1
|
Zhao J, Zong Z, Zhang X, Luo C, Li Z. Bamboo: A neglected candidate for polyhydroxyalkanoate production-A review. Int J Biol Macromol 2025; 316:144303. [PMID: 40409616 DOI: 10.1016/j.ijbiomac.2025.144303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 05/06/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
In light of growing concerns about climate change, energy crises, and waste management due to the excessive reliance on fossil resources, there is an increasing emphasis on sustainability and the circular economy. Polyhydroxyalkanoates (PHAs), microbial polyesters synthesized from various feedstocks, offer a promising alternative to conventional plastics due to their comparable physicochemical characteristics, biological degradability, and biocompatibility. Lignocellulosic biomass, known for its abundance, renewability, and affordability, represents a particularly suitable carbon source for commercial PHA production. This review provides a comprehensive overview of the bioconversion of lignocellulosic feedstocks into PHAs, encompassing pretreatment, hydrolysis, and fermentation strategies. It highlights biosynthetic pathways from cellulose and hemicellulose via reducing sugars and volatile fatty acids fermentation, and also evaluates the feasibility of utilizing lignin as a substrate for PHA biosynthesis. Additionally, the review underscores the advantages of bamboo-a rapid-growing, renewable plant with high biomass yield, rich lignocellulosic composition, and strong carbon sequestration capacity-as a promising yet underexplored feedstock for industrial-scale PHA production.
Collapse
Affiliation(s)
- Jiayue Zhao
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration on Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Zhijie Zong
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration on Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Xinyu Zhang
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration on Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Chaobing Luo
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 838099, China.
| | - Zhiqiang Li
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration on Bamboo & Rattan Science and Technology, Beijing 100102, China.
| |
Collapse
|
2
|
Wang K, M Hobby A, Chio A, E El Mashad H, Zhang R. Bioconversion of dairy co-products to polyhydroxyalkanoates by halophilic microbes with salts and nutrients recycling. BIORESOURCE TECHNOLOGY 2025; 424:132228. [PMID: 39984002 DOI: 10.1016/j.biortech.2025.132228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
This study presented the cultivation of Haloferax mediterranei for polyhydroxyalkanoates (PHA) production from dairy co-products with spent salts recycling and provided the first insights of dissolved oxygen (DO) in regulating PHA biosynthesis by halophiles. PHA had yields up to 0.40 ± 0.02 g/g substrate from whey sugar and up to 0.17 ± 0.12 g/g substrate from delactosed permeate. A higher log-phase DO led to faster biosynthesis, but a lower final PHA production (2.0 ± 0.3 g/L) compared to lower DO levels (3.0 ± 0.1 g/L). This was later elucidated through mathematical modelling by the kinetic parameters and metabolic reaction rates. A novel approach was established to recycle up to 90 % salts and nutrients in the system and achieved consistent production and product quality. This study develops a sustainable biotechnology of converting dairy co-products to biomaterials, improve the economics of PHA and has the potential scalability for industrial applications.
Collapse
Affiliation(s)
- Ke Wang
- Department of Food Science, Cornell AgriTech, Cornell University, 665 W North Street, Geneva, NY 14456, United States.
| | - Alex M Hobby
- Biological and Agricultural Engineering Department, University of California Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Allan Chio
- Biological and Agricultural Engineering Department, University of California Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Hamed E El Mashad
- Biological and Agricultural Engineering Department, University of California Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Ruihong Zhang
- Biological and Agricultural Engineering Department, University of California Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
3
|
Simica A, Segovia Y, Navarro-Sempere A, Martínez-Espinosa RM, Pire C. Advanced Strategies for Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Production: PHA Synthase Homologous Overexpression in the Extremophile Haloferax mediterranei. Mar Drugs 2025; 23:166. [PMID: 40278287 PMCID: PMC12028471 DOI: 10.3390/md23040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Bioplastics such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) are promising alternatives to conventional plastics. However, the high production cost limits their industrial application. In this study, PHBV production was optimized in Haloferax mediterranei by the homologous overexpression of the key enzyme PHA synthase (PhaEC), resulting in the OEphaEC strain. The growth and PHBV production of OEphaEC compared with the parental strain (HM26) were evaluated in three culture media with different nitrogen sources (KNO3, NH4Cl, and casamino acids). The OEphaEC strain exhibited a 20% increase in PHBV production and a 40% increase in 3-hydroxyvalerate monomer (3HV) content in a defined medium with nitrate as a nitrogen source, as determined by GC-MS. Moreover, enzyme activity, measured spectrophotometrically, increased from 2.3 to 3.9 U/mg. Soluble and insoluble protein fractions were analysed to assess the overexpression of PHA synthase. Only PhaE was found in the insoluble protein fraction, where PHBV granules accumulate. Transmission electron microscopy (TEM) images confirmed a higher PHBV content in OEphaEC compared to the parental strain. These results demonstrate that the homologous overexpression of the key enzyme implicated in PHBV biosynthesis can enhance PHBV content, making its production competitive for industrial applications.
Collapse
Affiliation(s)
- Alexandra Simica
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.S.); (R.M.M.-E.)
| | - Yolanda Segovia
- Biotechnology Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain; (Y.S.); (A.N.-S.)
| | - Alicia Navarro-Sempere
- Biotechnology Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain; (Y.S.); (A.N.-S.)
| | - Rosa María Martínez-Espinosa
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.S.); (R.M.M.-E.)
- Biochemistry, Molecular Biology, Edaphology and Agrochemistry Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.S.); (R.M.M.-E.)
- Biochemistry, Molecular Biology, Edaphology and Agrochemistry Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
4
|
Naik TJ, Salgaonkar BB. Unlocking the potential of microbes: Concomitant production of polyhydroxyalkanoates and carotenoids. Int J Biol Macromol 2025; 303:140654. [PMID: 39909243 DOI: 10.1016/j.ijbiomac.2025.140654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The escalating environmental concerns and depletion of crude oil resources have catalyzed interest in biologically derived polymers, particularly biodegradable ones such as polyhydroxyalkanoates. However, the high production costs associated with polyhydroxyalkanoates, driven by raw material expenses, stringent production conditions and low yields, hinder their widespread adoption. A potential strategy to mitigate these costs involves the production of PHAs and other high-value bioproducts, such as carotenoids simultaneously in microbial systems, utilizing shared metabolic pathways. Carotenoids, known for their antioxidant properties and applications in the food, cosmetics and pharmaceutical industries, offer substantial market potential. This review presents a comprehensive overview of the current progress in polyhydroxyalkanoate and carotenoid co-production, explores the co-synthesis pathways, addresses the challenges involved and explores the future prospects of this integrated bioprocess. By diversifying the product portfolio and optimizing microbial production systems, the co-production strategy could pave the way for more sustainable and economically viable bioplastics.
Collapse
Affiliation(s)
- Tejas Jagannath Naik
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| | - Bhakti Balkrishna Salgaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| |
Collapse
|
5
|
Ben Abdallah M, Saadaoui I, Al-Ghouti MA, Zouari N, Hahladakis JN, Chamkha M, Sayadi S. Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178452. [PMID: 39824097 DOI: 10.1016/j.scitotenv.2025.178452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…). This is of great importance since these extremophiles can use low-cost substrates, produce high PHA content of copolymers or different PHA monomer compositions. They can present high potential for reducing the costs of PHA fermentation and recovery processes, making their use in commercial applications easier. However, little is known about the potential of halophiles in advancing the PHA production from renewable waste materials at lab-scale and their successful implementation at industrial-scale. This review presents actual advances in PHA production by halophilic pure/engineered species (e.g. Haloferax mediterranei, Halomonas spp.) and mixed microbial consortia (MMC) using organic waste streams. The development of optimal PHA production process involves robust genetic engineering strategies, advanced fermentation processes using mixed microbial consortia versus pure/engineered strains as well as algal biomass as feedstocks.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia.
| | - Imen Saadaoui
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohammad A Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| | - John N Hahladakis
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
6
|
Zhang X, An Z, Wang J, Lansing S, Kumar Amradi N, Sazzadul Haque M, Wang ZW. Long-term effects of cycle time and volume exchange ratio on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from food waste digestate by Haloferax mediterranei cultivated in sequencing batch reactors for 450 days. BIORESOURCE TECHNOLOGY 2025; 416:131771. [PMID: 39528027 DOI: 10.1016/j.biortech.2024.131771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Food wastedigestatewas fed into a sequencing batch reactor (SBR) forHaloferax mediterranei(HM) to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). This SBR was operated uninterruptedly for 450 days to test its stability, during which the cycle time and volume exchange ratiowere varied to understand their impacts on the PHBV fermentation performance under ranged organic loading rates (OLR). Results showed that 1) PHBV productivity was proportional to OLR of food wastedigestate; 2) substrate and product inhibitions were two limiting factors constraining substrate utilization and PHBV yields; 3) PHBV titer was dependent on the hydraulic retention time of the SBR while a volume exchange ratio lower than 0.5 is unfavorable due to the product inhibitor accumulation. This study for the first time demonstrated that the long-term stability of food waste-fed PHBV production byHMand revealed that inhibition effects could be barriers in SBR limiting the full-scale application of the technology.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Biological System Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhaohui An
- Department of Biological System Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jiefu Wang
- Department of Biological System Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Stephanie Lansing
- Department of Environmental Science and Technology, University of Maryland, Maryland, MD 20742, USA
| | - Naresh Kumar Amradi
- Department of Environmental Science and Technology, University of Maryland, Maryland, MD 20742, USA
| | - Md Sazzadul Haque
- Department of Biological System Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhi-Wu Wang
- Department of Biological System Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
7
|
Hu X, Sun W, Zhang M, Guo W, Yang S, Zhu L, Xiao X, Xu X, Wei W. Prediction strategy for screening functional Haloarchaea strains with qPCR assays. J Microbiol Methods 2024; 226:107029. [PMID: 39245367 DOI: 10.1016/j.mimet.2024.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
As an extremophile resource, functional Haloarchaea strains are extremely time-consuming to screen. Here, taking the screening of low-salt-tolerant strains as an example, based on the qPCR assays that shortened time by 4-7 times and achieved 100 % accuracy, a universal strategy for rapid and accurate screening of functional Haloarchaea strains was established.
Collapse
Affiliation(s)
- Xinyu Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wenxiang Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Meng Zhang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Wenjun Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shujing Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiangru Xu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Wei Wei
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
8
|
Longo A, Fanelli F, Villano M, Montemurro M, Rizzello CG. Bioplastic Production from Agri-Food Waste through the Use of Haloferax mediterranei: A Comprehensive Initial Overview. Microorganisms 2024; 12:1038. [PMID: 38930420 PMCID: PMC11205408 DOI: 10.3390/microorganisms12061038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The research on bioplastics (both biobased and biodegradable) is steadily growing and discovering environmentally friendly substitutes for conventional plastic. This review highlights the significance of bioplastics, analyzing, for the first time, the state of the art concerning the use of agri-food waste as an alternative substrate for biopolymer generation using Haloferax mediterranei. H. mediterranei is a highly researched strain able to produce polyhydroxybutyrate (PHB) since it can grow and produce bioplastic in high-salinity environments without requiring sterilization. Extensive research has been conducted on the genes and pathways responsible for PHB production using H. mediterranei to find out how fermentation parameters can be regulated to enhance cell growth and increase PHB accumulation. This review focuses on the current advancements in utilizing food waste as a substitute for costly substrates to reduce feedstock expenses. Specifically, it examines the production of biomass and the recovery of PHB from agri-food waste. Furthermore, it emphasizes the characterization of PHB and the significance of hydroxyvalerate (HV) abundance in the formation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer. The downstream processing options are described, and the crucial factors associated with industrial scale-up are assessed, including substrates, bioreactors, process parameters, and bioplastic extraction and purification. Additionally, the economic implications of various options are discussed.
Collapse
Affiliation(s)
- Angela Longo
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.G.R.)
| | - Francesca Fanelli
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, 70126 Bari, Italy;
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Montemurro
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, 70126 Bari, Italy;
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.G.R.)
| |
Collapse
|
9
|
Zhang J, Yan X, Park H, Scrutton NS, Chen T, Chen GQ. Nonsterile microbial production of chemicals based on Halomonas spp. Curr Opin Biotechnol 2024; 85:103064. [PMID: 38262074 DOI: 10.1016/j.copbio.2023.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
The use of extremophile organisms such as Halomomas spp. can eliminate the need for fermentation sterilization, significantly reducing process costs. Microbial fermentation is considered a pivotal strategy to reduce reliance on fossil fuel resources; however, sustainable processes continue to incur higher costs than their chemical industry counterparts. Most organisms require equipment sterilization to prevent contamination, a practice that introduces complexity and financial strain. Fermentations involving extremophile organisms can eliminate the sterilization process, relying instead on conditions that are conductive solely to the growth of the desired organism. This review discusses current challenges in pilot- and industrial-scale bioproduction when using the extremophile bacteria Halomomas spp. under nonsterile conditions.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
11
|
Asiri F. Polyhydroxyalkanoates for Sustainable Aquaculture: A Review of Recent Advancements, Challenges, and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2034-2058. [PMID: 38227436 DOI: 10.1021/acs.jafc.3c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable biopolymers produced by prokaryotic microbes, which, at the same time, can be applied as single-cell proteins (SCPs), growing on renewable waste-derived substrates. These PHA polymers have gained increasing attention as a sustainable alternative to conventional plastics. One promising application of PHA and PHA-rich SCPs lies within the aquaculture food industry, where they hold potential as feed additives, biocontrol agents against diseases, and immunostimulants. Nevertheless, the cost of PHA production and application remains high, partly due to expensive substrates for cultivating PHA-accumulating SCPs, costly sterilization, energy-intensive SCPs harvesting techniques, and toxic PHA extraction and purification processes. This review summarizes the current state of PHA production and its application in aquaculture. The structure and classification of PHA, microbial sources, cultivation substrates, biosynthesis pathways, and the production challenges and solutions are discussed. Next, the potential of PHA application in aquaculture is explored, focusing on aquaculture challenges, common and innovative PHA-integrated farming practices, and PHA mechanisms in inhibiting pathogens, enhancing the immune system, and improving growth and gut health of various aquatic species. Finally, challenges and future research needs for PHA production and application in aquaculture are identified. Overall, this review paper provides a comprehensive overview of the potential of PHA in aquaculture and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
12
|
Ma Y, Ye JW, Lin Y, Yi X, Wang X, Wang H, Huang R, Wu F, Wu Q, Liu X, Chen GQ. Flux optimization using multiple promoters in Halomonas bluephagenesis as a model chassis of the next generation industrial biotechnology. Metab Eng 2024; 81:249-261. [PMID: 38159902 DOI: 10.1016/j.ymben.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/16/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Predictability and robustness are challenges for bioproduction because of the unstable intracellular synthetic activities. With the deeper understanding of the gene expression process, fine-tuning has become a meaningful tool for biosynthesis optimization. This study characterized several gene expression elements and constructed a multiple inducible system that responds to ten different small chemical inducers in halophile bacterium Halomonas bluephagenesis. Genome insertion of regulators was conducted for the purpose of gene cluster stabilization and regulatory plasmid simplification. Additionally, dynamic ranges of the multiple inducible systems were tuned by promoter sequence mutations to achieve diverse scopes for high-resolution gene expression control. The multiple inducible system was successfully employed to precisely control chromoprotein expression, lycopene and poly-3-hydroxybutyrate (PHB) biosynthesis, resulting in colorful bacterial pictures, optimized cell growth, lycopene and PHB accumulation. This study demonstrates a desirable approach for fine-tuning of rational and efficient gene expressions, displaying the significance for metabolic pathway optimization.
Collapse
Affiliation(s)
- Yueyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruiyan Huang
- Garrison Forest School, Owings Mills, MD, 21117, USA
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Beijing, 101309, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysts, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
13
|
Fuchs W, Rachbauer L, Rittmann SKMR, Bochmann G, Ribitsch D, Steger F. Eight Up-Coming Biotech Tools to Combat Climate Crisis. Microorganisms 2023; 11:1514. [PMID: 37375016 DOI: 10.3390/microorganisms11061514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Biotechnology has a high potential to substantially contribute to a low-carbon society. Several green processes are already well established, utilizing the unique capacity of living cells or their instruments. Beyond that, the authors believe that there are new biotechnological procedures in the pipeline which have the momentum to add to this ongoing change in our economy. Eight promising biotechnology tools were selected by the authors as potentially impactful game changers: (i) the Wood-Ljungdahl pathway, (ii) carbonic anhydrase, (iii) cutinase, (iv) methanogens, (v) electro-microbiology, (vi) hydrogenase, (vii) cellulosome and, (viii) nitrogenase. Some of them are fairly new and are explored predominantly in science labs. Others have been around for decades, however, with new scientific groundwork that may rigorously expand their roles. In the current paper, the authors summarize the latest state of research on these eight selected tools and the status of their practical implementation. We bring forward our arguments on why we consider these processes real game changers.
Collapse
Affiliation(s)
- Werner Fuchs
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Lydia Rachbauer
- Lawrence Berkeley National Laboratory, Deconstruction Division at the Joint Bioenergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria
| | - Günther Bochmann
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Doris Ribitsch
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Franziska Steger
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| |
Collapse
|
14
|
de Vrije T, Nagtegaal RM, Veloo RM, Kappen FHJ, de Wolf FA. Medium chain length polyhydroxyalkanoate produced from ethanol by Pseudomonas putida grown in liquid obtained from acidogenic digestion of organic municipal solid waste. BIORESOURCE TECHNOLOGY 2023; 375:128825. [PMID: 36878376 DOI: 10.1016/j.biortech.2023.128825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Production of medium chain length polyhydroxyalkanoate (mcl-PHA) up to about 6 g.L-1 was obtained by feeding ethanol to Pseudomonas putida growing in liquid obtained from acidogenic digestion of organic municipal solid waste. Washing the wet, heat-inactivated Pseudomonas cells at the end of the fermentation with ethanol obviated the need of drying the biomass and enabled the removal of contaminating lipids before solvent-mediated extraction of PHA. Using 'green' solvents, 90 to near 100% of the mcl-PHA was extracted and purities of 71-78% mcl-PHA were reached already by centrifugation and decantation without further filtration for biomass removal. The mcl-PHA produced in this way consists of 10-18% C8, 72-78% C10 and 8-12% C12 chains (entirely medium chain length), has a crystallinity and melting temperature of ∼13% and ∼49 °C, respectively, and is a stiff rubberlike, colourless material at room temperature.
Collapse
Affiliation(s)
- Truus de Vrije
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands.
| | - Ricardo M Nagtegaal
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| | - Ruud M Veloo
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| | - Frans H J Kappen
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|