1
|
Burke C, Glynn T, Jahangir C, Murphy C, Buckley N, Tangney M, Rahman A, Gallagher WM. Exploring the prognostic and predictive potential of bacterial biomarkers in non-gastrointestinal solid tumors. Expert Rev Mol Diagn 2025; 25:117-128. [PMID: 39973615 DOI: 10.1080/14737159.2025.2465743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Standard clinical parameters like tumor size, age, lymph node status, and molecular markers are used to predict progression risk and treatment response. However, exploring additional markers that reflect underlying biology could offer a more comprehensive understanding of the tumor microenvironment (TME). The TME influences tumor development, progression, disease severity, and survival, with tumor-associated bacteria posited to play significant roles. Studies on tumor-associated microbiota have focused on high bacterial-load sites such as the gut, oral cavity, and stomach, but interest is growing in non-gastrointestinal (GI) solid tumors, such as breast, lung, and pancreas. Microbe-based biomarkers, including Helicobacter pylori, human papillomavirus (HPV), and hepatitis B and C viruses, have proven valuable in predicting gastric, cervical, and renal cancers. AREAS COVERED Potential of prognostic and predictive bacterial biomarkers in non-GI solid tumors and the methodologies used. EXPERT OPINION Advances in techniques like 16S rRNA gene sequencing, qPCR, immunostaining, and in situ hybridization have enabled detailed analysis of difficult-to-culture microbes in solid tumors. However, to ensure reliable results, it is critical to standardize protocols, accurately align reads, address contamination, and maintain proper sample handling. This will pave the way for developing reliable bacterial markers that enhance prognosis, prediction, and personalized treatment planning.
Collapse
Affiliation(s)
- Caoimbhe Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Thomas Glynn
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Chowdhury Jahangir
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Clodagh Murphy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Mark Tangney
- Cancer Research@UCC, University College Cork, Cork, Ireland
| | - Arman Rahman
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Wahnou H, Chgari O, Ndayambaje M, Hba S, Ouadghiri Z, Limami Y, Oudghiri M. Carrageenan and TLR4 Crosstalk: A Comprehensive Review of Inflammatory Responses in Animal Models. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2025; 19:5-17. [PMID: 40195700 DOI: 10.2174/0127722708303188240708071523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 04/09/2025]
Abstract
Carrageenan, a naturally occurring polysaccharide derived from red seaweed, has been utilized extensively in the food industry as a stabilizer, thickener, and emulsifier due to its unique gel-forming properties. This versatile compound exists in various forms, including kappa, iota, and lambda, each with distinct characteristics suitable for different applications. Its widespread use as a food additive has raised concerns regarding its safety, particularly its potential inflammatory effects on the gastrointestinal tract. While carrageenan has been deemed safe for consumption by regulatory agencies in small amounts, studies have suggested its association with intestinal inflammation and gastrointestinal disturbances, particularly in susceptible individuals. Animal models, including rodents and non-human primates, have been employed to investigate the inflammatory response induced by carrageenan ingestion. These models have provided valuable insights into the molecular mechanisms underlying its pro-inflammatory properties. At the molecular level, carrageenan is believed to trigger inflammation by activating toll-like receptor 4 (TLR4) signaling pathways, leading to the production of pro-inflammatory cytokines and the recruitment of immune cells to the site of exposure. Furthermore, carrageenan-induced inflammation may disrupt the intestinal barrier function, facilitating the translocation of luminal antigens and exacerbating immune responses. This review provides a comprehensive examination of the current understanding of carrageenan's role in inflammation, encompassing its diverse applications in the food industry, safety concerns, experimental findings from animal models, and molecular mechanisms underlying its pro-inflammatory effects.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oumaima Chgari
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Martin Ndayambaje
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Soufyane Hba
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
- University of Limoges, LABCiS, UR 22722, F-87000, Limoges, France
| | - Zaynab Ouadghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
3
|
Ataollahi H, Hedayati M, Zia-Jahromi N, Daneshpour M, Siadat SD. Investigating the role of the intratumoral microbiome in thyroid cancer development and progression. Crit Rev Oncol Hematol 2024; 204:104545. [PMID: 39476992 DOI: 10.1016/j.critrevonc.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The intratumoral microbiome (ITM) is in the spotlight due to its possible contribution to the initiation, progression, and invasion of a wide range of cancers. Its precise contribution to cancer tumorigenesis is still elusive, though. Thyroid cancer(TC), the ninth leading cause of cancer globally and the most prevalent endocrine malignancy with a rapidly rising incidence among all cancers, has attracted much attention nowadays. Still, the association between the tumor's microbiome and TC progression and development is an evolving area of investigation with significant consequences for disease understanding and intervention. Therefore, this review offers an appropriate perspective on this emerging concept in TC based on prior studies on the ITM among the most common tumors worldwide, concentrating on TC. Moreover, information on the origin of the ITM and practical methods can pave the way for researchers to opt for the most appropriate method for further investigations on the ITM more accurately.
Collapse
Affiliation(s)
- Hanieh Ataollahi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran.
| | - Noosha Zia-Jahromi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center(MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Miller ZA, Mueller A, Thompson JC, Sywanycz SM, Hill BL, Carey RM, Lee RJ. Pseudomonas aeruginosa metabolite 3-oxo-C12HSL induces apoptosis through T2R14 and the mitochondrial calcium uniporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620094. [PMID: 39553967 PMCID: PMC11565734 DOI: 10.1101/2024.10.24.620094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal lining of the upper aerodigestive tract. HNSCCs have high mortality rates and current treatments can be associated with severe morbidities. It is vital to discover effective, minimally invasive therapies that improve survival and quality of life. We previously discovered that bitter taste receptor 14 (T2R14), a GPCR, kills HNSCC cells when activated by bitter agonists. We are now investigating endogenous bitter ligands that exist in HNSCC tumor microenvironment (TME). The TME includes cells, signaling molecules, and microbes that can greatly influence treatment responses and overall prognosis in HNSCC. Pseudomonas aeruginosa is a gram-negative bacterium that colonizes/infects HNSCC patients. 3-oxo-C12SHL is a quorum-sensing N-acyl homoserine lactone (AHL) secreted by P. aeruginosa which is also a bitter compound. 3-oxo-C12HSL induces apoptosis but this has never been linked to T2R activation. We hypothesized that 3-oxo-C12HSL induces apoptosis in HNSCC via T2R14. We show that 3-oxo-C12HSL activates intracellular Ca 2+ responses in HNSCC cells. This is inhibited with T2R14 antagonization. 3-oxo-C12HSL may activate additional Ca 2+ channels as the Ca 2+ dynamics are independent from store-operated calcium entry (SOCE). 3-oxo-C12HSL inhibits cell viability, depolarizes mitochondria, and produces ROS. This induces apoptosis in HNSCC cells. In a comparative screen of quorum-sensing AHLs, 3-oxo-C12HSL was the only AHL that elicited both a Ca 2+ response and reduced cell viability. These results suggest that P. aeruginosa may play a significant role in modulating an anti-tumor TME through 3-oxo-C12HSL. Moreover, 3-oxo-C12HSL could be a novel, higher-affinity bitter therapeutic for HNSCC. Further research is warranted to elucidate the mechanisms of other endogenous T2R agonists present in the TME.
Collapse
|
5
|
Souza VGP, Forder A, Pewarchuk ME, Telkar N, de Araujo RP, Stewart GL, Vieira J, Reis PP, Lam WL. The Complex Role of the Microbiome in Non-Small Cell Lung Cancer Development and Progression. Cells 2023; 12:2801. [PMID: 38132121 PMCID: PMC10741843 DOI: 10.3390/cells12242801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, there has been a growing interest in the relationship between microorganisms in the surrounding environment and cancer cells. While the tumor microenvironment predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights the significant contributions of microbial cells to tumor development and progression. Although the impact of the gut microbiome on treatment response in lung cancer is well established, recent investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent findings on the human lung microbiome and its impacts in cancer development and progression. We delve into the characteristics of the lung microbiome and its influence on lung cancer development. Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interactions between lung tumor cells, and how microorganism-produced metabolites can contribute to cancer progression. Furthermore, we provide a comprehensive review of the current literature on the lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer prevention strategies and optimize lung cancer treatment.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araujo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Juliana Vieira
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
6
|
Silveira MAD, Bilodeau S, Greten TF, Wang XW, Trinchieri G. The gut-liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends Cancer 2022; 8:583-597. [PMID: 35331674 DOI: 10.1016/j.trecan.2022.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
Although their etiologies vary, tumors share a common trait: the control of an oncogenic transcriptional program that is regulated by the interaction of the malignant cells with the stromal and immune cells in the tumor microenvironment (TME). The TME shows high phenotypic and functional heterogeneity that may be modulated by interactions with commensal microbes (the microbiota) both systemically and locally. Unlike host cells, the microbiota adapts after environmental perturbations, impacting host-microbe interactions. In the liver, the bidirectional relationship in the gut and its associated microbiota creates an interdependent environment. Therefore, the gut microbiota and its metabolites modulate liver gene expression directly and indirectly, causing an imbalance in the gut-liver axis, which may result in disease, including carcinogenesis.
Collapse
Affiliation(s)
- Maruhen A D Silveira
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, QC G1V 4G2, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC G1R 3S3, Canada; Centre de Recherche en Données Massives de l'Université Laval, Québec, QC G1V 0A6, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | - Giorgio Trinchieri
- NCI-CCR Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|