2
|
Bazin D, Lucas IT, Rouzière S, Elkaim E, Mocuta C, Réguer S, Reid DG, Mathurin J, Dazzi A, Deniset-Besseau A, Petay M, Frochot V, Haymann JP, Letavernier E, Verpont MC, Foy E, Bouderlique E, Colboc H, Daudon M. Profile of an “at cutting edge” pathology laboratory for pathological human deposits: from nanometer to in vivo scale analysis on large scale facilities. CR CHIM 2022. [DOI: 10.5802/crchim.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Leroy C, Bonhomme-Coury L, Gervais C, Tielens F, Babonneau F, Daudon M, Bazin D, Letavernier E, Laurencin D, Iuga D, Hanna J, Smith M, Bonhomme C. A novel multinuclear solid-state NMR approach for the characterization of kidney stones. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:653-671. [PMID: 37905220 PMCID: PMC10539836 DOI: 10.5194/mr-2-653-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/15/2021] [Indexed: 11/01/2023]
Abstract
The spectroscopic study of pathological calcifications (including kidney stones) is extremely rich and helps to improve the understanding of the physical and chemical processes associated with their formation. While Fourier transform infrared (FTIR) imaging and optical/electron microscopies are routine techniques in hospitals, there has been a dearth of solid-state NMR studies introduced into this area of medical research, probably due to the scarcity of this analytical technique in hospital facilities. This work introduces effective multinuclear and multidimensional solid-state NMR methodologies to study the complex chemical and structural properties characterizing kidney stone composition. As a basis for comparison, three hydrates (n = 1 , 2 and 3) of calcium oxalate are examined along with nine representative kidney stones. The multinuclear magic angle spinning (MAS) NMR approach adopted investigates the 1 H , 13 C , 31 P and 31 P nuclei, with the 1 H and 13 C MAS NMR data able to be readily deconvoluted into the constituent elements associated with the different oxalates and organics present. For the first time, the full interpretation of highly resolved 1 H NMR spectra is presented for the three hydrates, based on the structure and local dynamics. The corresponding 31 P MAS NMR data indicates the presence of low-level inorganic phosphate species; however, the complexity of these data make the precise identification of the phases difficult to assign. This work provides physicians, urologists and nephrologists with additional avenues of spectroscopic investigation to interrogate this complex medical dilemma that requires real, multitechnique approaches to generate effective outcomes.
Collapse
Affiliation(s)
- César Leroy
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Charles Gerhardt Montpellier, CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Laure Bonhomme-Coury
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| | - Christel Gervais
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frederik Tielens
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
- General Chemistry (ALGC) – Materials Modelling Group, Vrije
Universiteit Brussel (Free University Brussels – VUB), Pleinlaan 2, 1050
Brussels, Belgium
| | - Florence Babonneau
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| | - Michel Daudon
- AP-HP, Hôpital Tenon, Explorations Fonctionnelles
Multidisciplinaires et INSERM UMRS 1155, Sorbonne Université, Hôpital Tenon, Paris, France
| | - Dominique Bazin
- Institut de Chimie Physique, UMR CNRS 8000, Bâtiment 350,
Université Paris Saclay, 91405 Orsay CEDEX, France
- Laboratoire de Physique des Solides, UMR CNRS 8502, Bâtiment 510, Université Paris-Sud, 91405 Orsay CEDEX, France
| | - Emmanuel Letavernier
- AP-HP, Hôpital Tenon, Explorations Fonctionnelles
Multidisciplinaires et INSERM UMRS 1155, Sorbonne Université, Hôpital Tenon, Paris, France
| | - Danielle Laurencin
- Institut Charles Gerhardt Montpellier, CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Dinu Iuga
- Department of Physics, University of Warwick, Gibbet Hill Road,
Coventry CV4 7AL, United Kingdom
| | - John V. Hanna
- Department of Physics, University of Warwick, Gibbet Hill Road,
Coventry CV4 7AL, United Kingdom
| | - Mark E. Smith
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Christian Bonhomme
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
6
|
Gardner A, Carpenter G, So PW. Salivary Metabolomics: From Diagnostic Biomarker Discovery to Investigating Biological Function. Metabolites 2020; 10:E47. [PMID: 31991929 PMCID: PMC7073850 DOI: 10.3390/metabo10020047] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolomic profiling of biofluids, e.g., urine, plasma, has generated vast and ever-increasing amounts of knowledge over the last few decades. Paradoxically, metabolomic analysis of saliva, the most readily-available human biofluid, has lagged. This review explores the history of saliva-based metabolomics and summarizes current knowledge of salivary metabolomics. Current applications of salivary metabolomics have largely focused on diagnostic biomarker discovery and the diagnostic value of the current literature base is explored. There is also a small, albeit promising, literature base concerning the use of salivary metabolomics in monitoring athletic performance. Functional roles of salivary metabolites remain largely unexplored. Areas of emerging knowledge include the role of oral host-microbiome interactions in shaping the salivary metabolite profile and the potential roles of salivary metabolites in oral physiology, e.g., in taste perception. Discussion of future research directions describes the need to begin acquiring a greater knowledge of the function of salivary metabolites, a current research direction in the field of the gut metabolome. The role of saliva as an easily obtainable, information-rich fluid that could complement other gastrointestinal fluids in the exploration of the gut metabolome is emphasized.
Collapse
Affiliation(s)
- Alexander Gardner
- Salivary Research, Centre for Host–Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.G.); (G.C.)
- Department of Restorative Dentistry, Dental Hospital and School, University of Dundee, Dundee DD1 4HR, UK
| | - Guy Carpenter
- Salivary Research, Centre for Host–Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.G.); (G.C.)
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|
7
|
Nolasco P, Coelho PV, Coelho C, Angelo DF, Dias JR, Alves NM, Maurício A, Pereira MFC, Alves de Matos AP, Martins RC, Carvalho PA. Mineralization of Sialoliths Investigated by Ex Vivo and In Vivo X-ray Computed Tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:151-163. [PMID: 30714561 DOI: 10.1017/s1431927618016124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fraction of organic matter present affects the fragmentation behavior of sialoliths; thus, pretherapeutic information on the degree of mineralization is relevant for a correct selection of lithotripsy procedures. This work proposes a methodology for in vivo characterization of salivary calculi in the pretherapeutic context. Sialoliths were characterized in detail by X-ray computed microtomography (μCT) in combination with atomic emission spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Correlative analysis of the same specimens was performed by in vivo and ex vivo helical computed tomography (HCT) and ex vivo μCT. The mineral matter in the sialoliths consisted essentially of apatite (89 vol%) and whitlockite (11 vol%) with average density of 1.8 g/cm3. In hydrated conditions, the mineral mass prevailed with 53 ± 13 wt%, whereas the organic matter, with a density of 1.2 g/cm3, occupied 65 ± 10% of the sialoliths' volume. A quantitative relation between sialoliths mineral density and X-ray attenuation is proposed for both HCT and μCT.
Collapse
Affiliation(s)
- Pedro Nolasco
- CeFEMA, Instituto Superior Técnico, University of Lisbon,Av. Rovisco Pais, 1049-001 Lisboa,Portugal
| | - Paulo V Coelho
- Service of Maxillofacial Surgery,Centro Hospitalar de Lisboa Central,R. José António Serrano 1150-199 Lisboa,Portugal
| | - Carla Coelho
- Service of Maxillofacial Surgery,Centro Hospitalar de Lisboa Central,R. José António Serrano 1150-199 Lisboa,Portugal
| | - David F Angelo
- NMS/FCM-UNL, Nova Medical School--Medical Sciences Faculty, Nova University of Lisbon,Campo Mártires da Pátria, 130, 1169-056 Lisboa,Portugal
| | - J R Dias
- CDRsp, Polytechnic Institute of Leiria,Rua de Portugal, Zona Industrial,2430-028, Marinha Grande,Portugal
| | - Nuno M Alves
- CDRsp, Polytechnic Institute of Leiria,Rua de Portugal, Zona Industrial,2430-028, Marinha Grande,Portugal
| | - António Maurício
- CERENA, Department of Civil Engineering,Architecture and Georessources, Instituto Superior Técnico, University of Lisbon,Av. Rovisco Pais, 1049-001 Lisboa,Portugal
| | - Manuel F C Pereira
- CERENA, Department of Civil Engineering,Architecture and Georessources, Instituto Superior Técnico, University of Lisbon,Av. Rovisco Pais, 1049-001 Lisboa,Portugal
| | | | - Raul C Martins
- IT, Department of Bioengineering,Instituto Superior Técnico, University of Lisbon,Av. Rovisco Pais, 1049-001 Lisboa,Portugal
| | - Patrícia A Carvalho
- CeFEMA, Instituto Superior Técnico, University of Lisbon,Av. Rovisco Pais, 1049-001 Lisboa,Portugal
| |
Collapse
|