1
|
Chang O, Cheon S, Semenova N, Azad N, Iyer AK, Yakisich JS. Prolonged Low-Dose Administration of FDA-Approved Drugs for Non-Cancer Conditions: A Review of Potential Targets in Cancer Cells. Int J Mol Sci 2025; 26:2720. [PMID: 40141362 PMCID: PMC11942989 DOI: 10.3390/ijms26062720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Though not specifically designed for cancer therapy, several FDA-approved drugs such as metformin, aspirin, and simvastatin have an effect in lowering the incidence of cancer. However, there is a great discrepancy between in vitro concentrations needed to eliminate cancer cells and the plasma concentration normally tolerated within the body. At present, there is no universal explanation for this discrepancy and several mechanisms have been proposed including targeting cancer stem cells (CSCs) or cellular senescence. CSCs are cells with the ability of self-renewal and differentiation known to be resistant to chemotherapy. Senescence is a response to damage and stress, characterized by permanent cell-cycle arrest and apoptotic resistance. Although, for both situations, there are few examples where low concentrations of the FDA-approved drugs were the most effective, there is no satisfactory data to support that either CSCs or cellular senescence are the target of these drugs. In this review, we concisely summarize the most used FDA-approved drugs for non-cancer conditions as well as their potential mechanisms of action in lowering cancer incidence. In addition, we propose that prolonged low-dose administration (PLDA) of specific FDA-approved drugs can be useful for effectively preventing metastasis formation in selected patients.
Collapse
Affiliation(s)
- Olivia Chang
- Governor’s School for Science and Technology, Hampton, VA 23666, USA; (O.C.); (S.C.)
| | - Sarah Cheon
- Governor’s School for Science and Technology, Hampton, VA 23666, USA; (O.C.); (S.C.)
| | - Nina Semenova
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| | - Neelam Azad
- The Office of the Vice President for Research, Hampton University, Hampton, VA 23668, USA;
| | - Anand Krishnan Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| |
Collapse
|
2
|
Khanyile R, Chipiti T, Hull R, Dlamini Z. Radiogenomic Landscape of Metastatic Endocrine-Positive Breast Cancer Resistant to Aromatase Inhibitors. Cancers (Basel) 2025; 17:808. [PMID: 40075655 PMCID: PMC11899325 DOI: 10.3390/cancers17050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Breast cancer poses a significant global health challenge and includes various subtypes, such as endocrine-positive, HER2-positive, and triple-negative. Endocrine-positive breast cancer, characterized by estrogen and progesterone receptors, is commonly treated with aromatase inhibitors. However, resistance to these inhibitors can hinder patient outcomes due to genetic and epigenetic alterations, mutations in the estrogen receptor 1 gene, and changes in signaling pathways. Radiogenomics combines imaging techniques like MRI and CT scans with genomic profiling methods to identify radiographic biomarkers associated with resistance. This approach enhances our understanding of resistance mechanisms and metastasis patterns, linking them to specific genomic profiles and common metastasis sites like the bone and brain. By integrating radiogenomic data, personalized treatment strategies can be developed, improving predictive and prognostic capabilities. Advancements in imaging and genomic technologies offer promising avenues for enhancing radiogenomic research. A thorough understanding of resistance mechanisms is crucial for developing effective treatment strategies, making radiogenomics a valuable integrative approach in personalized medicine that aims to improve clinical outcomes for patients with metastatic endocrine-positive breast cancer.
Collapse
Affiliation(s)
- Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
- Department of Medical Oncology, Steve Biko Academic Hospital and University of Pretoria, Pretoria 0001, South Africa
| | - Talent Chipiti
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
| |
Collapse
|
3
|
Shukla S, Mahajan A. Comprehensive Guide to Randomized Controlled Trials in Radiology: Everything You Need to Know. Indian J Radiol Imaging 2025; 35:S119-S127. [PMID: 39802711 PMCID: PMC11717457 DOI: 10.1055/s-0044-1792044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Evidence-based medicine integrates clinical research, personal expertise, and patient values. The most robust forms of clinical evidence, such as randomized controlled trials (RCTs) and prospective studies, provide the strongest support for medical decision-making. RCTs are vital in radiology for evaluating new imaging technologies, contrast agents, and therapeutic procedures, despite challenges in translating preclinical findings to clinical practice. This guide discusses the history, principles, methodologies, and applications of RCTs in radiology, highlighting their role in advancing the field and supporting evidence-based practice.
Collapse
Affiliation(s)
- Shreya Shukla
- Department of Radiodiagnosis, Mahamana Pandit Madanmohan Malaviya Cancer Centre & Homi Bhabha Cancer Hospital, Tata Memorial Hospital, Varanasi, Uttar Pradesh, India
- Department of Radiology, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Abhishek Mahajan
- Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Serafin Z. Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling. Magn Reson Imaging 2024; 112:63-81. [PMID: 38914147 DOI: 10.1016/j.mri.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.
Collapse
Affiliation(s)
- Paulina Śledzińska-Bebyn
- Department of Radiology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10th Military Clinical Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
5
|
Chakrabarty N, Mahajan A, Basu S, D’Cruz AK. Imaging Recommendations for Diagnosis and Management of Primary Parathyroid Pathologies: A Comprehensive Review. Cancers (Basel) 2024; 16:2593. [PMID: 39061231 PMCID: PMC11274996 DOI: 10.3390/cancers16142593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Parathyroid pathologies are suspected based on the biochemical alterations and clinical manifestations, and the predominant roles of imaging in primary hyperparathyroidism are localisation of tumour within parathyroid glands, surgical planning, and to look for any ectopic parathyroid tissue in the setting of recurrent disease. This article provides a comprehensive review of embryology and anatomical variations of parathyroid glands and their clinical relevance, surgical anatomy of parathyroid glands, differentiation between multiglandular parathyroid disease, solitary adenoma, atypical parathyroid tumour, and parathyroid carcinoma. The roles, advantages and limitations of ultrasound, four-dimensional computed tomography (4DCT), radiolabelled technetium-99 (99mTc) sestamibi or dual tracer 99mTc pertechnetate and 99mTc-sestamibi with or without single photon emission computed tomography (SPECT) or SPECT/CT, dynamic enhanced magnetic resonance imaging (4DMRI), and fluoro-choline positron emission tomography (18F-FCH PET) or [11C] Methionine (11C -MET) PET in the management of parathyroid lesions have been extensively discussed in this article. The role of fluorodeoxyglucose PET (FDG-PET) has also been elucidated in this article. Management guidelines for parathyroid carcinoma proposed by the American Society of Clinical Oncology (ASCO) have also been described. An algorithm for management of parathyroid lesions has been provided at the end to serve as a quick reference guide for radiologists, clinicians and surgeons.
Collapse
Affiliation(s)
- Nivedita Chakrabarty
- Department of Radiodiagnosis, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai 400012, Maharashtra, India;
| | - Abhishek Mahajan
- Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, 65 Pembroke Place, Liverpool L7 8YA, UK
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Homi Bhabha National Institute (HBNI), Parel, Mumbai 400012, Maharashtra, India;
| | - Anil K. D’Cruz
- Apollo Hospitals, Navi Mumbai 400614, Maharashtra, India;
- Foundation of Head Neck Oncology, Mumbai 400012, Maharashtra, India
- Union International Cancer Control (UICC), 1202 Geneva, Switzerland
| |
Collapse
|
6
|
Xu Y, Chen J, Zhang Y, Zhang P. Recent Progress in Peptide-Based Molecular Probes for Disease Bioimaging. Biomacromolecules 2024; 25:2222-2242. [PMID: 38437161 DOI: 10.1021/acs.biomac.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Recent strides in molecular pathology have unveiled distinctive alterations at the molecular level throughout the onset and progression of diseases. Enhancing the in vivo visualization of these biomarkers is crucial for advancing disease classification, staging, and treatment strategies. Peptide-based molecular probes (PMPs) have emerged as versatile tools due to their exceptional ability to discern these molecular changes with unparalleled specificity and precision. In this Perspective, we first summarize the methodologies for crafting innovative functional peptides, emphasizing recent advancements in both peptide library technologies and computer-assisted peptide design approaches. Furthermore, we offer an overview of the latest advances in PMPs within the realm of biological imaging, showcasing their varied applications in diagnostic and therapeutic modalities. We also briefly address current challenges and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Ying Xu
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Junfan Chen
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Pengcheng Zhang
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Mahajan A, Shukla S, Vaish R, Mair MD. Editorial: Editor's challenge: Abhishek Mahajan - how can precision oncology be advanced with validated imaging-based nomograms? Front Oncol 2024; 14:1362187. [PMID: 38361785 PMCID: PMC10867313 DOI: 10.3389/fonc.2024.1362187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Affiliation(s)
- Abhishek Mahajan
- Department of Imaging, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Shreya Shukla
- Department of Radio Diagnosis, Tata Memorial Hospital, Varanasi, India
| | - Richa Vaish
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Manish Devendra Mair
- Department of Maxillofacial Surgery, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| |
Collapse
|
8
|
Marcu LG, Dell’Oro M, Bezak E. Opportunities in Cancer Therapies: Deciphering the Role of Cancer Stem Cells in Tumour Repopulation. Int J Mol Sci 2023; 24:17258. [PMID: 38139085 PMCID: PMC10744048 DOI: 10.3390/ijms242417258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Tumour repopulation during treatment is a well acknowledged yet still challenging aspect of cancer management. The latest research results show clear evidence towards the existence of cancer stem cells (CSCs) that are responsible for tumour repopulation, dissemination, and distant metastases in most solid cancers. Cancer stem cell quiescence and the loss of asymmetrical division are two powerful mechanisms behind repopulation. Another important aspect in the context of cancer stem cells is cell plasticity, which was shown to be triggered during fractionated radiotherapy, leading to cell dedifferentiation and thus reactivation of stem-like properties. Repopulation during treatment is not limited to radiotherapy, as there is clinical proof for repopulation mechanisms to be activated through other conventional treatment techniques, such as chemotherapy. The dynamic nature of stem-like cancer cells often elicits resistance to treatment by escaping drug-induced cell death. The aims of this scoping review are (1) to describe the main mechanisms used by cancer stem cells to initiate tumour repopulation during therapy; (2) to present clinical evidence for tumour repopulation during radio- and chemotherapy; (3) to illustrate current trends in the identification of CSCs using specific imaging techniques; and (4) to highlight novel technologies that show potential in the eradication of CSCs.
Collapse
Affiliation(s)
- Loredana G. Marcu
- UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA 5001, Australia;
- Faculty of Informatics and Science, University of Oradea, 410087 Oradea, Romania
| | - Mikaela Dell’Oro
- Australian Centre for Quantitative Imaging, School of Medicine, The University of Western Australia, Perth, WA 6009, Australia;
| | - Eva Bezak
- UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA 5001, Australia;
- Faculty of Chemistry & Physics, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
9
|
Mahajan A, B G, Wadhwa S, Agarwal U, Baid U, Talbar S, Janu AK, Patil V, Noronha V, Mummudi N, Tibdewal A, Agarwal JP, Yadav S, Kumar Kaushal R, Puranik A, Purandare N, Prabhash K. Deep learning based automated epidermal growth factor receptor and anaplastic lymphoma kinase status prediction of brain metastasis in non-small cell lung cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:657-668. [PMID: 37745691 PMCID: PMC10511818 DOI: 10.37349/etat.2023.00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 09/26/2023] Open
Abstract
Aim The aim of this study was to investigate the feasibility of developing a deep learning (DL) algorithm for classifying brain metastases from non-small cell lung cancer (NSCLC) into epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement groups and to compare the accuracy with classification based on semantic features on imaging. Methods Data set of 117 patients was analysed from 2014 to 2018 out of which 33 patients were EGFR positive, 43 patients were ALK positive and 41 patients were negative for either mutation. Convolutional neural network (CNN) architecture efficient net was used to study the accuracy of classification using T1 weighted (T1W) magnetic resonance imaging (MRI) sequence, T2 weighted (T2W) MRI sequence, T1W post contrast (T1post) MRI sequence, fluid attenuated inversion recovery (FLAIR) MRI sequences. The dataset was divided into 80% training and 20% testing. The associations between mutation status and semantic features, specifically sex, smoking history, EGFR mutation and ALK rearrangement status, extracranial metastasis, performance status and imaging variables of brain metastasis were analysed using descriptive analysis [chi-square test (χ2)], univariate and multivariate logistic regression analysis assuming 95% confidence interval (CI). Results In this study of 117 patients, the analysis by semantic method showed 79.2% of the patients belonged to ALK positive were non-smokers as compared to double negative groups (P = 0.03). There was a 10-fold increase in ALK positivity as compared to EGFR positivity in ring enhancing lesions patients (P = 0.015) and there was also a 6.4-fold increase in ALK positivity as compared to double negative groups in meningeal involvement patients (P = 0.004). Using CNN Efficient Net DL model, the study achieved 76% accuracy in classifying ALK rearrangement and EGFR mutations without manual segmentation of metastatic lesions. Analysis of the manually segmented dataset resulted in improved accuracy of 89% through this model. Conclusions Both semantic features and DL model showed comparable accuracy in classifying EGFR mutation and ALK rearrangement. Both methods can be clinically used to predict mutation status while biopsy or genetic testing is undertaken.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Clatterbridge Centre for Oncology NHS Foundation Trust, L7 8YA Liverpool, UK
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Gurukrishna B
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Shweta Wadhwa
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Ujjwal Agarwal
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Ujjwal Baid
- Department of Electronics and Telecommunication Engineering, SGGS Institute of Engineering and Technology, Nanded 431606, Maharashtra, India
| | - Sanjay Talbar
- Department of Electronics and Telecommunication Engineering, SGGS Institute of Engineering and Technology, Nanded 431606, Maharashtra, India
| | - Amit Kumar Janu
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Naveen Mummudi
- Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Anil Tibdewal
- Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - JP Agarwal
- Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Subash Yadav
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Rajiv Kumar Kaushal
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Ameya Puranik
- Department of Nuclear Medicine, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Nilendu Purandare
- Department of Nuclear Medicine, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| |
Collapse
|
10
|
Bhattacharya K, Mahajan A, Vaish R, Rane S, Shukla S, D'Cruz AK. Imaging of Neck Nodes in Head and Neck Cancers - a Comprehensive Update. Clin Oncol (R Coll Radiol) 2023; 35:429-445. [PMID: 37061456 DOI: 10.1016/j.clon.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Cervical lymph node metastases from head and neck squamous cell cancers significantly reduce disease-free survival and worsen overall prognosis and, hence, deserve more aggressive management and follow-up. As per the eighth edition of the American Joint Committee on Cancer staging manual, extranodal extension, especially in human papillomavirus-negative cancers, has been incorporated in staging as it is important in deciding management and significantly impacts the outcome of head and neck squamous cell cancer. Lymph node imaging with various radiological modalities, including ultrasound, computed tomography and magnetic resonance imaging, has been widely used, not only to demonstrate nodal involvement but also for guided histopathological evaluation and therapeutic intervention. Computed tomography and magnetic resonance imaging, together with positron emission tomography, are used widely for the follow-up of treated patients. Finally, there is an emerging role for artificial intelligence in neck node imaging that has shown promising results, increasing the accuracy of detection of nodal involvement, especially normal-appearing nodes. The aim of this review is to provide a comprehensive overview of the diagnosis and management of involved neck nodes with a focus on sentinel node anatomy, pathogenesis, imaging correlates (including radiogenomics and artificial intelligence) and the role of image-guided interventions.
Collapse
Affiliation(s)
- K Bhattacharya
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - A Mahajan
- The Clatterbridge Cancer Centre, NHS Foundation Trust, Liverpool, UK.
| | - R Vaish
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Rane
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Shukla
- Homi Bhabha Cancer Hospital, Varanasi, Uttar Pradesh, India
| | - A K D'Cruz
- Apollo Hospitals, India; Union International Cancer Control (UICC), Geneva, Switzerland; Foundation of Head Neck Oncology, India
| |
Collapse
|
11
|
Chakrabarty N, Mahajan A, Patil V, Noronha V, Prabhash K. Imaging of brain metastasis in non-small-cell lung cancer: indications, protocols, diagnosis, post-therapy imaging, and implications regarding management. Clin Radiol 2023; 78:175-186. [PMID: 36503631 DOI: 10.1016/j.crad.2022.09.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Increased survival (due to the use of targeted therapies based on genomic profiling) has resulted in the increased incidence of brain metastasis during the course of disease, and thus, made it essential to have proper imaging guidelines in place for brain metastasis from non-small-cell lung cancer (NSCLC). Brain parenchymal metastases can have varied imaging appearances, and it is pertinent to be aware of the various molecular risk factors for brain metastasis from NSCLC along with their suggestive imaging appearances, so as to identify them early. Leptomeningeal metastasis requires additional imaging of the spine and an early cerebrospinal fluid (CSF) analysis. Differentiation of post-therapy change from recurrence on imaging has a bearing on the management, hence the need for its awareness. This article will provide in-depth literature review of the epidemiology, aetiopathogenesis, screening, detection, diagnosis, post-therapy imaging, and implications regarding the management of brain metastasis from NSCLC. In addition, we will also briefly highlight the role of artificial intelligence (AI) in brain metastasis screening.
Collapse
Affiliation(s)
- N Chakrabarty
- Department of Radiodiagnosis, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 400 012, Maharashtra, India
| | - A Mahajan
- Department of Radiodiagnosis, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 400 012, Maharashtra, India.
| | - V Patil
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 400 012, Maharashtra, India
| | - V Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 400 012, Maharashtra, India
| | - K Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 400 012, Maharashtra, India
| |
Collapse
|
12
|
Du N, Shu W, Li K, Deng Y, Xu X, Ye Y, Tang F, Mao R, Lin G, Li S, Fang X. An initial study on the predictive value using multiple MRI characteristics for Ki-67 labeling index in glioma. J Transl Med 2023; 21:119. [PMID: 36774480 PMCID: PMC9922464 DOI: 10.1186/s12967-023-03950-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics. METHODS Preoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis. RESULTS ADCmin, ADCmean, rADCmin, rADCmean and Ki-67 LI showed a negative correlation (r = - 0.478, r = - 0.369, r = - 0.488, r = - 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933-0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721-0.879). CONCLUSIONS There was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI.
Collapse
Affiliation(s)
- Ningfang Du
- grid.8547.e0000 0001 0125 2443Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Weiquan Shu
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Kefeng Li
- grid.266100.30000 0001 2107 4242School of Medicine, University of California, San Diego, CA USA ,Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao SAR, China
| | - Yao Deng
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Xinxin Xu
- grid.8547.e0000 0001 0125 2443Clinical Research Center for Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yao Ye
- grid.8547.e0000 0001 0125 2443Department of Pathology, Huadong Hospital, Fudan University, Shanghai, China
| | - Feng Tang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Renling Mao
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Shihong Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Jiang M, Han L, Sun H, Li J, Bao N, Li H, Zhou S, Yu T. Cross-modality image feature fusion diagnosis in breast cancer. Phys Med Biol 2021; 66. [PMID: 33784653 DOI: 10.1088/1361-6560/abf38b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
Considering the complementarity of mammography and breast MRI, the research of feature fusion diagnosis based on cross-modality images was explored to improve the accuracy of breast cancer diagnosis. 201 patients with both mammography and breast MRI were collected retrospectively, including 117 cases of benign lesions and 84 cases of malignant ones. Two feature optimization strategies of sequential floating forward selection (SFFS), SFFS-1 and SFFS-2, were defined based on the sequential floating forward selection method. Each strategy was used to analyze the diagnostic performance of single-modality images and then to study the feature fusion diagnosis of cross-modality images. Three feature fusion approaches were compared: optimizing MRI features and then fusing those of mammography; optimizing mammography features and then fusing those of MRI; selecting the effective features from the whole feature set (mammography and MRI). Support vector machine, Naive Bayes, and K-nearest neighbor were employed as the classifiers and were finally integrated to get better performance. The average accuracy and area under the ROC curve (AUC) of MRI (88.56%, 0.9 for SFFS-1, 88.39%, 0.89 for SFFS-2) were better than mammography (84.25%, 0.84 for SFFS-1, 80.43%, 0.80 for SFFS-2). Furthermore, compared with a single modality, the average accuracy and AUC of cross-modality feature fusion can improve from 85.40% and 0.86 to 89.66% and 0.91. Classifier integration improved the accuracy and AUC from 90.49%, 0.92 to 92.37%, and 0.97. Cross-modality image feature fusion can achieve better diagnosis performance than a single modality. Feature selection strategy SFFS-1 has better efficiency than SFFS-2. Classifier integration can further improve diagnostic accuracy.
Collapse
Affiliation(s)
- Mingkuan Jiang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Lu Han
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Hang Sun
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Jing Li
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Nan Bao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Hong Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Shi Zhou
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Tao Yu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| |
Collapse
|
14
|
Taldone T, Wang T, Rodina A, Pillarsetty NVK, Digwal CS, Sharma S, Yan P, Joshi S, Pagare PP, Bolaender A, Roboz GJ, Guzman ML, Chiosis G. A Chemical Biology Approach to the Chaperome in Cancer-HSP90 and Beyond. Cold Spring Harb Perspect Biol 2020; 12:a034116. [PMID: 30936118 PMCID: PMC6773535 DOI: 10.1101/cshperspect.a034116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is often associated with alterations in the chaperome, a collection of chaperones, cochaperones, and other cofactors. Changes in the expression levels of components of the chaperome, in the interaction strength among chaperome components, alterations in chaperome constituency, and in the cellular location of chaperome members, are all hallmarks of cancer. Here we aim to provide an overview on how chemical biology has played a role in deciphering such complexity in the biology of the chaperome in cancer and in other diseases. The focus here is narrow and on pathologic changes in the chaperome executed by enhancing the interaction strength between components of distinct chaperome pathways, specifically between those of HSP90 and HSP70 pathways. We will review chemical tools and chemical probe-based assays, with a focus on HSP90. We will discuss how kinetic binding, not classical equilibrium binding, is most appropriate in the development of drugs and probes for the chaperome in disease. We will then present our view on how chaperome inhibitors may become potential drugs and diagnostics in cancer.
Collapse
Affiliation(s)
- Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | | | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Piyusha P Pagare
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Alexander Bolaender
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Gail J Roboz
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, New York 10065
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, New York 10065
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
15
|
Mahajan A, Ahuja A, Sable N, Stambuk HE. Imaging in oral cancers: A comprehensive review. Oral Oncol 2020; 104:104658. [PMID: 32208340 DOI: 10.1016/j.oraloncology.2020.104658] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023]
Abstract
This review aims at simplifying the relevant imaging anatomy, guiding the optimal imaging method and highlighting the key imaging findings that influence prognosis and management of oral cavity squamous cell carcinoma (OSCC). Early OSCC can be treated with either surgery alone while advanced cancers are treated with a combination of surgery, radiotherapy and/or chemotherapy. Considering the complex anatomy of the oral cavity and its surrounding structures, imaging plays an indispensable role not only in locoregional staging but also in the distant metastatic work-up and post treatment follow-up. Knowledge of the anatomy with understanding of common routes of spread of cancer, allows the radiologist to accurately determine disease extent and augment clinical findings to plan appropriate therapy. This review aims at simplifying the relevant imaging anatomy, guiding the optimal imaging method and highlighting the key imaging findings that influence prognosis and management.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai 400012, India.
| | - Ankita Ahuja
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai 400012, India
| | - Nilesh Sable
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai 400012, India
| | - Hilda E Stambuk
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| |
Collapse
|
16
|
Development of an embedded multimodality imaging platform for onco-pharmacology using a smart anticancer prodrug as an example. Sci Rep 2020; 10:2661. [PMID: 32060400 PMCID: PMC7021674 DOI: 10.1038/s41598-020-59561-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022] Open
Abstract
Increasingly, in vivo imaging holds a strategic position in bio-pharmaceutical innovation. We will present the implementation of an integrated multimodal imaging setup enabling the assessment of multiple, complementary parameters. The system allows the fusion of information provided by: Near infrared fluorescent biomarkers, bioluminescence (for tumor proliferation status), Photoacoustic and Ultrasound imaging. We will study representative applications to the development of a smart prodrug, delivering a highly cytotoxic chemotherapeutic agent to cancer tumors. The results realized the ability of this embedded, multimodality imaging platform to firstly detect bioluminescent and fluorescent signals, and secondly, record ultrasound and photoacoustic data from the same animal. This study demonstrated that the prodrug was effective in three different models of hypoxia in human cancers compared to the parental cytotoxic agent and the vehicle groups. Monitoring by photoacoustic imaging during the treatments revealed that the prodrug exhibits an intrinsic capability to prevent the progression of tumor hypoxia. It is essential for onco-pharmacology studies to precisely document the hypoxic status of tumors both before and during the time course of treatments. This approach opens new perspectives for exploitation of preclinical mouse models of cancer, especially when considering associations between hypoxia, neoangiogenesis and antitumor activity.
Collapse
|
17
|
Elvas F, Vanden Berghe T, Adriaenssens Y, Vandenabeele P, Augustyns K, Staelens S, Stroobants S, Van der Veken P, Wyffels L. Caspase-3 probes for PET imaging of apoptotic tumor response to anticancer therapy. Org Biomol Chem 2020; 17:4801-4824. [PMID: 31033991 DOI: 10.1039/c9ob00657e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Apoptosis is a highly regulated process involved in the normal organism development and homeostasis. In the context of anticancer therapy, apoptosis is also studied intensively in an attempt to induce cell death in cancer cells. Caspase activation is a known key event in the apoptotic process. In particular, active caspase-3 and -7 are the common effectors in several apoptotic pathways, therefore effector caspase activation may be a promising biomarker for response evaluation to anticancer therapy. Quantitative imaging of apoptosis in vivo could provide early assessment of therapeutic effectiveness and could also be used in drug development to evaluate the efficacy as well as potential toxicity of novel treatments. Positron Emission Tomography (PET) is a highly sensitive molecular imaging modality that allows non-invasive in vivo imaging of biological processes such as apoptosis by using radiolabeled probes. Here we describe the development and evaluation of fluorine-18-labeled caspase-3 activity-based probes (ABPs) for PET imaging of apoptosis. ABPs were selected by screening of a small library of fluorine-19-labeled DEVD peptides containing different electrophilic warhead groups. An acyloxymethyl ketone was identified with low nanomolar affinity for caspase-3 and was radiolabeled with fluorine-18. The resulting radiotracer, [18F]MICA-302, showed good labeling of active caspase-3 in vitro and favorable pharmacokinetic properties. A μPET imaging experiment in colorectal tumor xenografts demonstrated an increased tumor accumulation of [18F]MICA-302 in drug-treated versus control animals. Therefore, our data suggest this radiotracer may be useful for clinical PET imaging of response to anticancer therapy.
Collapse
Affiliation(s)
- Filipe Elvas
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sapate S, Talbar S, Mahajan A, Sable N, Desai S, Thakur M. Breast cancer diagnosis using abnormalities on ipsilateral views of digital mammograms. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Mahajan A, Bothra M. Mining artificial intelligence in oncology: Tata Memorial Hospital journey. CANCER RESEARCH, STATISTICS, AND TREATMENT 2020. [DOI: 10.4103/crst.crst_59_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
20
|
Wimmer K, Sachet M, Oehler R. Circulating biomarkers of cell death. Clin Chim Acta 2019; 500:87-97. [PMID: 31655053 DOI: 10.1016/j.cca.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
Numerous disease states are associated with cell death. For many decades, apoptosis and accidental necrosis have been assumed to be the two ways how a cell can die. The recent discovery of additional cell death processes such as necroptosis, ferroptosis or pyroptosis revealed a complex interplay between cell death mechanisms and diseases. Depending on the particular cell death pathway, cells secrete distinct molecular patterns, which differ between cell death types. This review focusses on released molecules, detectable in the blood flow, and their potential role as circulating biomarkers of cell death. We elucidate the molecular background of different biomarkers and give an overview on their correlation with disease stage, therapy response and prognosis in patients.
Collapse
Affiliation(s)
- Kerstin Wimmer
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Monika Sachet
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Rudolf Oehler
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
21
|
Vaidya T, Desai S, Mahajan A. 8 th edition AJCC and imaging TNM: Time to break-in and assert in the staging process! Indian J Cancer 2019; 56:271-273. [PMID: 31389394 DOI: 10.4103/ijc.ijc_528_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The current practice of oncology focuses not only on early diagnosis, staging, and treatment of cancer but also defies the concept of "One size fits all." This paradigm shift of the 8th edition American Joint Committee on Cancer (AJCC) manual to a "personalized medicine" approach sets the stage for introducing Imaging TNM (iTNM). The iTNM would provide physicians with a clear assessment of the disease extent derived exclusively from a combination of anatomical and functional imaging modalities and simplify decision-making in practice. Introduction of iTNM will complement the existing cTNM and pTNM and help to guide a personalized approach to patient management.
Collapse
Affiliation(s)
- Tanvi Vaidya
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Subhash Desai
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Mahajan A, Santhosh Kumar GV, Vaidya T, Thakur M, Desai S. Potential role of whole-body diffusion magnetic resonance imaging in tumor staging for pregnant patients with cancer. Indian J Cancer 2019; 55:417-418. [PMID: 30829283 DOI: 10.4103/ijc.ijc_244_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Malignancy during pregnancy poses a serious threat to the growing fetus. In this special situation, the diagnostic procedures and treatment to cancer will be more damaging to the developing fetus than the cancer itself. However, to safeguard the health of the mother from cancer, appropriate diagnostic and therapeutic tools are to be used that would minimize risk to fetal health. Diffusion-weighted whole-body imaging with background body signal suppression has the potential to answer most of these diagnostic dilemmas in the case of malignancy in pregnancy. This is one of the first such reports highlighting the role of a noninvasive, nonionizing whole-body imaging technique which does not require external contrast injection and can also be used for monitoring treatment response.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - G V Santhosh Kumar
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Tanvi Vaidya
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Meenakshi Thakur
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Subhash Desai
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
23
|
The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I). Mol Diagn Ther 2019; 23:1-26. [PMID: 30411216 DOI: 10.1007/s40291-018-0366-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present era of precision medicine sees 'cancer' as a consequence of molecular derangements occurring at the commencement of the disease process, with morphologic changes happening much later in the process of tumorigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), play an integral role in the detection of disease at a macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumorigenesis, and thus has the potential to play a key role in heralding the transition from the concept of 'one size fits all' to 'precision medicine'. Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called 'radiogenomics', which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning, and artificial intelligence (AI), the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, a majority of these require validation before clinical translation is possible. In this two-part review, we discuss the systematic collaboration across structural, anatomical, and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.
Collapse
|
24
|
The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part II). Mol Diagn Ther 2019; 23:27-51. [PMID: 30387041 DOI: 10.1007/s40291-018-0367-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present era of precision medicine sees "cancer" as a consequence of molecular derangements occurring at the commencement of the disease process, with morphological changes happening much later in the process of tumourigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound (US) and magnetic resonance imaging (MRI) play an integral role in the detection of disease at the macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumourigenesis. MFI has the potential to play a key role in heralding the transition from the concept of "one-size-fits-all" treatment to "precision medicine". Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called "radiogenomics", which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning and artificial intelligence, the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, the majority of these require validation before clinical translation is possible. In this two part review, we discuss the systematic collaboration across structural, anatomical and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.
Collapse
|
25
|
Hausner SH, Bold RJ, Cheuy LY, Chew HK, Daly ME, Davis RA, Foster CC, Kim EJ, Sutcliffe JL. Preclinical Development and First-in-Human Imaging of the Integrin α vβ 6 with [ 18F]α vβ 6-Binding Peptide in Metastatic Carcinoma. Clin Cancer Res 2019; 25:1206-1215. [PMID: 30401687 PMCID: PMC6377828 DOI: 10.1158/1078-0432.ccr-18-2665] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 11/02/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE The study was undertaken to develop and evaluate the potential of an integrin αvβ6-binding peptide (αvβ6-BP) for noninvasive imaging of a diverse range of malignancies with PET. EXPERIMENTAL DESIGN The peptide αvβ6-BP was prepared on solid phase and radiolabeled with 4-[18F]fluorobenzoic acid. In vitro testing included ELISA, serum stability, and cell binding studies using paired αvβ6-expressing and αvβ6-null cell lines. In vivo evaluation (PET/CT, biodistribution, and autoradiography) was performed in a mouse model bearing the same paired αvβ6-expressing and αvβ6-null cell xenografts. A first-in-human PET/CT imaging study was performed in patients with metastatic lung, colon, breast, or pancreatic cancer. RESULTS [18F]αvβ6-BP displayed excellent affinity and selectivity for the integrin αvβ6 in vitro [IC50(αvβ6) = 1.2 nmol/L vs IC50(αvβ3) >10 μmol/L] in addition to rapid target-specific cell binding and internalization (72.5% ± 0.9% binding and 52.5% ± 1.8%, respectively). Favorable tumor affinity and selectivity were retained in the mouse model and excretion of unbound [18F]αvβ6-BP was rapid, primarily via the kidneys. In patients, [18F]αvβ6-BP was well tolerated without noticeable adverse side effects. PET images showed significant uptake of [18F]αvβ6-BP in both the primary lesion and metastases, including metastasis to brain, bone, liver, and lung. CONCLUSIONS The clinical impact of [18F]αvβ6-BP PET imaging demonstrated in this first-in-human study is immediate for a broad spectrum of malignancies.
Collapse
Affiliation(s)
- Sven H Hausner
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Davis and Sacramento, California
| | - Richard J Bold
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Davis and Sacramento, California
| | - Lina Y Cheuy
- Department of Biomedical Engineering, University of California Davis, Davis and Sacramento, California
| | - Helen K Chew
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Davis and Sacramento, California
| | - Megan E Daly
- Department of Radiation Oncology, University of California Davis, Davis and Sacramento, California
| | - Ryan A Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Davis and Sacramento, California
| | - Cameron C Foster
- Division of Nuclear Medicine, Department of Radiology, University of California Davis, Davis and Sacramento, California
| | - Edward J Kim
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Davis and Sacramento, California
| | - Julie L Sutcliffe
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Davis and Sacramento, California.
- Department of Biomedical Engineering, University of California Davis, Davis and Sacramento, California
- Center for Molecular and Genomic Imaging, University of California Davis, Davis and Sacramento, California
| |
Collapse
|
26
|
Mahajan A, Vaidya T, Gupta A, Rane S, Gupta S. Artificial intelligence in healthcare in developing nations: The beginning of a transformative journey. CANCER RESEARCH, STATISTICS, AND TREATMENT 2019. [DOI: 10.4103/crst.crst_50_19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
27
|
Seow P, Wong JHD, Ahmad-Annuar A, Mahajan A, Abdullah NA, Ramli N. Quantitative magnetic resonance imaging and radiogenomic biomarkers for glioma characterisation: a systematic review. Br J Radiol 2018; 91:20170930. [PMID: 29902076 PMCID: PMC6319852 DOI: 10.1259/bjr.20170930] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE: The diversity of tumour characteristics among glioma patients, even within same tumour grade, is a big challenge for disease outcome prediction. A possible approach for improved radiological imaging could come from combining information obtained at the molecular level. This review assembles recent evidence highlighting the value of using radiogenomic biomarkers to infer the underlying biology of gliomas and its correlation with imaging features. METHODS: A literature search was done for articles published between 2002 and 2017 on Medline electronic databases. Of 249 titles identified, 38 fulfilled the inclusion criteria, with 14 articles related to quantifiable imaging parameters (heterogeneity, vascularity, diffusion, cell density, infiltrations, perfusion, and metabolite changes) and 24 articles relevant to molecular biomarkers linked to imaging. RESULTS: Genes found to correlate with various imaging phenotypes were EGFR, MGMT, IDH1, VEGF, PDGF, TP53, and Ki-67. EGFR is the most studied gene related to imaging characteristics in the studies reviewed (41.7%), followed by MGMT (20.8%) and IDH1 (16.7%). A summary of the relationship amongst glioma morphology, gene expressions, imaging characteristics, prognosis and therapeutic response are presented. CONCLUSION: The use of radiogenomics can provide insights to understanding tumour biology and the underlying molecular pathways. Certain MRI characteristics that show strong correlations with EGFR, MGMT and IDH1 could be used as imaging biomarkers. Knowing the pathways involved in tumour progression and their associated imaging patterns may assist in diagnosis, prognosis and treatment management, while facilitating personalised medicine. ADVANCES IN KNOWLEDGE: Radiogenomics can offer clinicians better insight into diagnosis, prognosis, and prediction of therapeutic responses of glioma.
Collapse
Affiliation(s)
| | | | - Azlina Ahmad-Annuar
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, India
| | - Nor Aniza Abdullah
- Department of Computer System and Technology, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
28
|
Zhang P, Cui Y, Anderson CF, Zhang C, Li Y, Wang R, Cui H. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem Soc Rev 2018; 47:3490-3529. [PMID: 29497722 DOI: 10.1039/c7cs00793k] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pathological changes in a diseased site are often accompanied by abnormal activities of various biomolecules in and around the involved cells. Identifying the location and expression levels of these biomolecules could enable early-stage diagnosis of the related disease, the design of an appropriate treatment strategy, and the accurate assessment of the treatment outcomes. Over the past two decades, a great diversity of peptide-based nanoprobes (PBNs) have been developed, aiming to improve the in vitro and in vivo performances of water-soluble molecular probes through engineering of their primary chemical structures as well as the physicochemical properties of their resultant assemblies. In this review, we introduce strategies and approaches adopted for the identification of functional peptides in the context of molecular imaging and disease diagnostics, and then focus our discussion on the design and construction of PBNs capable of navigating through physiological barriers for targeted delivery and improved specificity and sensitivity in recognizing target biomolecules. We highlight the biological and structural roles that low-molecular-weight peptides play in PBN design and provide our perspectives on the future development of PBNs for clinical translation.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Drug Research & Center for Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Sapate SG, Mahajan A, Talbar SN, Sable N, Desai S, Thakur M. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 163:1-20. [PMID: 30119844 DOI: 10.1016/j.cmpb.2018.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Early detection is the important key to reduce breast cancer mortality rate. Detecting the mammographic abnormality as a subtle sign of breast cancer is essential for the proper diagnosis and treatment. The aim of this preliminary study is to develop algorithms which detect suspicious lesions and characterize them to reduce the diagnostic errors regarding false positives and false negatives. METHODS The proposed hybrid mechanism detects suspicious lesions automatically using connected component labeling and adaptive fuzzy region growing algorithm. A novel neighboring pixel selection algorithm reduces the computational complexity of the seeded region growing algorithm used to finalize lesion contours. These lesions are characterized using radiomic features and then classified as benign mass or malignant tumor using k-NN and SVM classifiers. Two datasets of 460 full field digital mammograms (FFDM) utilized in this clinical study consists of 210 images with malignant tumors, 30 with benign masses and 220 normal breast images that are validated by radiologists expert in mammography. RESULTS The qualitative assessment of segmentation results by the expert radiologists shows 91.67% sensitivity and 58.33% specificity. The effects of seven geometric and 48 textural features on classification accuracy, false positives per image (FPsI), sensitivity and specificity are studied separately and together. The features together achieved the sensitivity of 84.44% and 85.56%, specificity of 91.11% and 91.67% with FPsI of 0.54 and 0.55 using k-NN and SVM classifiers respectively on local dataset. CONCLUSIONS The overall breast cancer detection performance of proposed scheme after combining geometric and textural features with both classifiers is improved in terms of sensitivity, specificity, and FPsI.
Collapse
Affiliation(s)
- Suhas G Sapate
- Centre of Excellence in Signal & Image Processing, SGGS Institute of Engineering & Technology, Nanded, Maharashtra, India; Department of CSE, Ashokrao Mane Group of Institutions, Vathar, Kolhapur, Maharashtra, India.
| | - Abhishek Mahajan
- Department of Radiodiagnosis, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Sanjay N Talbar
- Centre of Excellence in Signal & Image Processing, SGGS Institute of Engineering & Technology, Nanded, Maharashtra, India; Department of E&TC, SGGS Institute of Engineering & Technology, Nanded, Maharashtra, India
| | - Nilesh Sable
- Department of Radiodiagnosis, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Subhash Desai
- Department of Radiodiagnosis, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| | - Meenakshi Thakur
- Department of Radiodiagnosis, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
30
|
Ahmed AA, Abedalthagafi M. Cancer diagnostics: The journey from histomorphology to molecular profiling. Oncotarget 2018; 7:58696-58708. [PMID: 27509178 PMCID: PMC5295463 DOI: 10.18632/oncotarget.11061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
Although histomorphology has made significant advances into the understanding of cancer etiology, classification and pathogenesis, it is sometimes complicated by morphologic ambiguities, and other shortcomings that necessitate the development of ancillary tests to complement its diagnostic value. A new approach to cancer patient management consists of targeting specific molecules or gene mutations in the cancer genome by inhibitory therapy. Molecular diagnostic tests and genomic profiling methods are increasingly being developed to identify tumor targeted molecular profile that is the basis of targeted therapy. Novel targeted therapy has revolutionized the treatment of gastrointestinal stromal tumor, renal cell carcinoma and other cancers that were previously difficult to treat with standard chemotherapy. In this review, we discuss the role of histomorphology in cancer diagnosis and management and the rising role of molecular profiling in targeted therapy. Molecular profiling in certain diagnostic and therapeutic difficulties may provide a practical and useful complement to histomorphology and opens new avenues for targeted therapy and alternative methods of cancer patient management.
Collapse
Affiliation(s)
- Atif A Ahmed
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Malak Abedalthagafi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Saudi Human Genome Laboratory, Department of Pathology, King Fahad Medical City, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Liu G, Banerjee SR, Yang X, Yadav N, Lisok A, Jablonska A, Xu J, Li Y, Pomper MG, van Zijl P. A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nat Biomed Eng 2017; 1:977-982. [PMID: 29456877 PMCID: PMC5810963 DOI: 10.1038/s41551-017-0168-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Safe imaging agents able to render the expression and distribution of cancer receptors, enzymes or other biomarkers would facilitate clinical screening of the disease. Here, we show that diamagnetic dextran particles coordinated to a urea-based targeting ligand for prostate-specific membrane antigen (PSMA) enable targeted magnetic resonance imaging (MRI) of the PSMA receptor. In a xenograft model of prostate cancer, micromolar concentrations of the dextran –ligand probe provided sufficient signal to specifically detect PSMA-expressing tumours via chemical exchange saturation transfer MRI. The dextran-based probe could be detected via the contrast originating from dextran hydroxyl protons, thereby avoiding the need of chemical substitution for radioactive or metallic labelling. Because dextrans are currently used clinically, dextran-based contrast agents may help extend receptor-targeted imaging to clinical MRI.
Collapse
Affiliation(s)
- Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Nirbhay Yadav
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ala Lisok
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anna Jablonska
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Peter van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
32
|
Luo Y, Wu H, Feng C, Xiao K, Yang X, Liu Q, Lin TY, Zhang H, Walton JH, Ajena Y, Hu Y, Lam KS, Li Y. "One-Pot" Fabrication of Highly Versatile and Biocompatible Poly(vinyl alcohol)-porphyrin-based Nanotheranostics. Am J Cancer Res 2017; 7:3901-3914. [PMID: 29109786 PMCID: PMC5667413 DOI: 10.7150/thno.20190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/07/2017] [Indexed: 02/05/2023] Open
Abstract
Nanoparticle-based theranostic agents have emerged as a new paradigm in nanomedicine field for integration of multimodal imaging and therapeutic functions within a single platform. However, the clinical translation of these agents is severely limited by the complexity of fabrication, long-term toxicity of the materials, and unfavorable biodistributions. Here we report an extremely simple and robust approach to develop highly versatile and biocompatible theranostic poly(vinyl alcohol)-porphyrin nanoparticles (PPNs). Through a “one-pot” fabrication process, including the chelation of metal ions and encapsulation of hydrophobic drugs, monodispersenanoparticle could be formed by self-assembly of a very simple and biocompatible building block (poly(vinyl alcohol)-porphyrin conjugate). Using this approach, we could conveniently produce multifunctional PPNs that integrate optical imaging, positron emission tomography (PET), photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery functions in one formulation. PPNs exhibited unique architecture-dependent fluorescence self-quenching, as well as photodynamic- and photothermal- properties. Near-infrared fluorescence could be amplified upon PPN dissociation, providing feasibility of low-background fluorescence imaging. Doxorubicin (DOX)-loaded PPNs achieved 53 times longer half-life in blood circulation than free DOX. Upon irradiation by near infrared light at a single excitation wavelength, PPNs could be activated to release reactive oxygen species, heat and drugs simultaneously at the tumor sites in mice bearing tumor xenograft, resulting in complete eradication of tumors. Due to their organic compositions, PPNs showed no obvious cytotoxicity in mice via intravenous administration during therapeutic studies. This highly versatile and multifunctional PPN theranostic nanoplatform showed great potential for the integration of multimodal imaging and therapeutic functions towards personalized nanomedicine against cancers.
Collapse
|
33
|
Mahajan A, Deshpande SS, Thakur MH. Diffusion magnetic resonance imaging: A molecular imaging tool caught between hope, hype and the real world of “personalized oncology”. World J Radiol 2017; 9:253-268. [PMID: 28717412 PMCID: PMC5491653 DOI: 10.4329/wjr.v9.i6.253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
“Personalized oncology” is a multi-disciplinary science, which requires inputs from various streams for optimal patient management. Humongous progress in the treatment modalities available and the increasing need to provide functional information in addition to the morphological data; has led to leaping progress in the field of imaging. Magnetic resonance imaging has undergone tremendous progress with various newer MR techniques providing vital functional information and is becoming the cornerstone of “radiomics/radiogenomics”. Diffusion-weighted imaging is one such technique which capitalizes on the tendency of water protons to diffuse randomly in a given system. This technique has revolutionized oncological imaging, by giving vital qualitative and quantitative information regarding tumor biology which helps in detection, characterization and post treatment surveillance of the lesions and challenging the notion that “one size fits all”. It has been applied at various sites with different clinical experience. We hereby present a brief review of this novel functional imaging tool, with its application in “personalized oncology”.
Collapse
|
34
|
|
35
|
SanthoshKumar GV, Mahajan A, Desai S, Thakur M. Second Opinion by In-House Radiologists: Present Picture and Emphasis on Standardizing Imaging Protocol in Oncology. Curr Probl Diagn Radiol 2017; 46:356-359. [PMID: 28552548 DOI: 10.1067/j.cpradiol.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/19/2017] [Accepted: 04/06/2017] [Indexed: 02/05/2023]
Abstract
Standardization of imaging acquisition protocol, modification in protocols for specific tumor and standardization in providing image data sets for outside referral, will help not only patients but also oncologists (who requests the second read) and the radiologists (who provides the second read on outside imaging). The practical benefits to patients include, cost savings (limiting the repeat radiological examination), timely initiation of treatment; the unrealized benefits include prevention of unnecessary anxiety and discomfort. In such second opinions, the radiologists should answer key clinical issues about resectability and other relevant findings in provisionally diagnosed cancers. In this article we will discuss the present scenario regarding second opinion of outside diagnostic imaging, the current approach, challenges and its optimization.
Collapse
Affiliation(s)
| | - Abhishek Mahajan
- Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, India.
| | - Subhash Desai
- Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
| | - Meenakshi Thakur
- Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
| |
Collapse
|
36
|
Mahajan A, Desai S, Sable NP, Thakur MH. Status of barium studies in the present era of oncology: Are they a history? Indian J Med Paediatr Oncol 2017; 37:223-226. [PMID: 28144086 PMCID: PMC5234156 DOI: 10.4103/0971-5851.195740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
With the advent of the modern imaging technologies, the present era of oncology is seeing steady decline in requests for barium studies due to the many reasons. It is prudent to mention here, that, barium examinations cannot be made obsolete! Our aim to preserve the age old technique of barium studies not only to keep it going on but also for the betterment and appropriate management of the patient. Our goal is not to “save” barium studies simply to keep this technology alive, per se, but rather to preserve barium radiology for the quality in patient care.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Subash Desai
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Nilesh Pandurang Sable
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Meenakshi Haresh Thakur
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
37
|
Mahajan A, Sable NP, Popat PB, Bhargava P, Gangadhar K, Thakur MH, Arya S. Magnetic Resonance Imaging of Gynecological Malignancies: Role in Personalized Management. Semin Ultrasound CT MR 2016; 38:231-268. [PMID: 28705370 DOI: 10.1053/j.sult.2016.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gynecological malignancies are a leading cause of mortality and morbidity in women and pose a significant health problem around the world. Currently used staging systems for management of gynecological malignancies have unresolved issues, the most important being recommendations on the use of imaging. Although not mandatory as per the International Federation of Gynecology and Obstetrics recommendations, preoperative cross-sectional imaging is strongly recommended for adequate and optimal management of patients with gynecological malignancies. Standardized disease-specific magnetic resonance imaging protocols help assess disease spread accurately and avoid pitfalls. Multiparametric imaging holds promise as a roadmap to personalized management in gynecological malignancies. In this review, we will highlight the role of magnetic resonance imaging in cervical, endometrial, and ovarian carcinomas.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
| | - Nilesh P Sable
- Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
| | - Palak B Popat
- Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
| | - Puneet Bhargava
- Department of Radiology, University of Washington School of Medicine, Seattle, WA
| | - Kiran Gangadhar
- Department of Radiology, University of Washington School of Medicine, Seattle, WA
| | | | - Supreeta Arya
- Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, India.
| |
Collapse
|
38
|
Centelles MN, Wright M, Gedroyc W, Thanou M. Focused ultrasound induced hyperthermia accelerates and increases the uptake of anti-HER-2 antibodies in a xenograft model. Pharmacol Res 2016; 114:144-151. [PMID: 27771465 DOI: 10.1016/j.phrs.2016.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023]
Abstract
Image guided drug delivery has gained significant attention during the last few years. Labelling nanoparticles or macromolecules and monitoring their fate in the body provides information that can be used to modulate their biodistribution and improve their pharmacokinetics. In this study we label antibodies and monitor their distribution in the tumours post intravenous injection. Using Focused Ultrasound (FUS, a non-invasive method of hyperthermia) we increase the tumour temperature to 42°C for a short period of time (3-5min) and we observe an increased accumulation of labelled antibody. Repetition of focused ultrasound induced hyperthermic treatment increased still further the accumulation of the antibodies in the tumour. This treatment also augmented the accumulation of other macromolecules non-specific to the tumour, such as IgG and albumin. These effects may be used to enhance the therapeutic efficiency of antibodies and/or targeted nanoparticles.
Collapse
Affiliation(s)
| | - Michael Wright
- Institute of Pharmaceutical Science, King's College London, UK
| | | | - Maya Thanou
- Institute of Pharmaceutical Science, King's College London, UK.
| |
Collapse
|
39
|
Mahajan A, Azad GK, Cook GJ. PET Imaging of Skeletal Metastases and Its Role in Personalizing Further Management. PET Clin 2016; 11:305-18. [PMID: 27321034 DOI: 10.1016/j.cpet.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In oncology, the skeleton is one of the most frequently encountered sites for metastatic disease and thus early detection not only has an impact on an individual patient's management but also on the overall outcome. Multiparametric and multimodal hybrid PET/computed tomography and PET/MR imaging have revolutionized imaging for bone metastases, but irrespective of tumor biology or morphology of the bone lesion it remains unclear which imaging modality is the most clinically relevant to guide individualized cancer care. In this review, we highlight the current clinical challenges of PET imaging in evaluation and quantification of skeletal tumor burden and its impact on personalized cancer management.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, India
| | - Gurdip Kaur Azad
- Division of Imaging Sciences and Biomedical Engineering, Cancer Imaging Department, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Gary J Cook
- Division of Imaging Sciences and Biomedical Engineering, Cancer Imaging Department, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK; Clinical PET Centre, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.
| |
Collapse
|
40
|
Mahajan A, Sripathi S. Gallbladder Adenomyomatosis Mimicking Carcinoma: A Diagnostic Dilemma. J Glob Oncol 2016; 2:341-345. [PMID: 28717718 PMCID: PMC5493266 DOI: 10.1200/jgo.2016.005249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Abhishek Mahajan
- , Tata Memorial Centre, Mumbai; and , Kasturba Medical College, Manipal, India
| | - Smiti Sripathi
- , Tata Memorial Centre, Mumbai; and , Kasturba Medical College, Manipal, India
| |
Collapse
|
41
|
Grootendorst MR, Cariati M, Kothari A, Tuch DS, Purushotham A. Cerenkov luminescence imaging (CLI) for image-guided cancer surgery. Clin Transl Imaging 2016; 4:353-366. [PMID: 27738626 PMCID: PMC5037157 DOI: 10.1007/s40336-016-0183-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/29/2016] [Indexed: 12/30/2022]
Abstract
Cerenkov luminescence imaging (CLI) is a novel molecular optical imaging technique based on the detection of optical Cerenkov photons emitted by positron emission tomography (PET) imaging agents. The ability to use clinically approved tumour-targeted tracers in combination with small-sized imaging equipment makes CLI a particularly interesting technique for image-guided cancer surgery. The past few years have witnessed a rapid increase in proof-of-concept preclinical studies in this field, and several clinical trials are currently underway. This article provides an overview of the basic principles of Cerenkov radiation and outlines the challenges of CLI-guided surgery for clinical use. The preclinical and clinical trial literature is examined including applications focussed on image-guided lymph node detection and Cerenkov luminescence endoscopy, and the ongoing clinical studies and technological developments are highlighted. By intraoperatively guiding the oncosurgeon towards more accurate and complete resections, CLI has the potential to transform current surgical practice, and improve oncological and cosmetic outcomes for patients.
Collapse
Affiliation(s)
- M. R. Grootendorst
- Department of Research Oncology, 3rd Floor Bermondsey Wing, King’s College London, London, SE1 9RT UK
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| | - M. Cariati
- Department of Research Oncology, 3rd Floor Bermondsey Wing, King’s College London, London, SE1 9RT UK
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| | - A. Kothari
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| | - D. S. Tuch
- Lightpoint Medical Ltd, The Island, Moor Road, HP5 1NZ Chesham, UK
| | - A. Purushotham
- Department of Research Oncology, 3rd Floor Bermondsey Wing, King’s College London, London, SE1 9RT UK
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| |
Collapse
|
42
|
Mahajan A, Desai S, Kawthalkar AS, Thakur MH. Molecular functional imaging in personalized clinical oncology: The road less traveled. Indian J Med Paediatr Oncol 2016; 37:1-3. [PMID: 27051148 PMCID: PMC4795367 DOI: 10.4103/0971-5851.176979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Abhishek Mahajan
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Subhash Desai
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, Maharashtra, India
| | | | | |
Collapse
|
43
|
Abstract
Although molecular imaging has had a dramatic impact on diagnostic imaging, it has only recently begun to be integrated into interventional procedures. Its significant impact is attributed to its ability to provide noninvasive, physiologic information that supplements conventional morphologic imaging. The four major interventional opportunities for molecular imaging are, first, to provide guidance to localize a target; second, to provide tissue analysis to confirm that the target has been reached; third, to provide in-room, posttherapy assessment; and fourth, to deliver targeted therapeutics. With improved understanding and application of(18)F-FDG, as well as the addition of new molecular probes beyond(18)F-FDG, the future holds significant promise for the expansion of molecular imaging into the realm of interventional procedures.
Collapse
Affiliation(s)
- Stephen B Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Francois Cornelis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and Department of Radiology, Pellegrin Hospital, Bordeaux, France
| |
Collapse
|
44
|
Miyahira AK, Lang JM, Den RB, Garraway IP, Lotan TL, Ross AE, Stoyanova T, Cho SY, Simons JW, Pienta KJ, Soule HR. Multidisciplinary intervention of early, lethal metastatic prostate cancer: Report from the 2015 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2016; 76:125-39. [PMID: 26477609 PMCID: PMC5830186 DOI: 10.1002/pros.23107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The 2015 Coffey-Holden Prostate Cancer Academy Meeting, themed: "Multidisciplinary Intervention of Early, Lethal Metastatic Prostate Cancer," was held in La Jolla, California from June 25 to 28, 2015. METHODS The Prostate Cancer Foundation (PCF) sponsors an annual, invitation-only, action-tank-structured meeting on a critical topic concerning lethal prostate cancer. The 2015 meeting was attended by 71 basic, translational, and clinical investigators who discussed the current state of the field, major unmet needs, and ideas for addressing earlier diagnosis and treatment of men with lethal prostate cancer for the purpose of extending lives and making progress toward a cure. RESULTS The questions addressed at the meeting included: cellular and molecular mechanisms of tumorigenesis, evaluating, and targeting the microenvironment in the primary tumor, advancing biomarkers for clinical integration, new molecular imaging technologies, clinical trials, and clinical trial design in localized high-risk and oligometastatic settings, targeting the primary tumor in advanced disease, and instituting multi-modal care of high risk and oligometastatic patients. DISCUSSION This article highlights the current status, greatest unmet needs, and anticipated field changes that were discussed at the meeting toward the goal of optimizing earlier interventions to potentiate cures in high-risk and oligometastatic prostate cancer patients.
Collapse
Affiliation(s)
| | - Joshua M. Lang
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, Wisconsin
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Robert B. Den
- Department of Radiation Oncology, Sidney Kimmel Medical Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Cancer Biology, Sidney Kimmel Medical Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Isla P. Garraway
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles,, California
- Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Tamara L. Lotan
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ashley E. Ross
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, Maryland
| | - Tanya Stoyanova
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Steve Y. Cho
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, Wisconsin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Kenneth J. Pienta
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
45
|
Dhingra VK, Mahajan A, Basu S. Emerging clinical applications of PET based molecular imaging in oncology: the promising future potential for evolving personalized cancer care. Indian J Radiol Imaging 2016; 25:332-41. [PMID: 26752813 PMCID: PMC4693380 DOI: 10.4103/0971-3026.169467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review focuses on the potential of advanced applications of functional molecular imaging in assessing tumor biology and cellular characteristics with emphasis on positron emission tomography (PET) applications with both 18-fluorodeoxyglucose (FDG) and non-FDG tracers. The inherent heterogeneity of cancer cells with their varied cellular biology and metabolic and receptor phenotypic expression in each individual patient and also intra-and inter-lesionally in the same individual mandates for transitioning from a generalized “same-size-fits-all” approach to personalized medicine in oncology. The past two decades have witnessed improvement of oncological imaging through CT, MR imaging, PET, subsequent movement through hybrid or fusion imaging with PET/CT and single-photon emission computerized tomography (SPECT-CT), and now toward the evolving PET/MR imaging. These recent developments have proven invaluable in enhancing oncology care and have the potential to help image the tumor biology at the cellular level, followed by providing a tailored treatment. Molecular imaging, integrated diagnostics or Radiomics, biology-driven interventional radiology and theranostics, all hold immense potential to serve as a guide to give “start and stop” treatment for a patient on an individual basis. This will likely have substantial impact on both treatment costs and outcomes. In this review, we bring forth the current trends in molecular imaging with established techniques (PET/CT), with particular emphasis on newer molecules (such as amino acid metabolism and hypoxia imaging, somatostatin receptor based imaging, and hormone receptor imaging) and further potential for FDG. An introductory discussion on the novel hybrid imaging techniques such as PET/MR is also made to understand the futuristic trends.
Collapse
Affiliation(s)
- Vandana K Dhingra
- Department of Nuclear Medicine, Cancer Research Institute, Himalayan Institute Hospital Trust, Dehradun, Uttarakhand, India; Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Abhishek Mahajan
- Department of Radiology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
46
|
Booth TC. Re: Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin Radiol 2015; 71:304-5. [PMID: 26711873 DOI: 10.1016/j.crad.2015.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Affiliation(s)
- T C Booth
- King's College Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
47
|
Mahajan A, Engineer R, Chopra S, Mahanshetty U, Juvekar SL, Shrivastava SK, Desekar N, Thakur MH. Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers. Eur J Radiol Open 2015; 3:22-30. [PMID: 27069975 PMCID: PMC4811859 DOI: 10.1016/j.ejro.2015.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/21/2015] [Indexed: 02/08/2023] Open
Abstract
In operated cervix cancer, the accuracy of diagnosing vaginal vault/local recurrent lesions was higher at combined multiparametric MR imaging and conventional MR imaging (100%) than at conventional MR imaging (70%) or multiparametric MR imaging (96.7%) alone. We found a significant correlation between percentage tumor regression and pre-treatment parameters: NEI (p = 0.02), the maximum slope (p = 0.04), mADC value (p = 0.001) and amount of hypoxic fraction present in the pretherapy MRI (p = 0.01). Multiparametric and BOLD hypoxia MR Imaging are feasible and reliable in diagnosing post-operative recurrence in cervical cancer and should be applied when there is clinical suspicion of post-operative recurrence. Quantitative image features obtained at multiparametric-MRI with BOLD hypoxia imaging has potential to be an appropriate and reliable biologic target for radiation dose painting to optimize therapy in future.
Objectives To assess the diagnostic value of multiparametric-MRI (MPMRI) with hypoxia imaging as a functional marker for characterizing and detecting vaginal vault/local recurrence following primary surgery for cervical cancer. Methods With institutional review board approval and written informed consent 30 women (median age: 45 years) from October 2009 to March 2010 with previous operated carcinoma cervix and suspected clinical vaginal vault/local recurrence were examined with 3.0T-MRI. MRI imaging included conventional and MPMRI sequences [dynamic contrast enhanced (DCE), diffusion weighted (DW), 1H-MR spectroscopy (1HMRS), blood oxygen level dependent hypoxia imaging (BOLD)]. Two radiologists, blinded to pathologic findings, independently assessed the pretherapy MRI findings and then correlated it with histopathology findings. Sensitivity, specificity, positive predictive value, negative predictive value and their confidence intervals were calculated. The pre and post therapy conventional and MPMRI parameters were analyzed and correlated with response to therapy. Results Of the 30 patients, there were 24 recurrent tumors and 6 benign lesions. The accuracy of diagnosing recurrent vault lesions was highest at combined MPMRI and conventional MRI (100%) than at conventional-MRI (70%) or MPMRI (96.7%) alone. Significant correlation was seen between percentage tumor regression and pre-treatment parameters such as negative enhancement integral (NEI) (p = 0.02), the maximum slope (p = 0.04), mADC value (p = 0.001) and amount of hypoxic fraction on the pretherapy MRI (p = 0.01). Conclusion Conventional-MR with MPMRI significantly increases the diagnostic accuracy for suspected vaginal vault/local recurrence. Post therapy serial MPMRI with hypoxia imaging follow-up objectively documents the response. MPMRI and BOLD hypoxia imaging provide information regarding tumor biology at the molecular, subcellular, cellular and tissue levels and this information may be used as an appropriate and reliable biologic target for radiation dose painting to optimize therapy in future.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Centre, Mumbai 400012, India; Department of Imaging Sciences and Biomedical Engineering, Kings College London, UK
| | - Reena Engineer
- Department of Radiation-Oncology, Tata Memorial Centre, Mumbai 400012, India
| | - Supriya Chopra
- Department of Radiation-Oncology, Tata Memorial Centre, Mumbai 400012, India
| | - Umesh Mahanshetty
- Department of Radiation-Oncology, Tata Memorial Centre, Mumbai 400012, India
| | - S L Juvekar
- Department of Radiodiagnosis and Imaging, Tata Memorial Centre, Mumbai 400012, India
| | - S K Shrivastava
- Department of Radiation-Oncology, Tata Memorial Centre, Mumbai 400012, India
| | - Naresh Desekar
- Department of Radiodiagnosis and Imaging, Tata Memorial Centre, Mumbai 400012, India
| | - M H Thakur
- Department of Radiodiagnosis and Imaging, Tata Memorial Centre, Mumbai 400012, India
| |
Collapse
|
48
|
Chowdhury FU. PET/CT "Virtual" Special Issue. Clin Radiol 2015; 70:1155-7. [PMID: 26364830 DOI: 10.1016/j.crad.2015.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 11/15/2022]
Affiliation(s)
- F U Chowdhury
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Bexley Wing, Level 1, Beckett Street, Leeds LS9 7TF, UK; Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Bexley Wing, Level 1, Beckett Street, Leeds LS9 7TF, UK.
| |
Collapse
|
49
|
Chakravarty R, Chakraborty S, Vimalnath KV, Shetty P, Sarma HD, Hassan PA, Dash A. 64CuCl2 produced by direct neutron activation route as a cost-effective probe for cancer imaging: the journey has begun. RSC Adv 2015. [DOI: 10.1039/c5ra17266g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neutron activated 64CuCl2 is a cost-effective PET probe for non-invasive visualization of various types of cancers.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Sudipta Chakraborty
- Isotope Production and Applications Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - K. V. Vimalnath
- Isotope Production and Applications Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Priyalata Shetty
- Isotope Production and Applications Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - P. A. Hassan
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Ashutosh Dash
- Isotope Production and Applications Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|