1
|
Liu F, Ma F, Zhou G, Yang C, Xiong B. Evaluation of late arterial acquisition and image quality after gadoxetate disodium injection using the CDT-VIBE sequence. Sci Rep 2022; 12:11445. [PMID: 35794140 PMCID: PMC9259568 DOI: 10.1038/s41598-022-15108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
To explore the applicability of multi-arterial phase imaging technique in gadoxetate disodium-enhanced MRI. We studied 140 consecutive patients with suspected liver lesions who underwent gadoxetate disodium-enhanced MRI before surgery. All patients were randomized into three groups: group A (n = 50) was examined with VIBE-based single-artery phase imaging, group B (n = 44) with StarVIBE, and group C (n = 46) with CAIPIRINHA-Dixon-TWIST-VIBE (CDT-VIBE)-based multi-artery phase imaging. We evaluated the display rate of late arterial images and image quality in arterial phase images. We performed a study of 140 consecutive patients suspected with liver lesions who received gadoxetate disodium-enhanced MRI examination before surgery. All patients were randomly divided into three groups: group A (n = 50) was examined with single arterial phase imaging based on VIBE, group B (n = 44) was based on StarVIBE and group C (n = 46) was analyzed with multi-arterial phase imaging based on CAIPIRINHA-Dixon-TWIST-VIBE (CDT-VIBE). We evaluated the display rate of late arterial images and the image quality of dynamically enhanced images. Both radiologists had an almost perfect agreement (Kappa value > 0.8) in the assessment of late arterial and image quality. For late arterial acquisition, group C was superior to groups A and B (x2 = 18.940, P < 0.05); The image of phase 4 had the highest display rate in the late artery phase. For arterial phase image quality, there was no difference between groups A, B and C at five phases (H = 10.481, P = 0.106); and the best image quality score was lower in group C than in groups A and B (H = 8.573, P = 0.014).For the quality of the late arterial images, there was a statistical difference between the best images in groups A, B and C (H = 6.619, P = 0.037), and the images in group C were significantly better than those in group A (P.adj < 0.05). By applying multi-arterial phase acquisition based on CDT-VIBE, gadoxetate disodium-enhanced MRI scanning can obtain a better late arterial phase and provide high-quality images with fewer motion artifacts.
Collapse
Affiliation(s)
- Fen Liu
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Ma
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guanlan Zhou
- Department of Otolaryngology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chongtu Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China.
| |
Collapse
|
2
|
Kim DW, Choi SH, Park T, Kim SY, Lee SS, Byun JH. Transient Severe Motion Artifact on Arterial Phase in Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. Invest Radiol 2022; 57:62-70. [PMID: 34224484 DOI: 10.1097/rli.0000000000000806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aims of this study were to determine the incidence of transient severe motion artifact (TSM) on arterial phase gadoxetic acid-enhanced magnetic resonance imaging of the liver and to investigate the causes of heterogeneity in the published literature. MATERIALS AND METHODS Original studies reporting the incidence of TSM were identified in searches of PubMed, Embase, and Cochrane Library databases. The pooled incidence of TSM was calculated using random-effects meta-analysis of single proportions. Subgroup analyses were conducted to explore causes of heterogeneity. RESULTS A total of 24 studies were finally included (single arterial phase, 19 studies with 3065 subjects; multiple arterial phases, 8 studies with 2274 subjects). Studies using single arterial phase imaging reported individual TSM rates varying from 4.8% to 26.7% and a pooled incidence of TSM of 13.0% (95% confidence interval, 10.3%-16.2%), which showed substantial study heterogeneity. The pooled incidence of TSM in the studies using multiple arterial phase imaging was 3.2% (95% confidence interval, 1.9%-5.2%), which was significantly less than in those studies using single arterial phase imaging (P < 0.001). In the subgroup analysis, the geographical region of studies and the definition of TSM were found to be causes of heterogeneity. The incidence of TSM was higher in studies with Western populations from Europe or North America than in those with Eastern (Asia/Pacific) populations (16.0% vs 8.8%, P = 0.005). Regarding the definition of TSM, the incidence of TSM was higher when a 4-point scale was used for its categorization than when a 5-point scale was used (20.0% vs 11.0%, P = 0.008), and a definition considering motion artifact on phases other than arterial phase imaging lowered the incidence of TSM compared with it being defined only on arterial phase imaging (11.3% vs 20.3%, P = 0.018). CONCLUSIONS The incidence of TSM on arterial phase images varied across studies and was associated with the geographical region of studies and the definition of TSM. Careful interpretation of results reporting TSM might therefore be needed.
Collapse
Affiliation(s)
- Dong Wook Kim
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
3
|
Ichikawa S, Motosugi U, Sato K, Shimizu T, Wakayama T, Onishi H. Transient Respiratory-motion Artifact and Scan Timing during the Arterial Phase of Gadoxetate Disodium-enhanced MR Imaging: The Benefit of Shortened Acquisition and Multiple Arterial Phase Acquisition. Magn Reson Med Sci 2021; 20:280-289. [PMID: 32863326 PMCID: PMC8424022 DOI: 10.2463/mrms.mp.2020-0064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose: To investigate whether shortened acquisition or multiple arterial phase acquisition improves image quality of the arterial phase compared with conventional protocol. Methods: This retrospective study was approved by the relevant Institutional Review Board. A total of 615 consecutive patients who underwent gadoxetate disodium-enhanced MRI including one of the following three sequences in three different periods were included: (i) conventional liver acquisition with volume acceleration (LAVA) (between October 2014 and January 2015, n = 149), (ii) Turbo-LAVA (between March and August 2016, n = 216), and (iii) differential sub-sampling with Cartesian ordering (DISCO) (between January and September 2015, n = 250). We monitored the respiratory bellows waveform during breath holding for each patient and recorded breath-hold fidelity of the patients. Two radiologists independently evaluated the degree of respiratory artifact and scan timing on the arterial phase and compared them between the three protocols (i.e., conventional LAVA, Turbo-LAVA, and DISCO), with conventional LAVA as control. Results: The ratio of patients with breath-hold failure was not significantly different among the three protocols (P = 0.6340 and 0.1085). Respiratory artifact was significantly lower in DISCO than in conventional LAVA (P = 0.0424), while there was no significant difference between Turbo-LAVA and conventional LAVA (P = 0.2593). The ratio of adequate scan timing and diagnosable image defined as no or mild artifact and adequate scan timing were higher in DISCO than in conventional LAVA (P = 0.0025 and 0.0019), while there was no significant difference between Turbo-LAVA and conventional LAVA (P = 0.0780 and 0.0657). Conclusion: Compared with conventional protocol, multiple arterial phase acquisition (DISCO) obtained a higher number of diagnosable images by reducing respiratory motion artifact and optimizing the scan timing of arterial phase.
Collapse
Affiliation(s)
| | - Utaroh Motosugi
- Department of Radiology, University of Yamanashi.,Department of Diagnostic Radiology, Kofu Kyoritsu Hospital
| | - Kazuyuki Sato
- Division of Radiology, University of Yamanashi Hospital
| | | | | | | |
Collapse
|
4
|
Fan Y, Yu Y, Wang X, Hu M, Hu C. Radiomic analysis of Gd-EOB-DTPA-enhanced MRI predicts Ki-67 expression in hepatocellular carcinoma. BMC Med Imaging 2021; 21:100. [PMID: 34130644 PMCID: PMC8204550 DOI: 10.1186/s12880-021-00633-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/04/2021] [Indexed: 02/08/2023] Open
Abstract
Background Nuclear protein Ki-67 indicates the status of cell proliferation and has been regarded as an attractive biomarker for the prognosis of HCC. The aim of this study is to investigate which radiomics model derived from different sequences and phases of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI was superior to predict Ki-67 expression in hepatocellular carcinoma (HCC), then further to validate the optimal model for preoperative prediction of Ki-67 expression in HCC. Methods This retrospective study included 151 (training cohort: n = 103; validation cohort: n = 48) pathologically confirmed HCC patients. Radiomics features were extracted from the artery phase (AP), portal venous phase (PVP), hepatobiliary phase (HBP), and T2-weighted (T2W) images. A logistic regression with the least absolute shrinkage and selection operator (LASSO) regularization was used to select features to build a radiomics score (Rad-score). A final combined model including the optimal Rad-score and clinical risk factors was established. Receiver operating characteristic (ROC) curve analysis, Delong test and calibration curve were used to assess the predictive performance of the combined model. Decision cure analysis (DCA) was used to evaluate the clinical utility. Results The AP radiomics model with higher decision curve indicating added more net benefit, gave a better predictive performance than the HBP and T2W radiomic models. The combined model (AUC = 0.922 vs. 0.863) including AP Rad-score and serum AFP levels improved the predictive performance more than the AP radiomics model (AUC = 0.873 vs. 0.813) in the training and validation cohort. Calibration curve of the combined model showed a good agreement between the predicted and the actual probability. DCA of the validation cohort revealed that at a range threshold probability of 30–60%, the combined model added more net benefit compared with the AP radiomics model. Conclusions A combined model including AP Rad-score and serum AFP levels based on enhanced MRI can preoperatively predict Ki-67 expression in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-021-00633-0.
Collapse
Affiliation(s)
- Yanfen Fan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, Jiangsu, People's Republic of China.,Institute of Medical Imaging of Soochow University, Shizi Street 188, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Yixing Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, Jiangsu, People's Republic of China.,Institute of Medical Imaging of Soochow University, Shizi Street 188, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, Jiangsu, People's Republic of China.,Institute of Medical Imaging of Soochow University, Shizi Street 188, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Mengjie Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, Jiangsu, People's Republic of China.,Institute of Medical Imaging of Soochow University, Shizi Street 188, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, Jiangsu, People's Republic of China. .,Institute of Medical Imaging of Soochow University, Shizi Street 188, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Tanabe M, Higashi M, Iida E, Onoda H, Ihara K, Ariyoshi S, Kameda F, Miyoshi K, Furukawa M, Okada M, Ito K. Transient respiratory motion artifacts in multiple arterial phases on abdominal dynamic magnetic resonance imaging: a comparison using gadoxetate disodium and gadobutrol. Jpn J Radiol 2020; 39:178-185. [PMID: 32959222 DOI: 10.1007/s11604-020-01042-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To compare the occurrence of transient respiratory motion artifacts (TRMAs) in multiple arterial phases on abdominal magnetic resonance (MR) images between those obtained using gadobutrol and gadoxetate disodium. MATERIALS AND METHODS Two hundred and fourteen abdominal MR examinations (101 with gadoxetate disodium, 113 with gadobutrol) were evaluated. Dynamic three-dimensional contrast-enhanced T1-weighted imaging (CAIPIRINHA-Dixon-TWIST-VIBE) including single-breath-hold six arterial phase acquisitions was performed on a 3.0-T MRI scanner. The TRMAs frequency and the mean TRMA scores were compared between patients assessed with gadoxetate disodium and those assessed with gadobutrol. In addition, the timing of TRMAs appearing for the first time was also recorded and compared between the two groups. RESULTS The mean TRMA scores in all arterial phases using gadoxetate disodium were significantly worse than in those using gadobutrol (1.49 ± 0.78 vs. 1.18 ± 0.53, P < .001). Regarding the timing of the occurrence of TRMAs, the severe TRMAs frequency after the third arterial phase was significantly higher in patients using gadoxetate disodium (10/101, 10%) than in those using gadobutrol (0/113, 0%) (P < .001). CONCLUSION In multiple-arterial-phase dynamic MRI, the TRMAs frequency when using gadoxetate disodium increased compared with gadobutrol, due to intolerable respiratory suspension after the third arterial phase.
Collapse
Affiliation(s)
- Masahiro Tanabe
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Mayumi Higashi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Etsushi Iida
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hideko Onoda
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Ihara
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoko Ariyoshi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumi Kameda
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Keisuke Miyoshi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Matakazu Furukawa
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Munemasa Okada
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Katsuyoshi Ito
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
6
|
Xiao YD, Ma C, Liu J, Li HB, Zhou SK, Zhang ZS. Transient severe motion during arterial phase in patients with Gadoxetic acid administration: Can a five hepatic arterial subphases technique mitigate the artifact? Exp Ther Med 2018; 15:3133-3139. [PMID: 29456716 DOI: 10.3892/etm.2018.5760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Gadoxetic acid (Gd-EOB-DTPA) is a hepatocyte-specific magnetic resonance (MR) contrast agent, which has been increasingly used in recent years. However, it has been reported that Gd-EOB-DTPA related transient severe motion (TSM) is sometimes observed during the hepatic arterial phase of MR imaging, which may influence image quality. Since the hepatic arterial phase of contrast enhancement is used for the diagnosis of hepatocellular carcinoma, it is crucial to obtain a decent arterial phase imaging. The present study analyzed motion in patients receiving Gd-EOB-DTPA, comparing a single arterial phase acquisition to a five arterial phase acquisition to determine whether the multiphase acquisition was able to alleviate the TSM-related hepatic arterial MR imaging artifact. It was demonstrated that the single-phase acquisition failed to provide adequate diagnostic image quality in patients with TSM, whereas the multiphase arterial acquisition provided acceptable image quality in 20/22 (90.9%) patients with TSM. In conclusion, the results of the present study demonstrated that multiphase arterial acquisition is superior to single-phase arterial acquisition, mitigating arterial MR imaging artifacts caused by TSM after the administration of Gd-EOB-DTPA.
Collapse
Affiliation(s)
- Yu-Dong Xiao
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Cong Ma
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jun Liu
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hua-Bing Li
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Shun-Ke Zhou
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zi-Shu Zhang
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
7
|
Gruber L, Rainer V, Plaikner M, Kremser C, Jaschke W, Henninger B. CAIPIRINHA-Dixon-TWIST (CDT)-VIBE MR imaging of the liver at 3.0T with gadoxetate disodium: a solution for transient arterial-phase respiratory motion-related artifacts? Eur Radiol 2017; 28:2013-2021. [DOI: 10.1007/s00330-017-5210-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/31/2023]
|