1
|
Kongthong K, Champoochana N, Kaewtatip K. Preparation of alginate/starch beads with hydroxyapatite for curcumin loading and application as a colorimetric pH label. Int J Biol Macromol 2025; 309:143005. [PMID: 40210032 DOI: 10.1016/j.ijbiomac.2025.143005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Alginate is the most popular material used to produce beads for encapsulating bioactive substances. However, alginate beads tend to lose encapsulated compounds during preparation. Here, we incorporated hydroxyapatite (HAp) to improve the performance of alginate (Alg)/starch beads, particularly in terms of thermal and physical properties. To indicate food spoilage, we added curcumin to obtain in a single-step process reinforced Alg/starch beads with a pH-responsive dye. The addition of HAp increased the whiteness and degree of crystallinity of the obtained beads due to the good interaction between alginate, starch and HAp. Furthermore, in solutions of different pH, Alg/starch beads with 10%w/v HAp were the most stable and exhibited the least change in their swelling ratio. The Alg/starch beads with 10%w/v HAp were loaded with curcumin during the preparation of the bead mixture and the obtained beads were applied to monitor the freshness of packaged fish. After three days in the packaging, the color of the beads changed from bright yellow to dark brown. Therefore, an effective chromogenic pH-responsive material was prepared in only one step. Adding 10%w/v HAp increased the stability of the Alg/starch beads entrapping the curcumin indicator, and hence increased the potential of the beads for use in the food industry.
Collapse
Affiliation(s)
- Kwansuda Kongthong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Nidanut Champoochana
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kaewta Kaewtatip
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
2
|
Zhang A, Ma J, Long P, Zheng Y, Zhang Y. Improving gel properties of egg white protein using coconut endosperm dietary fibers modified by ultrasound and dual enzymolysis combined with carboxymethylation or phosphate crosslinking. Curr Res Food Sci 2024; 9:100941. [PMID: 39691849 PMCID: PMC11650264 DOI: 10.1016/j.crfs.2024.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Coconut endosperm residue is a rich dietary fiber resource; however, its hydration properties are poor. To enhance the functionality and applications of coconut endosperm residue dietary fiber (CERDF) in the food industry, ultrasound, cellulase, and hemicellulase hydrolysis combined with carboxymethylation or phosphate crosslinking have been used. The impact of the modified CERDFs on egg white protein gel (EWPG) was also studied. Compared to unmodified CERDF, CERDF modified by ultrasound and dual enzymatic hydrolysis combined with carboxymethylation (CERDF-UDEC) or phosphate-crosslinking (CERDF-UDEPC) exhibited a larger surface area and improved water retention and expansion abilities (p < 0.05). Addition of CERDF, CERDF-UDEC, and CERDF-UDEPC increased the random coil content of EWPG and rendered its microstructure more granular. CERDF-UDEC and CERDF-UDEPC improved EWPG properties more effectively than unmodified CERDF. These enhancements included increased water retention, pH, hardness (from 109.87 to 222.38 g), chewiness (from 78.07 to 172.13 g), and gumminess (from 85.12 to 181.82), and a reduction in its freeze-thaw dehydration rate (from 33.66% to 16.26%) and transparency (p < 0.05). Adding CERDF and CERDF-UDEC (3-5 g/100 g) enhanced the gastric stability and intestinal digestibility of EWPG. Thus, CERDF modified through ultrasound and dual enzymolysis combined with carboxymethylation or crosslinking improved the gel properties of EWPG. However, further research is needed to clarify the mechanisms behind these modifications and evaluate their economic feasibility.
Collapse
Affiliation(s)
- Anyu Zhang
- Food Science College of Shanxi Normal University, Taiyuan, 030092, China
| | - Jun Ma
- Shanxi Province Cancer Hospital, Taiyuan, 030013, China
- Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030013, China
- Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Peiyao Long
- Food Science College of Shanxi Normal University, Taiyuan, 030092, China
| | - Yajun Zheng
- Food Science College of Shanxi Normal University, Taiyuan, 030092, China
| | - Yichan Zhang
- Food Science College of Shanxi Normal University, Taiyuan, 030092, China
| |
Collapse
|
3
|
Passannanti F, Gallo M, Lentini G, Colucci Cante R, Nigro F, Nigro R, Budelli A. Alginate Capsules: Versatile Applications and Production Techniques. Macromol Biosci 2024; 24:e2400202. [PMID: 39233662 DOI: 10.1002/mabi.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Indexed: 09/06/2024]
Abstract
Alginate is a natural polysaccharide commonly obtained from brown algae and is usually used in the food industry as an additive, specifically as a thickening, gelling, and emulsifying agent. Due to its polyanionic nature, it can crosslink in the presence of divalent or trivalent cations. This crosslinking process involves the formation of chemical bonds between the carboxylic groups of parallel chains, resulting in a solid structure. In this way, compounds of interest can be enclosed in a capsule or a bead. Thanks to this ability, possible applications of alginate capsules are countless: it is possible to range from the pharmaceutical to the nutritional fields, from the agri-food industry to the textile or cosmetic sectors. These capsules can protect the encapsulated ingredients, promote their delivery or controlled release, or be imagined as small-scale reactors. The present review describes the main techniques used to produce alginate capsules, and several examples of possible application fields are shown.
Collapse
Affiliation(s)
- Francesca Passannanti
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
| | - Marianna Gallo
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Via Don Carlo Gnocchi 3, Rome, 00166, Italy
| | - Giulia Lentini
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Rosa Colucci Cante
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Federica Nigro
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
| | - Roberto Nigro
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Andrea Budelli
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- Heinz Innovation Center, Nieuwe Dukenburgseweg 19 6534 AD Nijmegen Postbus 57, Nijmegen, NL-6500, Netherlands
| |
Collapse
|
4
|
Zhou T, Li X. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Compr Rev Food Sci Food Saf 2024; 23:e13396. [PMID: 38925601 DOI: 10.1111/1541-4337.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Xinyue Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
5
|
Khoshdouni Farahani Z, Ebrahimzadeh Mousavi M, Seyedain Ardebili M, Mohammadi Nafchi A, Paidssari S. Performance of spray-dried Ziziphus jujuba extract using insoluble fraction of Persian gum-sodium alginate and whey protein: Microstructural and physicochemical attributes of micro- and nano-capsules. Food Sci Nutr 2024; 12:4211-4222. [PMID: 38873444 PMCID: PMC11167148 DOI: 10.1002/fsn3.4081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 06/15/2024] Open
Abstract
The study focused on the impact of the insoluble fraction of Persian gum-sodium alginate and a blend of the insoluble fraction of Persian gum-sodium alginate (IFPG-Al) with whey protein isolate (WPI) on sprayed Ziziphus jujuba extract (JE) powder. The addition of whey protein led to powders with higher moisture (10%), higher solubility (99.19%), and lower powder yield (27.82%). The powders fabricated with WPI depicted the best protection of polyphenolic compounds (3933.4 mg/L) and the highest encapsulation efficiency activity (74.84%). Additionally, they had a higher T g (62.63°C), which indicates more stability of the powders during shelf life. The sphericity of the majority of the particles was noticeable in powders, but multi-sided concavities were visible in the protein-containing particles. Based on the particle size's results, IFPG-Al/WPI capsules fabricated relatively smaller particles (2.54 μm). It can be acknowledged that the presence of protein in particles can bring fruitful results by preserving valuable bioactive compounds.
Collapse
Affiliation(s)
- Zahra Khoshdouni Farahani
- Department of Food Science and Technology, Faculty of Agriculture and Food Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Mohamad Ebrahimzadeh Mousavi
- Department of Food Science, Engineering and Technology, Faculty of Agriculture and Natural ResourcesUniversity of TehranKarajIran
| | - Mahdi Seyedain Ardebili
- Department of Food Science and Technology, Faculty of Agriculture and Food Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
| | - Saeed Paidssari
- Department of Food Science and Technology, Faculty of Agriculture and Food Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
6
|
Pan Y, Sun Q, Liu Y, Wei S, Han Z, Zheng O, Ji H, Zhang B, Liu S. Investigation on 3D printing of shrimp surimi under different printing parameters and thermal processing conditions. Curr Res Food Sci 2024; 8:100745. [PMID: 38694555 PMCID: PMC11061261 DOI: 10.1016/j.crfs.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024] Open
Abstract
Improving the printing accuracy and stability of shrimp surimi and finding appropriate printing parameters and suitable thermal processing method can help to develop high value-added 3D printing products of shrimp surimi. It was found that in order to make the 3D printing products of shrimp surimi have higher printing adaptability (printing accuracy and printing stability reach more than 97%), by choosing nozzle diameter of 1.20 mm and setting the printing height of the nozzle to 2.00 mm, the layers of the printed products were better fused with each other, and the printing accuracy of the products could be greatly improved; there was no uneven discharge and filament breakage when the nozzle moved at the speed of 30 mm/s; and the products were internally compact and had good stability when the printing filling rate was 80%. In addition, the deformation rates of steamed, boiled and deep-fried shrimp surimi products were significantly higher than those of oven-baked and microwaved shrimp surimi products (P < 0.05). Microwave heating had a greater effect on the deformation and color of shrimp surimi products, and was not favored by the evaluators. In terms of deformation rate, sensory score, and textural characteristic, the oven-baked thermal processing method was selected to obtain higher sensory evaluation scores and lower deformation rates of shrimp surimi 3D printed products. In the future, DIY design can be carried out in 3D printing products of shrimp surimi to meet the needs of different groups of people for modern food.
Collapse
Affiliation(s)
- Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
7
|
Caprin B, Gobard M, Hoesch A, Da Cruz-Boisson F, Fleury E, Charlot A. Fructose/glycerol/water as a biosourced LTTM solvent to design a variety of sodium alginate-based soft materials with enhanced rheological properties. Carbohydr Polym 2024; 330:121804. [PMID: 38368096 DOI: 10.1016/j.carbpol.2024.121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
Sodium alginate was associated to a ternary solvent composed of fructose, glycerol, and water in a 1:1:5 M ratio (FGW), classified as a natural Low Transition Temperature Mixture (LTTM), to generate various soft materials. The rheological properties of mixtures composed of sodium alginate and FGW were thoroughly analyzed and compared to their aqueous analogues. FGW-based solutions present a pronounced shear-thinning character combined to high viscosity, up to 8000 Pa.s. The overlap concentrations and intrinsic viscosities values evidence a good solvent character of FGW for alginate polymer chains. The increase of alginate concentration in FGW leads to materials with enhanced elasticity (up to 6000 Pa) and high energy of activation (55 kJ/mol). Interestingly, the addition of divalent calcium cations in FGW according to two optimized experimental protocols, allows for the generation of never described ionotropic gels in FGW under various shapes as bulk gels or beads of gels able to encapsulate extracted vegetal actives that are used in the cosmetic industry. Thus, FGW appears as a well-suited solvent of alginate to design a broad range of new biobased soft materials.
Collapse
Affiliation(s)
- Benoit Caprin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France; Gattefossé SAS, 36 chemin de Genas, 69804 Saint-Priest Cedex, France
| | - Maelle Gobard
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France
| | - Amélie Hoesch
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France
| | - Fernande Da Cruz-Boisson
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France
| | - Etienne Fleury
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France
| | - Aurélia Charlot
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cedex, France.
| |
Collapse
|
8
|
Khoshdouni Farahani Z, Ebrahimzadeh Mousavi M, Ibrahim SA. Improving physicochemical, rheometry and sensory attributes of fortified beverages using jujube alcoholic/aqueous extract loaded Gellan-Protein macrocarriers. Heliyon 2024; 10:e24518. [PMID: 38304791 PMCID: PMC10831596 DOI: 10.1016/j.heliyon.2024.e24518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
The use of phenolic bioactive substances in beverages is introduced by novel techniques as a functional food product. Gel beads from jujube extract were prepared by extrusion method using encapsulation and coated by whey protein isolate and soy protein isolate and thus, a functional beverage was prepared from these beads. There were three types of beads, including Gellan, Gellan/whey protein isolate and Gellan/soy protein isolate. The pH, acidity, Brix, turbidity, viscosity and sensory properties were evaluated. Observing the increase in pH is the result of the release of small amounts of fruit extract, the effect of which can be seen in the inverse relationship of acidity next to pH. The results demonstrate that the highest viscosity is related to protein beverages, especially Gellan gum/SPI beads' beverage. Hence, the highest turbidity in Gellan gum/SPI beads' beverage was visible on the 14th day (66.6 NTU). Thereby, there is potential for these Gellan beads beverages with suitable sensory scores to be wholly utilized and developed with the aim of this study. Along with it, this new beverage can attract the opinion of a wide range of consumers. Therewith, the industrialization of such types of products helps to improve the consumer market.
Collapse
Affiliation(s)
- Zahra Khoshdouni Farahani
- Department of Food Science and Technology, Faculty of Agriculture and Food Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ebrahimzadeh Mousavi
- Department of Food Science, Engineering and Technology, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Salam Adnan Ibrahim
- Food Microbiology and Biotechnology Laboratory, 173 Carver Hall, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| |
Collapse
|
9
|
Nabipour H, Rohani S. Green Synthesis of pH-Responsive Metal-Organic Frameworks for Delivery of Diclofenac Sodium. IEEE Trans Nanobioscience 2024; 23:63-70. [PMID: 37428669 DOI: 10.1109/tnb.2023.3289787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The current study developed a drug delivery system through the green chemistry-based synthesis of a biologically friendly metal-organic framework (bio-MOF) called Asp-Cu, which included copper ions and the environmentally friendly molecule L(+)-aspartic acid (Asp). For the first time, diclofenac sodium (DS) was loaded onto the synthesized bio-MOF simultaneously. The system's efficiency was then improved by encapsulating it with sodium alginate (SA). FT-IR, SEM, BET, TGA, and XRD analyses confirmed that DS@Cu-ASP was successfully synthesized. DS@Asp-Cu was found to release the total load within 2 h when used with simulated stomach media. This challenge was overcome by coating DS@Cu-ASP with SA (SA@DS@Cu-ASP). SA@DS@Cu-ASP displayed limited drug release at pH 1.2, and a higher percentage of the drug was released at pH 6.8 and 7.4 due to the pH-responsive nature of SA. In vitro cytotoxicity screening showed that SA@DS@Cu-ASP could be an appropriate biocompatible carrier with >90% cell viability. The on-command drug carrier was observed to be more applicable biocompatible with lower toxicity, as well as adequate loading properties and responsiveness, indicating its applicability as a feasible drug carrier with controlled release.
Collapse
|
10
|
Venkataraman S, Viswanathan V, Thangaiah SG, Omine K, Mylsamy P. Adsorptive exclusion of crystal violet dye using barium encapsulated alginate/carbon composites: characterization and adsorption modeling studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106718-106735. [PMID: 37735334 DOI: 10.1007/s11356-023-29894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
The present study is devoted to the removal of crystal violet dye using the synthesized barium alginate/carbon composites abbreviated as BA (barium alginate), BAAC (barium alginate/activated carbon), BASC (barium alginate/starch carbon), and BASSC (barium alginate/starch carbon modified with CTAB). The adsorptive removal of crystal violet as a function of contact time, pH of solution, composite dose, initial dye concentration, and temperature was studied. The uptake of crystal violet (CV) dye for the composites was recorded in the range of 36 mg g-1 to 50 mg g-1 at pH 8.03 ± 0.03 for an equilibrium time of 120 min. The adsorption kinetics and isotherms in compliance with the CV sorption onto BA/carbon composites corroborated the utmost fit of pseudo-second-order and Freundlich isotherm models, respectively. The recycling process was achieved using the barium alginate-treated bead carbons for different initial CV dye concentrations of 10-30 mg L-1 with a scope of zero disposal. The practicability of BA/carbon composites in a groundwater sample spiked with 30 mg L-1 of CV was successfully achieved with a removal efficiency of about 65-74%. Characterization studies for the composites using FTIR, SEM (with EDS), XRD, TGA, and BET were carried out and discussed in the paper.
Collapse
Affiliation(s)
- Sivasankar Venkataraman
- Post Graduate and Research Department of Chemistry, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India
| | - Vinitha Viswanathan
- Post Graduate and Research Department of Chemistry, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India
| | - Sunitha Ganesan Thangaiah
- Post Graduate and Research Department of Chemistry, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India.
| | - Kiyoshi Omine
- Department of Civil Engineering, School of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Prabhakaran Mylsamy
- Post Graduate and Research Department of Botany, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India
| |
Collapse
|
11
|
Khoshdouni Farahani Z, Mousavi M, Seyedain Ardebili M, Bakhoda H. Production and characterization of Ziziphus jujuba extract-loaded composite whey protein and pea protein beads based on sodium alginate-IFPG (insoluble fraction of Persian gum). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3674-3684. [PMID: 36799350 DOI: 10.1002/jsfa.12509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/21/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND This research was aimed at the fabrication of jujube extract (JE)-loaded beads by extrusion, using whey protein isolate (WPI), chickpea protein concentrate (PPC) and a combination of two types of hydrocolloid insoluble fraction of Persian gum (IFPG) and sodium alginate (Al). RESULTS JE-loaded beads with the highest encapsulation efficiency (10.87%) and polyphenol content (120.8 mg L-1 gallic acid) were obtained using Al-IFPG/PPC at 4 °C. The Al-IFPG, Al-IFPG/WPI and Al-IFPG/PPC beads revealed 5.66, 6.85 and 5.76 mm bead size, respectively, and almost all of them demonstrated a homogeneous and spherical structure. Fourier transform infrared spectroscopy data proved that the stable structure of the Al-IFPG beads was due to hydrogen bonding and electrostatic interactions. The thermostability of beads loaded with JE based on Al-IFPG/WPI was significantly enhanced compared to pure Al-IFPG. Texture evaluation of JE-loaded beads based on Al-IFPG incorporation with WPI revealed an increment in the hardness of beads. CONCLUSION This study confirmed the potential of Al-IFPG complex beads for the effective delivery of jujube extract via incorporation into pea and whey proteins and for the expansion of its use in products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zahra Khoshdouni Farahani
- Department of Food Science and Technology, Faculty of Agriculture and Food Industry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mousavi
- Department of Food Science, Engineering and Technology, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahdi Seyedain Ardebili
- Department of Food Science and Technology, Faculty of Agriculture and Food Industry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Bakhoda
- Department of Agricultural Mechanization, Faculty of Agriculture and Food Industry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Tu L, Fan Y, Deng Y, Hu L, Sun H, Zheng B, Lu D, Guo C, Zhou L. Production and Anti-Inflammatory Performance of PVA Hydrogels Loaded with Curcumin Encapsulated in Octenyl Succinic Anhydride Modified Schizophyllan as Wound Dressings. Molecules 2023; 28:molecules28031321. [PMID: 36770985 PMCID: PMC9921521 DOI: 10.3390/molecules28031321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Amphiphilic polysaccharides can be used as wall materials and applied to encapsulate hydrophobic active chemicals; moreover, there is significant demand for novel medical high-molecular-weight materials with various functions. In order to prepare amphiphilic schizophyllan (SPG), octenyl succinic anhydride (OSA) was chosen to synthesize OSA-modified schizophyllan (OSSPG) using an esterified reaction. The modification of OSSPG was demonstrated through FT-IR and thermal analysis. Moreover, it was found that OSSPG has a better capacity for loading curcumin, and the loading amount was 20 μg/mg, which was 2.6 times higher than that of SPG. In addition, a hydrogel made up of PVA, borax, and C-OSSPG (OSSPG loaded with curcumin) was prepared by means of the one-pot method, based on the biological effects of curcumin and the immune-activating properties of SPG. The mechanical properties and biological activity of the hydrogel were investigated. The experimental results show that the dynamic cross-linking of PVA and borax provided the C-OSSPG/BP hydrogel dressing with exceptional self-healing properties, and it was discovered that the C-OSSPG content increased the hydrogel's swelling and moisturizing properties. In fibroblast cell tests, the cells treated with hydrogel had survival rates of 80% or above. Furthermore, a hydrogel containing C-OSSPG could effectively promote cell migration. Due to the excellent anti-inflammatory properties of curcumin, the hydrogel also significantly reduces the generation of inflammatory factors, such as TNF-α and IL-6, and thus has a potential application as a wound dressing medicinal material.
Collapse
Affiliation(s)
- Lingyun Tu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifeng Fan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongfei Deng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Hu
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Huaiqing Sun
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| | - Chaowan Guo
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| |
Collapse
|
13
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
14
|
Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel) 2022; 14:polym14194194. [PMID: 36236142 PMCID: PMC9571964 DOI: 10.3390/polym14194194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.
Collapse
|
15
|
The effects of Ziziphus jujuba extract-based sodium alginate and proteins (whey and pea) beads on characteristics of functional beverage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|