji Suzuki
- R&D Central Research Laboratory, JMS Co. Ltd
| | - Kasumi Ono
- R&D Central Research Laboratory, JMS Co. Ltd
| | - Hiko Hyakusoku
- Department of Plastic and Reconstructive Surgery, Nippon Medical School
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine
- Department of Plastic and Reconstructive Surgery, Nippon Medical School
| |
Collapse
|
50
|
Obinata D, Matsumoto T, Ikado Y, Sakuma T, Kano K, Fukuda N, Yamaguchi K, Mugishima H, Takahashi S. Transplantation of mature adipocyte-derived dedifferentiated fat (DFAT) cells improves urethral sphincter contractility in a rat model. Int J Urol 2011; 18:827-34. [PMID: 21991997 DOI: 10.1111/j.1442-2042.2011.02865.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To examine the effects of mature adipocyte-derived dedifferentiated fat (DFAT) cell transplantation on urethral tissue regeneration and sphincter function. METHODS Sixteen female Sprague-Dawley rats underwent vaginal distension (VD) for 3 h. Subsequently, green fluorescence protein (GFP)-labeled DFAT cells (1×10(6) in 20 µL saline, DFAT group, n=8) or saline (20 µL, control group, n=8) were injected into paraurethral connective tissue. Two weeks following VD, leak point pressure (LPP) was measured and an immunohistochemical analysis of the urethra was performed to evaluate urethral sphincter regeneration. RESULTS The VD model was characterized by atrophy of the urethral sphincter and showed a decrease in LPP. DFAT cell transplantation resulted in a significant improvement of LPP (DFAT group: 37.3±6.4 vs control group: 21.7±5.7 mmHg, P<0.01). Immunohistochemistry revealed that the striated muscle thickness and smooth muscle α-actin-positive area were significantly (P<0.05) larger in the DFAT group than in the control group. DFAT cell transplantation enhanced macrophage accumulation followed by an increased number of cells in the proliferative state. Transplanted DFAT cells were observed in the damaged smooth muscle layer and showed positive staining for smooth muscle α-actin, suggesting conversion into the smooth muscle cell phenotype. CONCLUSIONS DFAT cell transplantation promotes sphincter muscle regeneration and improves LPP in the rat VD model.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|