1
|
Nguyen D, Palmquist S, Hwang K, Ma J, Salem U, Sun J, Wang X, Son JB, Ernst R, Wei P, Kaur H, Stanietzky N. T2-weighted imaging of rectal cancer using a 3D fast spin echo sequence with and without deep learning reconstruction: A reader study. J Appl Clin Med Phys 2025; 26:e70031. [PMID: 39976552 PMCID: PMC12059301 DOI: 10.1002/acm2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 05/10/2025] Open
Abstract
PURPOSE To compare image quality and clinical utility of a T2-weighted (T2W) 3-dimensional (3D) fast spin echo (FSE) sequence using deep learning reconstruction (DLR) versus conventional reconstruction for rectal magnetic resonance imaging (MRI). METHODS The study included 50 patients with rectal cancer who underwent rectal MRI consecutively between July 7, 2020 and January 20, 2021 using a T2W 3D FSE sequence with DLR and conventional reconstruction. Three radiologists reviewed the two sets of images, scoring overall SNR, motion artifacts, and overall image quality on a 3-point scale and indicating clinical preference for DLR or conventional reconstruction based on those three criteria as well as image characterization of bowel wall layer definition, tumor invasion of muscularis propria, residual disease, fibrosis, nodal margin, and extramural venous invasion. RESULTS Image quality was rated as moderate or good for both DLR and conventional reconstruction for most cases. DLR was preferred over conventional reconstruction in all of the categories except for bowel wall layer definition. CONCLUSION Both conventional reconstruction and DLR provide acceptable image quality for T2W 3D FSE imaging of rectal cancer. DLR was clinically preferred over conventional reconstruction in almost all categories.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sarah Palmquist
- Department of RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ken‐Pin Hwang
- Department of RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jingfei Ma
- Department of RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Usama Salem
- Department of RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jia Sun
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Xinzeng Wang
- GE HealthCareGlobal MR Applications and WorkflowHoustonTexasUSA
| | - Jong Bum Son
- Department of RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Randy Ernst
- Department of RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Peng Wei
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Harmeet Kaur
- Department of RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Nir Stanietzky
- Department of RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
2
|
Asari Y, Yasaka K, Endo K, Kanzawa J, Okimoto N, Watanabe Y, Suzuki Y, Amemiya S, Kiryu S, Abe O. Super-Resolution Deep Learning Reconstruction for T2*-Weighted Images: Improvement in Microbleed Lesion Detection and Image Quality. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01522-6. [PMID: 40301290 DOI: 10.1007/s10278-025-01522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Super-resolution deep learning reconstruction (SR-DLR) is a promising tool for improving image quality by enhancing spatial resolution compared to conventional deep learning reconstruction (DLR). This study aimed to evaluate whether SR-DLR improves microbleed detection and visualization in brain magnetic resonance imaging (MRI) compared to DLR. This retrospective study included 69 patients (66.2 ± 13.8 years; 44 females) who underwent 3 T brain MRI with T2*-weighted 2D gradient echo and 3D flow-sensitive black blood imaging (reference standard) between June and August 2024. T2*-weighted images were reconstructed using SR-DLR and DLR. Three blinded readers detected microbleeds and assessed image quality, including microbleed and normal structure visibility, sharpness, noise, artifacts, and overall quality. Quantitative analysis involved measuring signal intensity along the septum pellucidum. Microbleed detection performance was analyzed using jackknife alternative free-response receiver operating characteristic analysis, while image quality was analyzed using the Wilcoxon signed-rank test and paired t-test. SR-DLR significantly outperformed DLR in microbleed detection (figure of merit: 0.690 vs. 0.645, p < 0.001). SR-DLR also demonstrated higher sensitivity for microbleed detection. Qualitative analysis showed better microbleed visualization for two readers (p < 0.001) and improved image sharpness for all readers (p ≤ 0.008). Quantitative analysis revealed enhanced sharpness, especially in full width at half maximum and edge rise slope (p < 0.001). SR-DLR improved image sharpness and quality, leading to better microbleed detection and visualization in brain MRI compared to DLR.
Collapse
Affiliation(s)
- Yusuke Asari
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan.
| | - Kazuki Endo
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Jun Kanzawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Naomasa Okimoto
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Yuichi Suzuki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286 - 0124, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| |
Collapse
|
3
|
Mai W, Hecht S, Paek M, Holmes SP, Dorez H, Blanchard M, Eddin JN. A Veterinary DICOM-Based Deep Learning Denoising Algorithm Can Improve Subjective and Objective Brain MRI Image Quality. Vet Radiol Ultrasound 2025; 66:e70015. [PMID: 39945204 PMCID: PMC11822732 DOI: 10.1111/vru.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/25/2024] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
In this analytical cross-sectional method comparison study, we evaluated brain MR images in 30 dogs and cats with and without using a DICOM-based deep-learning (DL) denoising algorithm developed specifically for veterinary patients. Quantitative comparison was performed by measuring signal-to-noise (SNR) and contrast-to-noise ratios (CNR) on the same T2-weighted (T2W), T2-FLAIR, and Gradient Echo (GRE) MR brain images in each patient (native images and after denoising) in identical regions of interest. Qualitative comparisons were then conducted: three experienced veterinary radiologists independently evaluated each patient's T2W, T2-FLAIR, and GRE image series. Native and denoised images were evaluated separately, with observers blinded to the type of images they were assessing. For each image type (native and denoised) and pulse sequence type image, they assigned a subjective grade of coarseness, contrast, and overall quality. For all image series tested (T2W, T2-FLAIR, and GRE), the SNRs of cortical gray matter, subcortical white matter, deep gray matter, and internal capsule were statistically significantly higher on images treated with DL denoising algorithm than native images. Similarly, for all image series types tested, the CNRs between cortical gray and white matter and between deep gray matter and internal capsule were significantly higher on DL algorithm-treated images than native images. The qualitative analysis confirmed these results, with generally better coarseness, contrast, and overall quality scores for the images treated with the DL denoising algorithm. In this study, this DICOM-based DL denoising algorithm reduced noise in 1.5T MRI canine and feline brain images, and radiologists' perceived image quality improved.
Collapse
Affiliation(s)
- Wilfried Mai
- Department of Clinical Sciences and Advanced MedicineSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Silke Hecht
- Department of Small Animal Clinical Sciences, College of Veterinary MedicineUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Matthew Paek
- Synergy Veterinary Imaging PartnersMD/VAFrederickMarylandUSA
| | | | | | | | | |
Collapse
|
4
|
Fujita S, Fushimi Y, Ito R, Matsui Y, Tatsugami F, Fujioka T, Ueda D, Fujima N, Hirata K, Tsuboyama T, Nozaki T, Yanagawa M, Kamagata K, Kawamura M, Yamada A, Nakaura T, Naganawa S. Advancing clinical MRI exams with artificial intelligence: Japan's contributions and future prospects. Jpn J Radiol 2025; 43:355-364. [PMID: 39548049 PMCID: PMC11868336 DOI: 10.1007/s11604-024-01689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
In this narrative review, we review the applications of artificial intelligence (AI) into clinical magnetic resonance imaging (MRI) exams, with a particular focus on Japan's contributions to this field. In the first part of the review, we introduce the various applications of AI in optimizing different aspects of the MRI process, including scan protocols, patient preparation, image acquisition, image reconstruction, and postprocessing techniques. Additionally, we examine AI's growing influence in clinical decision-making, particularly in areas such as segmentation, radiation therapy planning, and reporting assistance. By emphasizing studies conducted in Japan, we highlight the nation's contributions to the advancement of AI in MRI. In the latter part of the review, we highlight the characteristics that make Japan a unique environment for the development and implementation of AI in MRI examinations. Japan's healthcare landscape is distinguished by several key factors that collectively create a fertile ground for AI research and development. Notably, Japan boasts one of the highest densities of MRI scanners per capita globally, ensuring widespread access to the exam. Japan's national health insurance system plays a pivotal role by providing MRI scans to all citizens irrespective of socioeconomic status, which facilitates the collection of inclusive and unbiased imaging data across a diverse population. Japan's extensive health screening programs, coupled with collaborative research initiatives like the Japan Medical Imaging Database (J-MID), enable the aggregation and sharing of large, high-quality datasets. With its technological expertise and healthcare infrastructure, Japan is well-positioned to make meaningful contributions to the MRI-AI domain. The collaborative efforts of researchers, clinicians, and technology experts, including those in Japan, will continue to advance the future of AI in clinical MRI, potentially leading to improvements in patient care and healthcare efficiency.
Collapse
Affiliation(s)
- Shohei Fujita
- Department of Radiology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan.
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-Ku, Okayama, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-Ku, Hiroshima City, Hiroshima, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Abeno-Ku, Osaka, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Kumamoto, Kumamoto, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Wilpert C, Russe MF, Weiss J, Voss C, Rau S, Strecker R, Reisert M, Bedin R, Urbach H, Zaitsev M, Bamberg F, Rau A. Deep Learning Reconstruction Combined With Conventional Acceleration Improves Image Quality of 3 T Brain MRI and Does Not Impact Quantitative Diffusion Metrics. Invest Radiol 2025:00004424-990000000-00291. [PMID: 39919383 DOI: 10.1097/rli.0000000000001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
OBJECTIVES Deep learning reconstruction of magnetic resonance imaging (MRI) allows to either improve image quality of accelerated sequences or to generate high-resolution data. We evaluated the interaction of conventional acceleration and Deep Resolve Boost (DRB)-based reconstruction techniques of a single-shot echo-planar imaging (ssEPI) diffusion-weighted imaging (DWI) on image quality features in cerebral 3 T brain MRI and compared it with a state-of-the-art DWI sequence. MATERIALS AND METHODS In this prospective study, 24 patients received a standard of care ssEPI DWI and 5 additional adapted ssEPI DWI sequences, 3 of those with DRB reconstruction. Qualitative analysis encompassed rating of image quality, noise, sharpness, and artifacts. Quantitative analysis compared apparent diffusion coefficient (ADC) values region-wise between the different DWI sequences. Intraclass correlations, paired sampled t test, Wilcoxon signed rank test, and weighted Cohen κ were used. RESULTS Compared with the reference standard, the acquisition time was significantly improved in accelerated DWI from 75 seconds up to 50% (39 seconds; P < 0.001). All tested DRB-reconstructed sequences showed significantly improved image quality, sharpness, and reduced noise (P < 0.001). Highest image quality was observed for the combination of conventional acceleration and DL reconstruction. In singular slices, more artifacts were observed for DRB-reconstructed sequences (P < 0.001). While in general high consistency was found between ADC values, increasing differences in ADC values were noted with increasing acceleration and application of DRB. Falsely pathological ADCs were rarely observed near frontal poles and optic chiasm attributable to susceptibility-related artifacts due to adjacent sinuses. CONCLUSIONS In this comparative study, we found that the combination of conventional acceleration and DRB reconstruction improves image quality and enables faster acquisition of ssEPI DWI. Nevertheless, a tradeoff between increased acceleration with risk of stronger artifacts and high-resolution with longer acquisition time needs to be considered, especially for application in cerebral MRI.
Collapse
Affiliation(s)
- Caroline Wilpert
- From the Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany (C.W., M.F.R., J.W., C.V., S.R., F.B.); EMEA Scientific Partnerships, Siemens Healthcare GmbH, Erlangen, Germany (R.S.); MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany (R.S.); Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany (M.R., R.B., M.Z.); Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany (M.R.); and Department of Neuroradiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany (H.U., A.R.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nishioka N, Shimizu Y, Kaneko Y, Shirai T, Suzuki A, Amemiya T, Ochi H, Bito Y, Takizawa M, Ikebe Y, Kameda H, Harada T, Fujima N, Kudo K. Accelerating FLAIR imaging via deep learning reconstruction: potential for evaluating white matter hyperintensities. Jpn J Radiol 2025; 43:200-209. [PMID: 39316286 PMCID: PMC11790734 DOI: 10.1007/s11604-024-01666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE To evaluate deep learning-reconstructed (DLR)-fluid-attenuated inversion recovery (FLAIR) images generated from undersampled data, compare them with fully sampled and rapidly acquired FLAIR images, and assess their potential for white matter hyperintensity evaluation. MATERIALS AND METHODS We examined 30 patients with white matter hyperintensities, obtaining fully sampled FLAIR images (standard FLAIR, std-FLAIR). We created accelerated FLAIR (acc-FLAIR) images using one-third of the fully sampled data and applied deep learning to generate DLR-FLAIR images. Three neuroradiologists assessed the quality (amount of noise and gray/white matter contrast) in all three image types. The reproducibility of hyperintensities was evaluated by comparing a subset of 100 hyperintensities in acc-FLAIR and DLR-FLAIR images with those in the std-FLAIR images. Quantitatively, similarities and errors of the entire image and the focused regions on white matter hyperintensities in acc-FLAIR and DLR-FLAIR images were measured against std-FLAIR images using structural similarity index measure (SSIM), regional SSIM, normalized root mean square error (NRMSE), and regional NRMSE values. RESULTS All three neuroradiologists evaluated DLR-FLAIR as having significantly less noise and higher image quality scores compared with std-FLAIR and acc-FLAIR (p < 0.001). All three neuroradiologists assigned significantly higher frontal lobe gray/white matter visibility scores for DLR-FLAIR than for acc-FLAIR (p < 0.001); two neuroradiologists attributed significantly higher scores for DLR-FLAIR than for std-FLAIR (p < 0.05). Regarding white matter hyperintensities, all three neuroradiologists significantly preferred DLR-FLAIR (p < 0.0001). DLR-FLAIR exhibited higher similarity to std-FLAIR in terms of visibility of the hyperintensities, with 97% of the hyperintensities rated as nearly identical or equivalent. Quantitatively, DLR-FLAIR demonstrated significantly higher SSIM and regional SSIM values than acc-FLAIR, with significantly lower NRMSE and regional NRMSE values (p < 0.0001). CONCLUSIONS DLR-FLAIR can reduce scan time and generate images of similar quality to std-FLAIR in patients with white matter hyperintensities. Therefore, DLR-FLAIR may serve as an effective method in traditional magnetic resonance imaging protocols.
Collapse
Affiliation(s)
- Noriko Nishioka
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yukie Shimizu
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yukio Kaneko
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Toru Shirai
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Atsuro Suzuki
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Tomoki Amemiya
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Hisaaki Ochi
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Yoshitaka Bito
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- FUJIFILM Healthcare Corporation, Tokyo, Japan
| | | | - Yohei Ikebe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Faculty of Dental Medicine, Department of Radiology, Hokkaido University, Sapporo, Japan
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Division of Medical AI Education and Research, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Jung W, Jeong G, Kim S, Hwang I, Choi SH, Jeon YH, Choi KS, Lee JY, Yoo RE, Yun TJ, Kang KM. Reliability of brain volume measures of accelerated 3D T1-weighted images with deep learning-based reconstruction. Neuroradiology 2025; 67:171-182. [PMID: 39316090 PMCID: PMC11802604 DOI: 10.1007/s00234-024-03461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE The time-intensive nature of acquiring 3D T1-weighted MRI and analyzing brain volumetry limits quantitative evaluation of brain atrophy. We explore the feasibility and reliability of deep learning-based accelerated MRI scans for brain volumetry. METHODS This retrospective study collected 3D T1-weighted data using 3T from 42 participants for the simulated acceleration dataset and 48 for the validation dataset. The simulated acceleration dataset consists of three sets at different simulated acceleration levels (Simul-Accel) corresponding to level 1 (65% undersampling), 2 (70%), and 3 (75%). These images were then subjected to deep learning-based reconstruction (Simul-Accel-DL). Conventional images (Conv) without acceleration and DL were set as the reference. In the validation dataset, DICOM images were collected from Conv and accelerated scan with DL-based reconstruction (Accel-DL). The image quality of Simul-Accel-DL was evaluated using quantitative error metrics. Volumetric measurements were evaluated using intraclass correlation coefficients (ICCs) and linear regression analysis in both datasets. The volumes were estimated by two software, NeuroQuant and DeepBrain. RESULTS Simul-Accel-DL across all acceleration levels revealed comparable or better error metrics than Simul-Accel. In the simulated acceleration dataset, ICCs between Conv and Simul-Accel-DL in all ROIs exceeded 0.90 for volumes and 0.77 for normative percentiles at all acceleration levels. In the validation dataset, ICCs for volumes > 0.96, ICCs for normative percentiles > 0.89, and R2 > 0.93 at all ROIs except pallidum demonstrated good agreement in both software. CONCLUSION DL-based reconstruction achieves clinical feasibility of 3D T1 brain volumetric MRI by up to 75% acceleration relative to full-sampled acquisition.
Collapse
Affiliation(s)
- Woojin Jung
- AIRS Medical, 223, Teheran-ro, Gangnam-gu, Seoul, 06142, Republic of Korea
| | - Geunu Jeong
- AIRS Medical, 223, Teheran-ro, Gangnam-gu, Seoul, 06142, Republic of Korea
| | - Sohyun Kim
- AIRS Medical, 223, Teheran-ro, Gangnam-gu, Seoul, 06142, Republic of Korea
| | - Inpyeong Hwang
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak- ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak- ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Young Hun Jeon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak- ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyu Sung Choi
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak- ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ji Ye Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak- ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak- ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae Jin Yun
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak- ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak- ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
8
|
Sbaraglia F, Gaudino S, Tiberi E, Maiellare F, Spinazzola G, Garra R, Della Sala F, Micci DM, Russo R, Riitano F, Ferrara G, Vento G, Rossi M. Deep sedation in lateral position for preterm infants during cerebral magnetic resonance imaging: a pilot study. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:80. [PMID: 39696670 DOI: 10.1186/s44158-024-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Respiratory adverse events are common during the sedation of preterm babies, often needing active airway support. During magnetic resonance imaging, this occurrence could extend the acquisition time, with a negative impact on the thermic and metabolic homeostasis. The aim of the study is to verify if lying in a lateral position instead of supine could improve the safe quality of sedation, without worsening the quality of imaging. METHODS This study was performed as a single-center, prospective study at a university-affiliated tertiary care center. A consultant provided deep sedation with sevoflurane 3-4% delivered by an external mask, in the lateral decubitus position. All patients were evaluated for the incidence of apnea and desaturation, quality of imaging obtained, the timing of imaging acquisition, and thermic and metabolic homeostasis. RESULTS We enrolled 23 consecutive preterm babies born < 37 weeks gestational age, candidates for sedation for elective brain magnetic resonance imaging. All patients completed the radiological procedure in 30 min (SD ± 6.39 min) without complications requiring exam interruption. Only one patient (4%) experienced a transient desaturation, while 2 neonates (9%) showed apnea lasting > 20 s. On average, there was a 1 °C decrease in body temperature and full enteral feeding was resumed within 1.5 h. Neuroradiologists rated the quality of the images obtained as high. CONCLUSIONS Lateral lying seems to be a viable option for sedated preterm babies during magnetic resonance imaging with a low risk of intervention for apnea and a reduced impact on thermic and metabolic homeostasis. Quality of imaging would be preserved maintaining correct scheduling of standard care. TRIAL REGISTRATION The study was registered at www. CLINICALTRIALS gov before enrollment (NCT05776238 on December, 21th 2023).
Collapse
Affiliation(s)
- Fabio Sbaraglia
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Simona Gaudino
- Department of Radiologic and Hematologic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eloisa Tiberi
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Maiellare
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgia Spinazzola
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rossella Garra
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filomena Della Sala
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Maria Micci
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rosellina Russo
- Department of Radiologic and Hematologic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Riitano
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Ferrara
- Department of Radiologic and Hematologic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Vento
- Neonatology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco Rossi
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
9
|
Yasaka K, Kanzawa J, Nakaya M, Kurokawa R, Tajima T, Akai H, Yoshioka N, Akahane M, Ohtomo K, Abe O, Kiryu S. Super-resolution Deep Learning Reconstruction for 3D Brain MR Imaging: Improvement of Cranial Nerve Depiction and Interobserver Agreement in Evaluations of Neurovascular Conflict. Acad Radiol 2024; 31:5118-5127. [PMID: 38897913 DOI: 10.1016/j.acra.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
RATIONALE AND OBJECTIVES To determine if super-resolution deep learning reconstruction (SR-DLR) improves the depiction of cranial nerves and interobserver agreement when assessing neurovascular conflict in 3D fast asymmetric spin echo (3D FASE) brain MR images, as compared to deep learning reconstruction (DLR). MATERIALS AND METHODS This retrospective study involved reconstructing 3D FASE MR images of the brain for 37 patients using SR-DLR and DLR. Three blinded readers conducted qualitative image analyses, evaluating the degree of neurovascular conflict, structure depiction, sharpness, noise, and diagnostic acceptability. Quantitative analyses included measuring edge rise distance (ERD), edge rise slope (ERS), and full width at half maximum (FWHM) using the signal intensity profile along a linear region of interest across the center of the basilar artery. RESULTS Interobserver agreement on the degree of neurovascular conflict of the facial nerve was generally higher with SR-DLR (0.429-0.923) compared to DLR (0.175-0.689). SR-DLR exhibited increased subjective image noise compared to DLR (p ≥ 0.008). However, all three readers found SR-DLR significantly superior in terms of sharpness (p < 0.001); cranial nerve depiction, particularly of facial and acoustic nerves, as well as the osseous spiral lamina (p < 0.001); and diagnostic acceptability (p ≤ 0.002). The FWHM (mm)/ERD (mm)/ERS (mm-1) for SR-DLR and DLR was 3.1-4.3/0.9-1.1/8795.5-10,703.5 and 3.3-4.8/1.4-2.1/5157.9-7705.8, respectively, with SR-DLR's image sharpness being significantly superior (p ≤ 0.001). CONCLUSION SR-DLR enhances image sharpness, leading to improved cranial nerve depiction and a tendency for greater interobserver agreement regarding facial nerve neurovascular conflict.
Collapse
Affiliation(s)
- Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124, Japan
| | - Jun Kanzawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Moto Nakaya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Taku Tajima
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo 108-8329, Japan
| | - Hiroyuki Akai
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124, Japan; Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Naoki Yoshioka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124, Japan
| | - Masaaki Akahane
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124, Japan
| | - Kuni Ohtomo
- International University of Health and Welfare, 2600-1 Ktiakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124, Japan.
| |
Collapse
|
10
|
Yasaka K, Akai H, Kato S, Tajima T, Yoshioka N, Furuta T, Kageyama H, Toda Y, Akahane M, Ohtomo K, Abe O, Kiryu S. Iterative Motion Correction Technique with Deep Learning Reconstruction for Brain MRI: A Volunteer and Patient Study. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:3070-3076. [PMID: 38942939 PMCID: PMC11612051 DOI: 10.1007/s10278-024-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
The aim of this study was to investigate the effect of iterative motion correction (IMC) on reducing artifacts in brain magnetic resonance imaging (MRI) with deep learning reconstruction (DLR). The study included 10 volunteers (between September 2023 and December 2023) and 30 patients (between June 2022 and July 2022) for quantitative and qualitative analyses, respectively. Volunteers were instructed to remain still during the first MRI with fluid-attenuated inversion recovery sequence (FLAIR) and to move during the second scan. IMCoff DLR images were reconstructed from the raw data of the former acquisition; IMCon and IMCoff DLR images were reconstructed from the latter acquisition. After registration of the motion images, the structural similarity index measure (SSIM) was calculated using motionless images as reference. For qualitative analyses, IMCon and IMCoff FLAIR DLR images of the patients were reconstructed and evaluated by three blinded readers in terms of motion artifacts, noise, and overall quality. SSIM for IMCon images was 0.952, higher than that for IMCoff images (0.949) (p < 0.001). In qualitative analyses, although noise in IMCon images was rated as increased by two of the three readers (both p < 0.001), all readers agreed that motion artifacts and overall quality were significantly better in IMCon images than in IMCoff images (all p < 0.001). In conclusion, IMC reduced motion artifacts in brain FLAIR DLR images while maintaining similarity to motionless images.
Collapse
Affiliation(s)
- Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Hiroyuki Akai
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Shimpei Kato
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Taku Tajima
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329, Japan
| | - Naoki Yoshioka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Toshihiro Furuta
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hajime Kageyama
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yui Toda
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Masaaki Akahane
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Kuni Ohtomo
- International University of Health and Welfare, 2600-1 Ktiakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.
| |
Collapse
|
11
|
Malokaj V, Mf W, Sn K, Beer M, Daniel V. Forensic age estimation by MRI of the knee - comparison of two classifications for ossification stages in a German population. Int J Legal Med 2024; 138:2387-2400. [PMID: 38960912 PMCID: PMC11490462 DOI: 10.1007/s00414-024-03281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
AIM AND OBJECTIVES In forensic age estimation e.g. for judicial proceedings surpassed age thresholds can be legally relevant. To examine age related differences in skeletal development the recommendations by the Study Group on Forensic Age Diagnostics (AGFAD) are based on ionizing radiation (among others orthopantomograms, plain x-rays of the hand). Vieth et al. and Ottow et al. proposed MRI-classifications for the epiphyseal-diaphyseal fusion of the knee joint to define different age groups in healthy volunteers. The aim of the present study was to directly compare these two classifications in a large German patient population. MATERIALS AND METHODS MRI of the knee joint of 900 patients (405 female, 495 male) from 10 to 28 years of age were retrospectively analyzed. Acquired T1-weighted turbo spin-echo sequence (TSE) and T2-weighted sequence with fat suppression by turbo inversion recovery magnitude (TIRM) were analyzed for the two classifications. The different bony fusion stages of the two classifications were determined and the corresponding chronological ages assigned. Differences between the sexes were analyzed. Intra- and inter-observer agreements were determined using Cohen's kappa. RESULTS With the classification of Ottow et al. it was possible to determine completion of the 18th and 21st year of life in both sexes. With the classification of Vieth et al. completion of the 18th year of life for female patients and the 14th and 21st year of life in both sexes could be determined. The intra- and inter-observer agreement levels were very good (κ > 0.82). CONCLUSION In the large German patient cohort of this study it was possible to determine the 18th year of life with for both sexes with the classification of Ottow et al. and for female patients with the classification of Vieth et al. It was also possible to determine the 21st year of life for all bones with the classification of Ottow et al. and for the distal femur with the classification of Vieth et al.
Collapse
Affiliation(s)
- V Malokaj
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Wernsing Mf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Kunz Sn
- Institute of Forensic Medicine, Ulm University, Ulm, Germany
| | - M Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Vogele Daniel
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
12
|
Altmann S, Grauhan NF, Mercado MAA, Steinmetz S, Kronfeld A, Paul R, Benkert T, Uphaus T, Groppa S, Winter Y, Brockmann MA, Othman AE. Deep Learning Accelerated Brain Diffusion-Weighted MRI with Super Resolution Processing. Acad Radiol 2024; 31:4171-4182. [PMID: 38521612 DOI: 10.1016/j.acra.2024.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVES To investigate the clinical feasibility and image quality of accelerated brain diffusion-weighted imaging (DWI) with deep learning image reconstruction and super resolution. METHODS 85 consecutive patients with clinically indicated MRI at a 3 T scanner were prospectively included. Conventional diffusion-weighted data (c-DWI) with four averages were obtained. Reconstructions of one and two averages, as well as deep learning diffusion-weighted imaging (DL-DWI), were accomplished. Three experienced readers evaluated the acquired data using a 5-point Likert scale regarding overall image quality, overall contrast, diagnostic confidence, occurrence of artefacts and evaluation of the central region, basal ganglia, brainstem, and cerebellum. To assess interrater agreement, Fleiss' kappa (ϰ) was determined. Signal intensity (SI) levels for basal ganglia and the central region were estimated via automated segmentation, and SI values of detected pathologies were measured. RESULTS Intracranial pathologies were identified in 35 patients. DL-DWI was significantly superior for all defined parameters, independently from applied averages (p-value <0.001). Optimum image quality was achieved with DL-DWI by utilizing a single average (p-value <0.001), demonstrating very good (80.9%) to excellent image quality (14.5%) in nearly all cases, compared to 12.5% with very good and 0% with excellent image quality for c-MRI (p-value <0.001). Comparable results could be shown for diagnostic confidence. Inter-rater Fleiss' Kappa demonstrated moderate to substantial agreement for virtually all defined parameters, with good accordance, particularly for the assessment of pathologies (p = 0.74). Regarding SI values, no significant difference was found. CONCLUSION Ultra-fast diffusion-weighted imaging with super resolution is feasible, resulting in highly accelerated brain imaging while increasing diagnostic image quality.
Collapse
Affiliation(s)
- Sebastian Altmann
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Nils F Grauhan
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Mario Alberto Abello Mercado
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sebastian Steinmetz
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Roman Paul
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Johannes Gutenberg University, Rhabanusstr. 3/Tower A, 55118 Mainz, Germany
| | | | - Timo Uphaus
- Department of Neurology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Yaroslav Winter
- Department of Neurology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; Department of Neurology, Philipps-University Marburg, Baldingerstr, 35043 Marburg, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
13
|
Yasaka K, Uehara S, Kato S, Watanabe Y, Tajima T, Akai H, Yoshioka N, Akahane M, Ohtomo K, Abe O, Kiryu S. Super-resolution Deep Learning Reconstruction Cervical Spine 1.5T MRI: Improved Interobserver Agreement in Evaluations of Neuroforaminal Stenosis Compared to Conventional Deep Learning Reconstruction. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2466-2473. [PMID: 38671337 PMCID: PMC11522216 DOI: 10.1007/s10278-024-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
The aim of this study was to investigate whether super-resolution deep learning reconstruction (SR-DLR) is superior to conventional deep learning reconstruction (DLR) with respect to interobserver agreement in the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI. This retrospective study included 39 patients who underwent 1.5T cervical spine MRI. T2-weighted sagittal images were reconstructed with SR-DLR and DLR. Three blinded radiologists independently evaluated the images in terms of the degree of neuroforaminal stenosis, depictions of the vertebrae, spinal cord and neural foramina, sharpness, noise, artefacts and diagnostic acceptability. In quantitative image analyses, a fourth radiologist evaluated the signal-to-noise ratio (SNR) by placing a circular or ovoid region of interest on the spinal cord, and the edge slope based on a linear region of interest placed across the surface of the spinal cord. Interobserver agreement in the evaluations of neuroforaminal stenosis using SR-DLR and DLR was 0.422-0.571 and 0.410-0.542, respectively. The kappa values between reader 1 vs. reader 2 and reader 2 vs. reader 3 significantly differed. Two of the three readers rated depictions of the spinal cord, sharpness, and diagnostic acceptability as significantly better with SR-DLR than with DLR. Both SNR and edge slope (/mm) were also significantly better with SR-DLR (12.9 and 6031, respectively) than with DLR (11.5 and 3741, respectively) (p < 0.001 for both). In conclusion, compared to DLR, SR-DLR improved interobserver agreement in the evaluations of neuroforaminal stenosis using 1.5T cervical spine MRI.
Collapse
Affiliation(s)
- Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Shunichi Uehara
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shimpei Kato
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taku Tajima
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329, Japan
| | - Hiroyuki Akai
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Naoki Yoshioka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Masaaki Akahane
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Kuni Ohtomo
- International University of Health and Welfare, 2600-1 Ktiakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.
| |
Collapse
|
14
|
Sato Y, Ohkuma K. Verification of image quality improvement by deep learning reconstruction to 1.5 T MRI in T2-weighted images of the prostate gland. Radiol Phys Technol 2024; 17:756-764. [PMID: 38850389 DOI: 10.1007/s12194-024-00819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
This study aimed to evaluate whether the image quality of 1.5 T magnetic resonance imaging (MRI) of the prostate is equal to or higher than that of 3 T MRI by applying deep learning reconstruction (DLR). To objectively analyze the images from the 13 healthy volunteers, we measured the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the images obtained by the 1.5 T scanner with and without DLR, as well as for images obtained by the 3 T scanner. In the subjective, T2W images of the prostate were visually evaluated by two board-certified radiologists. The SNRs and CNRs in 1.5 T images with DLR were higher than that in 3 T images. Subjective image scores were better for 1.5 T images with DLR than 3 T images. The use of the DLR technique in 1.5 T MRI substantially improved the SNR and image quality of T2W images of the prostate gland, as compared to 3 T MRI.
Collapse
Affiliation(s)
- Yoshiomi Sato
- Department of Radiology, Saitama City Hospital, Mimuro 2460, Saitama, 336-8522, Japan.
| | - Kiyoshi Ohkuma
- Department of Diagnostic Radiology, Saitama City Hospital, Mimuro 2460, Saitama, 336-8522, Japan
| |
Collapse
|
15
|
Yoo RE, Choi SH. Deep Learning-based Image Enhancement Techniques for Fast MRI in Neuroimaging. Magn Reson Med Sci 2024; 23:341-351. [PMID: 38684425 PMCID: PMC11234952 DOI: 10.2463/mrms.rev.2023-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite its superior soft tissue contrast and non-invasive nature, MRI requires long scan times due to its intrinsic signal acquisition principles, a main drawback which technological advancements in MRI have been focused on. In particular, scan time reduction is a natural requirement in neuroimaging due to detailed structures requiring high resolution imaging and often volumetric (3D) acquisitions, and numerous studies have recently attempted to harness deep learning (DL) technology in enabling scan time reduction and image quality improvement. Various DL-based image reconstruction products allow for additional scan time reduction on top of existing accelerated acquisition methods without compromising the image quality.
Collapse
Affiliation(s)
- Roh-Eul Yoo
- Department of Radiology, National Cancer Center, Goyang-si, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, National Cancer Center, Goyang-si, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| |
Collapse
|
16
|
Brain ME, Amukotuwa S, Bammer R. Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality. J Med Imaging Radiat Oncol 2024; 68:377-384. [PMID: 38577926 DOI: 10.1111/1754-9485.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Deep learning reconstruction (DLR) technologies are the latest methods attempting to solve the enduring problem of reducing MRI acquisition times without compromising image quality. The clinical utility of this reconstruction technique is yet to be fully established. This study aims to assess whether a commercially available DLR technique applied to 2D T2-weighted FLAIR brain images allows a reduction in scan time, without compromising image quality and thus diagnostic accuracy. METHODS 47 participants (24 male, mean age 55.9 ± 18.7 SD years, range 20-89 years) underwent routine, clinically indicated brain MRI studies in March 2022, that included a standard-of-care (SOC) T2-weighted FLAIR sequence, and an accelerated acquisition that was reconstructed using the DLR denoising product. Overall image quality, lesion conspicuity, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and artefacts for each sequence, and preferred sequence on direct comparison, were subjectively assessed by two readers. RESULTS There was a strong preference for SOC FLAIR sequence for overall image quality (P = 0.01) and head-to-head comparison (P < 0.001). No difference was observed for lesion conspicuity (P = 0.49), perceived SNR (P = 1.0), and perceived CNR (P = 0.84). There was no difference in motion (P = 0.57) nor Gibbs ringing (P = 0.86) artefacts. Phase ghosting (P = 0.038) and pseudolesions were significantly more frequent (P < 0.001) on DLR images. CONCLUSION DLR algorithm allowed faster FLAIR acquisition times with comparable image quality and lesion conspicuity. However, an increased incidence and severity of phase ghosting artefact and presence of pseudolesions using this technique may result in a reduction in reading speed, efficiency, and diagnostic confidence.
Collapse
Affiliation(s)
- Matthew E Brain
- Department of Diagnostic Imaging, Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Shalini Amukotuwa
- Department of Diagnostic Imaging, Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Roland Bammer
- Department of Diagnostic Imaging, Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Pouliquen G, Debacker C, Charron S, Roux A, Provost C, Benzakoun J, de Graaf W, Prevost V, Pallud J, Oppenheim C. Deep learning-based noise reduction preserves quantitative MRI biomarkers in patients with brain tumors. J Neuroradiol 2023; 51:S0150-9861(23)00260-2. [PMID: 39492549 DOI: 10.1016/j.neurad.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The use of relaxometry and Diffusion-Tensor Imaging sequences for brain tumor assessment is limited by their long acquisition time. We aim to test the effect of a denoising algorithm based on a Deep Learning Reconstruction (DLR) technique on quantitative MRI parameters while reducing scan time. In 22 consecutive patients with brain tumors, DLR applied to fast and noisy MR sequences preserves the mean values of quantitative parameters (Fractional anisotropy, mean Diffusivity, T1 and T2-relaxation time) and produces maps with higher structural similarity compared to long duration sequences. This could promote wider use of these biomarkers in clinical setting.
Collapse
Affiliation(s)
- Geoffroy Pouliquen
- Imaging department, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience (IPNP), INSERM U1266, 75014, Paris, France
| | - Clément Debacker
- Imaging department, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience (IPNP), INSERM U1266, 75014, Paris, France
| | - Sylvain Charron
- Imaging department, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience (IPNP), INSERM U1266, 75014, Paris, France
| | - Alexandre Roux
- Université Paris Cité, Institute of Psychiatry and Neuroscience (IPNP), INSERM U1266, 75014, Paris, France; Neurosurgery department, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - Corentin Provost
- Imaging department, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience (IPNP), INSERM U1266, 75014, Paris, France
| | - Joseph Benzakoun
- Imaging department, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience (IPNP), INSERM U1266, 75014, Paris, France
| | - Wolter de Graaf
- Canon Medical Systems Europe B.V., 2718, RP, The Netherlands
| | | | - Johan Pallud
- Université Paris Cité, Institute of Psychiatry and Neuroscience (IPNP), INSERM U1266, 75014, Paris, France; Neurosurgery department, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - Catherine Oppenheim
- Imaging department, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience (IPNP), INSERM U1266, 75014, Paris, France.
| |
Collapse
|
18
|
Tajima T, Akai H, Yasaka K, Kunimatsu A, Yoshioka N, Akahane M, Ohtomo K, Abe O, Kiryu S. Comparison of 1.5 T and 3 T magnetic resonance angiography for detecting cerebral aneurysms using deep learning-based computer-assisted detection software. Neuroradiology 2023; 65:1473-1482. [PMID: 37646791 DOI: 10.1007/s00234-023-03216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE To compare the diagnostic performance of 1.5 T versus 3 T magnetic resonance angiography (MRA) for detecting cerebral aneurysms with clinically available deep learning-based computer-assisted detection software (EIRL aneurysm® [EIRL_an]), which has been approved by the Japanese Pharmaceuticals and Medical Devices Agency. We also sought to analyze the causes of potential false positives. METHODS In this single-center, retrospective study, we evaluated the MRA scans of 90 patients who underwent head MRA (1.5 T and 3 T in 45 patients each) in clinical practice. Overall, 51 patients had 70 aneurysms. We used MRI from a vendor not included in the dataset used to create the EIRL_an algorithm. Two radiologists determined the ground truth, the accuracy of the candidates noted by EIRL_an, and the causes of false positives. The sensitivity, number of false positives per case (FPs/case), and the causes of false positives were compared between 1.5 T and 3 T MRA. Pearson's χ2 test, Fisher's exact test, and the Mann‒Whitney U test were used for the statistical analyses as appropriate. RESULTS The sensitivity was high for 1.5 T and 3 T MRA (0.875‒1), but the number of FPs/case was significantly higher with 3 T MRA (1.511 vs. 2.578, p < 0.001). The most common causes of false positives (descending order) were the origin/bifurcation of vessels/branches, flow-related artifacts, and atherosclerosis and were similar between 1.5 T and 3 T MRA. CONCLUSION EIRL_an detected significantly more false-positive lesions with 3 T than with 1.5 T MRA in this external validation study. Our data may help physicians with limited experience with MRA to correctly diagnose aneurysms using EIRL_an.
Collapse
Affiliation(s)
- Taku Tajima
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-Ku, Tokyo, 108-8329, Japan
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Hiroyuki Akai
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Koichiro Yasaka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Akira Kunimatsu
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-Ku, Tokyo, 108-8329, Japan
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Naoki Yoshioka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Masaaki Akahane
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Kuni Ohtomo
- International University of Health and Welfare, 2600-1 Kitakanamaru, Otawara, Tochigi, 324-8501, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.
| |
Collapse
|