1
|
Smith GP, Zhu C, Zernenkov M, Frechet G, Clark NA. A twist grain boundary phase in aqueous solutions of the nucleic acid tetramer GTAC. Proc Natl Acad Sci U S A 2025; 122:e2416142122. [PMID: 40294266 DOI: 10.1073/pnas.2416142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
At high concentration, long Watson/Crick (WC) double-helixed DNA forms columnar crystal or liquid crystal phases of linear, parallel duplex chains packed on periodic lattices. This can also be a structural motif of short NA oligomers such as the 5'-GTAC-3' studied here, which makes four-base WC duplexes having hydrophobic blunt ends. End-to-end aggregation then assembles these duplexes into columns and columnar phases are stabilized, in spite of breaks in the double helix every four bases. But the new degrees of freedom introduced by such breaks also enable opportunities for a more diverse palette of self-assembly modes, producing striking self-assemblies of DNA that would not be achievable with contiguous polymers. These include recently reported three-dimensional (3D) periodic low-density nanoscale networks of GCCG, and the twist grain boundary (TGB) phase presented here. In the TGB, columns of GTAC pairs assemble into monolayer sheets in which the duplex columns are mutually parallel. However, unlike in the columnar crystals, these sheets stack in helical fashion into lamellar arrays in which the column axis of each layer is rotated through a 60° angle with respect to the columns in neighboring layers. This assembly of DNA is unique in that it the fills a 3D volume wherein the major grooves of columns in each layer mutually enter and interlock with the major grooves of columns in neighboring layers. This locking is optimized by small adjustments in structure enabled by the breaks in the duplex backbones.
Collapse
Affiliation(s)
- Gregory P Smith
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Mikail Zernenkov
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY 11973
| | - Guillaume Frechet
- Commissariat à l'énergie atomique et aux énergies alternatives-Laboratoire d'électronique et de technologie de l'information (CEA-LETI), Grenoble 38054, France
| | - Noel A Clark
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
2
|
Kole SJ, Alexander GP, Maitra A, Ramaswamy S. Chirality and odd mechanics in active columnar phases. PNAS NEXUS 2024; 3:pgae398. [PMID: 39445048 PMCID: PMC11497608 DOI: 10.1093/pnasnexus/pgae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Chiral active materials display odd dynamical effects in both their elastic and viscous responses. We show that the most symmetric mesophase with 2D odd elasticity in three dimensions is chiral, polar, and columnar, with 2D translational order in the plane perpendicular to the columns and no elastic restoring force for their relative sliding. We derive its hydrodynamic equations from those of a chiral active variant of model H. The most striking prediction of the odd dynamics is two distinct types of column oscillation whose frequencies do not vanish at zero wavenumber. In addition, activity leads to a buckling instability coming from the generic force-dipole active stress analogous to the mechanical Helfrich-Hurault instability in passive materials, while the chiral torque-dipole active stress fundamentally modifies the instability by the selection of helical column undulations.
Collapse
Affiliation(s)
- S J Kole
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560 012, India
- INI, University of Cambridge, Cambridge CB3 0EH, United Kingdom
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0EH, United Kingdom
| | - Gareth P Alexander
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, Cergy-Pontoise Cedex F-95032, France
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, Paris F-75005, France
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560 012, India
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560 089, India
| |
Collapse
|
3
|
Makino T, Nakane D, Tanaka M. Self-Assembled Micro-Sized Hexagons Built from Short DNA in a Crowded Environment. Chembiochem 2022; 23:e202200360. [PMID: 36200404 DOI: 10.1002/cbic.202200360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Indexed: 02/03/2023]
Abstract
DNA programmable structures of various morphologies have attracted extensive attention due to their potential for materials science and biomedical applications. Here, we report the formation of micro-sized hexagons via assembly of only one pair of short double-stranded DNA in buffer-salt poly(ethylene glycol) solution. Each DNA strand had complementary bases with a two-base overhang. The procedure of heating and subsequent cooling of blunt-ended double-stranded DNA resulted in different assemblies. These results indicated that end-to-end adhesion at the terminals induced by complementary overhangs were required to construct the hexagonal DNA assemblies. The stable formation of the hexagons was highly dependent on heating temperature. In addition, concentration adjustments of DNA and poly(ethylene glycol) were essential. Circular dichroism spectral measurements and polarization microscopy observations indicated parallel alignment of double-stranded DNA in the hexagonal platelet. Self-assembled micro-sized hexagons composed of simple building blocks may have great potential for future biomedical device development.
Collapse
Affiliation(s)
- Tetsunao Makino
- Department of Engineering Science Graduate School of Informatics and Engineering, The University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Daisuke Nakane
- Department of Engineering Science Graduate School of Informatics and Engineering, The University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Makiko Tanaka
- Department of Engineering Science Graduate School of Informatics and Engineering, The University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
4
|
Abbasi Moud A. Chiral Liquid Crystalline Properties of Cellulose Nanocrystals: Fundamentals and Applications. ACS OMEGA 2022; 7:30673-30699. [PMID: 36092570 PMCID: PMC9453985 DOI: 10.1021/acsomega.2c03311] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
By using an independent self-assembly process that is occasionally controlled by evaporation, cellulose nanocrystals (CNCs) may create films (pure or in conjunction with other materials) that have iridescent structural colors. The self-forming chiral nematic structures and environmental safety of a new class of photonic liquid crystals (LCs), referred to as CNCs and CNC-embedded materials, make them simple to make and treat. The structure of the matrix interacts with light to give structural coloring, as opposed to other dye pigments, which interact with light by adsorption and reflection. Understanding how CNC self-assembly constructs structures is vital in several fields, including physics, science, and engineering. To constructure this review, the colloidal characteristics of CNC particles and their behavior during the formation of liquid crystals and gelling were studied. Then, some of the recognized applications for these naturally occurring nanoparticles were summarized. Different factors were considered, including the CNC aspect ratio, surface chemistry, concentration, the amount of time needed to produce an anisotropic phase, and the addition of additional substances to the suspension medium. The effects of alignment and the drying process conditions on structural changes are also covered. The focus of this study however is on the optical properties of the films as well as the impact of the aforementioned factors on the final transparency, iridescent colors, and versus the overall response of these bioinspired photonic materials. Control of the examined factors was found to be necessary to produce reliable materials for optoelectronics, intelligent inks and papers, transparent flexible support for electronics, and decorative coatings and films.
Collapse
|
5
|
Mukherjee A, de Izarra A, Degrouard J, Olive E, Maiti PK, Jang YH, Lansac Y. Protamine-Controlled Reversible DNA Packaging: A Molecular Glue. ACS NANO 2021; 15:13094-13104. [PMID: 34328301 DOI: 10.1021/acsnano.1c02337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Packaging paternal genome into tiny sperm nuclei during spermatogenesis requires 106-fold compaction of DNA, corresponding to a 10-20 times higher compaction than in somatic cells. While such a high level of compaction involves protamine, a small arginine-rich basic protein, the precise mechanism at play is still unclear. Effective pair potential calculations and large-scale molecular dynamics simulations using a simple idealized model incorporating solely electrostatic and steric interactions clearly demonstrate a reversible control on DNA condensates formation by varying the protamine-to-DNA ratio. Microscopic states and condensate structures occurring in semidilute solutions of short DNA fragments are in good agreement with experimental phase diagram and cryoTEM observations. The reversible microscopic mechanisms induced by protamination modulation should provide valuable information to improve a mechanistic understanding of early and intermediate stages of spermatogenesis where an interplay between condensation and liquid-liquid phase separation triggered by protamine expression and post-translational regulation might occur. Moreover, recent vaccines to prevent virus infections and cancers using protamine as a packaging and depackaging agent might be fine-tuned for improved efficiency using a protamination control.
Collapse
Affiliation(s)
- Arnab Mukherjee
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Ambroise de Izarra
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Jeril Degrouard
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| | - Enrick Olive
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
6
|
Lopes JT, Romano F, Grelet E, Franco LFM, Giacometti A. Phase behavior of hard cylinders. J Chem Phys 2021; 154:104902. [PMID: 33722037 DOI: 10.1063/5.0040942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Using isobaric Monte Carlo simulations, we map out the entire phase diagram of a system of hard cylindrical particles of length (L) and diameter (D) using an improved algorithm to identify the overlap condition between two cylinders. Both the prolate L/D > 1 and the oblate L/D < 1 phase diagrams are reported with no solution of continuity. In the prolate L/D > 1 case, we find intermediate nematic N and smectic SmA phases in addition to a low density isotropic I and a high density crystal X phase with I-N-SmA and I-SmA-X triple points. An apparent columnar phase C is shown to be metastable, as in the case of spherocylinders. In the oblate L/D < 1 case, we find stable intermediate cubatic (Cub), nematic (N), and columnar (C) phases with I-N-Cub, N-Cub-C, and I-Cub-C triple points. Comparison with previous numerical and analytical studies is discussed. The present study, accounting for the explicit cylindrical shape, paves the way to more sophisticated models with important biological applications, such as viruses and nucleosomes.
Collapse
Affiliation(s)
- Joyce T Lopes
- Universidade Estadual de Campinas, Faculdade de Engenharia Química, Departamento de Engenharia de Sistemas Químicos, Campinas, Brazil
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
| | - Eric Grelet
- Université de Bordeaux, CNRS, Centre de Recherche Paul-Pascal, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Luís F M Franco
- Universidade Estadual de Campinas, Faculdade de Engenharia Química, Departamento de Engenharia de Sistemas Químicos, Campinas, Brazil
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
| |
Collapse
|
7
|
Mirror Symmetry Breaking in Liquids and Their Impact on the Development of Homochirality in Abiogenesis: Emerging Proto-RNA as Source of Biochirality? Symmetry (Basel) 2020. [DOI: 10.3390/sym12071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent progress in mirror symmetry breaking and chirality amplification in isotropic liquids and liquid crystalline cubic phases of achiral molecule is reviewed and discussed with respect to its implications for the hypothesis of emergence of biological chirality. It is shown that mirror symmetry breaking takes place in fluid systems where homochiral interactions are preferred over heterochiral and a dynamic network structure leads to chirality synchronization if the enantiomerization barrier is sufficiently low, i.e., that racemization drives the development of uniform chirality. Local mirror symmetry breaking leads to conglomerate formation. Total mirror symmetry breaking requires either a proper phase transitions kinetics or minor chiral fields, leading to stochastic and deterministic homochirality, respectively, associated with an extreme chirality amplification power close to the bifurcation point. These mirror symmetry broken liquids are thermodynamically stable states and considered as possible systems in which uniform biochirality could have emerged. A model is hypothesized, which assumes the emergence of uniform chirality by chirality synchronization in dynamic “helical network fluids” followed by polymerization, fixing the chirality and leading to proto-RNA formation in a single process.
Collapse
|
8
|
Shoura MJ, Giovan SM, Vetcher AA, Ziraldo R, Hanke A, Levene SD. Loop-closure kinetics reveal a stable, right-handed DNA intermediate in Cre recombination. Nucleic Acids Res 2020; 48:4371-4381. [PMID: 32182357 PMCID: PMC7192630 DOI: 10.1093/nar/gkaa153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 11/12/2022] Open
Abstract
In Cre site-specific recombination, the synaptic intermediate is a recombinase homotetramer containing a pair of loxP DNA target sites. The enzyme system's strand-exchange mechanism proceeds via a Holliday-junction (HJ) intermediate; however, the geometry of DNA segments in the synapse has remained highly controversial. In particular, all crystallographic structures are consistent with an achiral, planar Holliday-junction (HJ) structure, whereas topological assays based on Cre-mediated knotting of plasmid DNAs are consistent with a right-handed chiral junction. We use the kinetics of loop closure involving closely spaced (131-151 bp) loxP sites to investigate the in-aqueo ensemble of conformations for the longest-lived looped DNA intermediate. Fitting the experimental site-spacing dependence of the loop-closure probability, J, to a statistical-mechanical theory of DNA looping provides evidence for substantial out-of-plane HJ distortion, which unequivocally stands in contrast to the square-planar intermediate geometry from Cre-loxP crystal structures and those of other int-superfamily recombinases. J measurements for an HJ-isomerization-deficient Cre mutant suggest that the apparent geometry of the wild-type complex is consistent with temporal averaging of right-handed and achiral structures. Our approach connects the static pictures provided by crystal structures and the natural dynamics of macromolecules in solution, thus advancing a more comprehensive dynamic analysis of large nucleoprotein structures and their mechanisms.
Collapse
Affiliation(s)
- Massa J Shoura
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stefan M Giovan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Alexandre A Vetcher
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Riccardo Ziraldo
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas Hanke
- Department of Physics, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Stephen D Levene
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Physics, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
9
|
Wensink HH, Trizac E. Generalized Onsager theory for strongly anisometric patchy colloids. J Chem Phys 2014; 140:024901. [PMID: 24437905 DOI: 10.1063/1.4851217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The implications of soft "patchy" interactions on the orientational disorder-order transition of strongly elongated colloidal rods and flat disks is studied within a simple Onsager-van der Waals density functional theory. The theory provides a generic framework for studying the liquid crystal phase behaviour of highly anisometric cylindrical colloids which carry a distinct geometrical pattern of repulsive or attractive soft interactions localized on the particle surface. In this paper, we apply our theory to the case of charged rods and disks for which the local electrostatic interactions can be described by a screened-Coulomb potential. We consider infinitely thin rod like cylinders with a uniform line charge and infinitely thin discotic cylinders with several distinctly different surface charge patterns. Irrespective of the backbone shape the isotropic-nematic phase diagrams of charged colloids feature a generic destabilization of nematic order at low ionic strength, a dramatic narrowing of the biphasic density region, and a reentrant phenomenon upon reducing the electrostatic screening. The low screening regime is characterized by a complete suppression of nematic order in favor of positionally ordered liquid crystal phases.
Collapse
Affiliation(s)
- H H Wensink
- Laboratoire de Physique des Solides - UMR 8502, Université Paris-Sud and CNRS, 91405 Orsay Cedex, France
| | - E Trizac
- Laboratoire de Physique Théorique et Modèles Statistiques - UMR 8626, Université Paris-Sud and CNRS, 91405 Orsay Cedex, France
| |
Collapse
|
10
|
DE FRUTOS M, LEFORESTIER A, LIVOLANT F. RELATIONSHIP BETWEEN THE GENOME PACKING IN THE BACTERIOPHAGE CAPSID AND THE KINETICS OF DNA EJECTION. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013500069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a general survey of experimental and theoretical observations of DNA structure and in vitro ejection kinetics for different bacteriophage species. In some species, like T5, the ejection may present pauses and arrests that have not been detected in others species like Lambda. We propose hypotheses to explain such differences and we discuss how the experimental conditions may be important for their detection. Our work highlights the role of DNA organization inside the bacteriophage capsid on the stochastic and out of equilibrium nature of the ejection process.
Collapse
Affiliation(s)
- M. DE FRUTOS
- Institut de Biologie et Biochimie Moléculaire et Cellulaire, UMR CNRS 8619, Bât 430, Université Paris Sud, 91405 Orsay cedex, France
| | - A. LEFORESTIER
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, Bât 510, Orsay 91405, France
| | - F. LIVOLANT
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, Bât 510, Orsay 91405, France
| |
Collapse
|
11
|
Tschierske C. Entwicklung struktureller Komplexität durch Selbstorganisation in flüssigkristallinen Systemen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300872] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Leforestier A. Polymorphism of DNA conformation inside the bacteriophage capsid. J Biol Phys 2013; 39:201-13. [PMID: 23860869 PMCID: PMC3662419 DOI: 10.1007/s10867-013-9315-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022] Open
Abstract
Double-stranded DNA bacteriophage genomes are packaged into their icosahedral capsids at the highest densities known so far (about 50 % w:v). How the molecule is folded at such density and how its conformation changes upon ejection or packaging are fascinating questions still largely open. We review cryo-TEM analyses of DNA conformation inside partially filled capsids as a function of the physico-chemical environment (ions, osmotic pressure, temperature). We show that there exists a wide variety of DNA conformations. Strikingly, the different observed structures can be described by some of the different models proposed over the years for DNA organisation inside bacteriophage capsids: either spool-like structures with axial or concentric symmetries, or liquid crystalline structures characterised by a DNA homogeneous density. The relevance of these conformations for the understanding of DNA folding and unfolding upon ejection and packaging in vivo is discussed.
Collapse
Affiliation(s)
- Amélie Leforestier
- Laboratoire de Physqiue des Solides, CNRS, UMR 8502, Université Paris Sud, Orsay, France.
| |
Collapse
|
13
|
Self-assembly of thin plates from micrococcal nuclease-digested chromatin of metaphase chromosomes. Biophys J 2013; 103:567-575. [PMID: 22947873 DOI: 10.1016/j.bpj.2012.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
The three-dimensional organization of the enormously long DNA molecules packaged within metaphase chromosomes has been one of the most elusive problems in structural biology. Chromosomal DNA is associated with histones and different structural models consider that the resulting long chromatin fibers are folded forming loops or more irregular three-dimensional networks. Here, we report that fragments of chromatin fibers obtained from human metaphase chromosomes digested with micrococcal nuclease associate spontaneously forming multilaminar platelike structures. These self-assembled structures are identical to the thin plates found previously in partially denatured chromosomes. Under metaphase ionic conditions, the fragments that are initially folded forming the typical 30-nm chromatin fibers are untwisted and incorporated into growing plates. Large plates can be self-assembled from very short chromatin fragments, indicating that metaphase chromatin has a high tendency to generate plates even when there are many discontinuities in the DNA chain. Self-assembly at 37°C favors the formation of thick plates having many layers. All these results demonstrate conclusively that metaphase chromatin has the intrinsic capacity to self-organize as a multilayered planar structure. A chromosome structure consistent of many stacked layers of planar chromatin avoids random entanglement of DNA, and gives compactness and a high physical consistency to chromatids.
Collapse
|
14
|
Liu B, Han L, Che S. Silica mineralisation of DNA chiral packing: helicity control and formation mechanism of impeller-like DNA–silica helical architectures. J Mater Chem B 2013; 1:2843-2850. [DOI: 10.1039/c3tb20244e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Liu B, Han L, Che S. Formation of impeller-like helical DNA-silica complexes by polyamines induced chiral packing. Interface Focus 2012; 2:608-16. [PMID: 24098845 DOI: 10.1098/rsfs.2011.0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/01/2012] [Indexed: 11/12/2022] Open
Abstract
The helicity of DNA and its long-range chiral packing are widespread phenomena; however, the packing mechanism remains poorly understood both in vivo and in vitro. Here, we report the extraordinary DNA chiral self-assembly by silica mineralization, together with circular dichroism measurements and electron microscopy studies on the structure and morphology of the products. Mg(2+) ion and diethylenetriamine were found to induce right- and left-handed chiral DNA packing with two-dimensional-square p4mm mesostructures, respectively, to give corresponding enantiomeric impeller-like helical DNA-silica complexes. Moreover, formation of macroscopic impeller-like helical architectures depends on the types of polyamines and co-structure-directing agents and pH values of reaction solution. It has been suggested that interaction strength between negatively charged DNA phosphate strands and positively charged counterions may be the key factor for the induction of DNA packing handedness.
Collapse
Affiliation(s)
- Ben Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Composite Materials, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | | | | |
Collapse
|
16
|
Liu B, Han L, Che S. Formation of Enantiomeric Impeller-Like Helical Architectures by DNA Self-Assembly and Silica Mineralization. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105445] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Liu B, Han L, Che S. Formation of Enantiomeric Impeller-Like Helical Architectures by DNA Self-Assembly and Silica Mineralization. Angew Chem Int Ed Engl 2011; 51:923-7. [DOI: 10.1002/anie.201105445] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/18/2011] [Indexed: 11/09/2022]
|
18
|
Cherstvy AG. Electrostatic interactions in biological DNA-related systems. Phys Chem Chem Phys 2011; 13:9942-68. [DOI: 10.1039/c0cp02796k] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
The bacteriophage genome undergoes a succession of intracapsid phase transitions upon DNA ejection. J Mol Biol 2009; 396:384-95. [PMID: 19944702 DOI: 10.1016/j.jmb.2009.11.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/16/2009] [Accepted: 11/19/2009] [Indexed: 11/24/2022]
Abstract
Double-stranded DNA bacteriophage genomes are densely packaged into capsids until the ejection is triggered upon interaction of the tail with the bacterial receptor. Using cryo-electron microscopy, we describe the organization of the genome in the full capsid of T5 and show how it undergoes a series of phase transitions upon progressive ejection when the encapsidated DNA length decreases. Monodomains of hexagonally crystallized DNA segments initially form a three-dimensional lattice of defects. The structure turns liquid crystalline (two-dimensional hexagonal and then cholesteric) and finally isotropic. These structures suggest a mechanism in which defects of the full capsid would initiate the ejection and introduce the necessary fluidity to relax the constrained mosaic crystal to let the genome start flowing out of the capsid.
Collapse
|
20
|
Abstract
The structure of DNA toroids made of individual DNA molecules of various lengths (3,000 to 55,000 bp) was studied, by using partially filled bacteriophage capsids in conjunction with cryoelectron microscopy. The tetravalent cation spermine was diffused through the capsid to condense the DNA under conditions that were chosen to produce a hexagonal packing. Our results demonstrate that the frustration arising between chirality and hexagonal packing leads to the formation of twist walls; the correlation between helices combined with their strong curvature impose variations of the DNA helical pitch.
Collapse
|
21
|
Cherstvy AG. DNA cholesteric phases: the role of DNA molecular chirality and DNA-DNA electrostatic interactions. J Phys Chem B 2008; 112:12585-95. [PMID: 18785770 DOI: 10.1021/jp801220p] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DNA molecules form dense liquid-crystalline twisted phases both in vivo and in vitro. How the microscopic DNA chirality is transferred into intermolecular twist in these mesophases and what is the role of chiral DNA-DNA electrostatic interactions is still not completely clear. In this paper, we first give an extended overview of experimental observations on DNA cholesteric phases and discuss the factors affecting their stability. Then, we consider the effects of steric and electrostatic interactions of grooved helical molecules on the sign of cholesteric twist. We present some theoretical results on the strength of DNA-DNA chiral electrostatic interactions, on DNA-DNA azimuthal correlations in cholesteric phases, on the value of DNA cholesteric pitch, and on the regions of existence of DNA chiral phases stabilized by electrostatic interactions. We suggest for instance that 146 bp long DNA fragments with stronger affinities for the nucleosome formation can form less chiral cholesteric phases, with a larger left-handed cholesteric pitch. Also, the value of left-handed pitch formed in assemblies of homologous DNA fragments is predicted to be smaller than that of randomly sequenced DNAs. We expect also the cholesteric assemblies of several-kbp-long DNAs to require higher external osmotic pressures for their stability than twisted phases of short nucleosomal DNA fragments at the same DNA lattice density.
Collapse
Affiliation(s)
- A G Cherstvy
- Institut für Festköperforschung, Theorie-II, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|