1
|
Cai F, Mao S, Peng S, Wang Z, Li W, Zhang R, Wang S, Sun A, Zhang S. A comprehensive pan-cancer examination of transcription factor MAFF: Oncogenic potential, prognostic relevance, and immune landscape dynamics. Int Immunopharmacol 2025; 149:114105. [PMID: 39923580 DOI: 10.1016/j.intimp.2025.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
AIMS Previous studies indicate that MAF BZIP Transcription Factor F (MAFF) facilitates ectopic metastasis and tumor cell migration. While its role in neoplasm progression is recognized, a thorough pan-cancer analysis of MAFF's impact remains pending. MAIN METHODS MAFF expression across normal and tumor tissues was analyzed using transcriptomic data from Genomic Data Commons (GDC) and UCSC XENA, with protein details from Human Protein Atlas (HPA) and GeneMANIA. Tumor Immune Single-cell Hub (TISCH) and Spatial Transcriptomics Omics DataBase (STOmics DB) identified MAFF expression in the tumor microenvironment (TME). MAFF's prognostic significance and immune-related gene associations were evaluated through univariate Cox regression, TIMER2.0 immune cell infiltration analysis, and Spearman correlation. Critical pathways were identified using Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA), while molecular docking explored anticancer agent interactions. KEY FINDINGS MAFF expression varies across cancers, affecting tumor prognosis, notably in monocytes/macrophages and endothelial cells. Copy number variation (CNV) positively correlates with MAFF expression, while methylation shows inverse correlation. MAFF mutations significantly affect LGG patient prognosis and correlate with immune therapy responses. ESTIMATE and immune profiling linked MAFF to immunosuppression pathways. Molecular docking identified MAFF-targeted drugs, with validated effects on breast cancer and endometrial cancer cell survival and migration in vitro. SIGNIFICANCE Multi-omics analysis identified MAFF as a potential prognostic marker correlating with tumor immunity and microenvironment, suggesting its value for personalized cancer immunotherapy, particularly in BRCA and UCEC.
Collapse
Affiliation(s)
- Fengze Cai
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shining Mao
- School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shuangfu Peng
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Zirui Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Wen Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Ruixuan Zhang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shiyan Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China.
| | - Aijun Sun
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huaian, Jiangsu, China.
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Yue D, Ng EWH, Hirao H. Hydrogen-Bond-Assisted Catalysis: Hydroxylation of Paclitaxel by Human CYP2C8. J Am Chem Soc 2024; 146:30117-30125. [PMID: 39441858 PMCID: PMC11544615 DOI: 10.1021/jacs.4c07937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Paclitaxel (PTX, or Taxol), a chemotherapeutic agent widely employed in the treatment of various cancers, undergoes metabolic transformations through the cytochrome P450 enzymes CYP3A4 and CYP2C8. CYP3A4 catalyzes the aromatic hydroxylation reaction of PTX, whereas CYP2C8 demonstrates a distinct reactivity pattern, producing 6α-hydroxypaclitaxel via alkane hydroxylation. Despite the significant impact of PTX metabolism on its anticancer efficacy, the detailed mechanisms underlying these transformations have remained largely unclear. In this study, we employed hybrid quantum mechanics and molecular mechanics (QM/MM) calculations to elucidate the mechanism of PTX metabolism by human CYP2C8. Our QM/MM results reveal that the hydroxylation of PTX by CYP2C8 follows an atypical rebound mechanism. Either of the two hydrogen atoms at the C6 position of PTX can be abstracted, leading to a common radical intermediate. Although the subsequent rebound barrier is unusually high, stereochemical scrambling is unlikely, as the rebound barrier for the formation of the 6α-hydroxylated PTX─the actual product─is significantly lower than that for the 6β-hydroxylated metabolite. Thus, product selectivity is determined by the non-rate-determining rebound step. Furthermore, the hydroxyl group at the C7 position of PTX plays a catalytic role by facilitating the hydrogen abstraction and rebound steps. Our study also confirms a pronounced stability of the transition state in the high-spin sextet spin state, enabled by the enzyme's specific substrate positioning.
Collapse
Affiliation(s)
- Dongxiao Yue
- Warshel
Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Elvis Wang Hei Ng
- Department
of Pharmacology and Pharmacy, The University
of Hong Kong, Pokfulam 999077, Hong Kong SAR, P. R. China
| | - Hajime Hirao
- Warshel
Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
3
|
Favatella N, Dalton D, Byon W, Merali SJ, Klem C. Clinical Implications of Co-administering Apixaban with Key Interacting Medications. Clin Pharmacol Drug Dev 2024; 13:961-973. [PMID: 39046333 DOI: 10.1002/cpdd.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024]
Abstract
With many available data sources, clinicians need to consider the benefit-risk profile of individual anticoagulants when balancing the need for anticoagulation, including evaluating the risks in patients with comorbidities and potential drug-drug interactions. This narrative review presents clinical data across multiple phases of drug development for the use of apixaban, a selective factor Xa inhibitor, when taken concomitantly with other agents, and evaluates the benefit-risk profile of apixaban with these interacting medications. Key subgroup analyses from the phase 3 ARISTOTLE trial (NCT00412984) are presented using data from patients who received either concomitant inhibitors or inducers of cytochrome P450 3A4 and/or P‑glycoprotein. We also review the available evidence for the use of apixaban in patients with cancer-associated thromboembolism, as well as the use of apixaban in patients with COVID-19.
Collapse
|
4
|
Kawabata-Iwakawa R, Iwasa N, Satoh K, Colinge J, Shimada M, Takeuchi S, Fujiwara H, Eguchi H, Oishi T, Sugiyama T, Suzuki M, Hasegawa K, Fujiwara K, Nishiyama M. Prediction of response to promising first-line chemotherapy in ovarian cancer patients with residual peritoneal tumors: practical biomarkers and robust multiplex models. Int J Clin Oncol 2024; 29:1334-1346. [PMID: 38767719 DOI: 10.1007/s10147-024-02552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Platinum/taxane (TC) chemotherapy with debulking surgery stays the mainstay of the treatment in ovarian cancer patients with peritoneal metastasis, and recently its novel modality, intraperitoneal carboplatin with dose-dense paclitaxel (ddTCip), was shown to have greater therapeutic impact. Nevertheless, the response varies among patients and consequent recurrence, or relapse often occurs. Discovery of therapeutic response predictor to ddTCip and/or TC therapy is eagerly awaited to improve the treatment outcome. METHODS Using datasets in 76 participants in our ddTCip study and published databases on patients received TC therapy, we first validated a total of 75 previously suggested markers, sought out more active biomarkers through the association analyses of genome-wide transcriptome and genotyping data with progression-free survival (PFS) and adverse events, and then developed multiplex statistical prediction models for PFS and toxicity by mainly using multiple regression analysis and the classification and regression tree (CART) algorithm. RESULTS The association analyses revealed that SPINK1 could be a possible biomarker of ddTCip efficacy, while ABCB1 rs1045642 and ERCC1 rs11615 would be a predictor of hematologic toxicity and peripheral neuropathy, respectively. Multiple regression analyses and CART algorithm finally provided a potent efficacy prediction model using 5 gene expression data and robust multiplex toxicity prediction models-CART models using a total of 4 genotype combinations and multiple regression models using 15 polymorphisms on 12 genes. CONCLUSION Biomarkers and multiplex models composed here could work well in the response prediction of ddTCip and/or TC therapy, which might contribute to realize optimal selection of the key therapy.
Collapse
Grants
- DOFMET-08 Development Organization for Frontier Medical Education and Therapeutics in Japan
- H21-3rd Comprehensive 10-year Strategy for Cancer Control-010 Ministry of Health, Labour and Welfare
- University Reform Action Plan "Gunma University Initiative for Advanced Research (GIAR) Ministry of Education, Culture, Sports, Science, and Technology (JP)
- University Reform Action Plan "Gunma University Initiative for Advanced Research (GIAR)" Ministry of Education, Culture, Sports, Science, and Technology (JP)
- Promotion Plan for the Platform of Human Resource Development for Cancer Ministry of Education, Culture, Sports, Science, and Technology (JP)
- the Fostering Health Professionals for Changing Needs of Cancer Ministry of Education, Culture, Sports, Science, and Technology (JP)
- New Paradigms - Establishing Center for Fostering Medical Researchers of the Future Programs Ministry of Education, Culture, Sports, Science, and Technology (JP)
Collapse
Affiliation(s)
- Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma, 371-8511, Japan
- Research Unit and Immunology and Inflammation, Department of Translational Research, Division of Sohyaku Innovative Research, Tanabe Mitsubishi Pharma, Osaka, Japan
| | - Norihiro Iwasa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, 350-1298, Japan
| | - Kenichi Satoh
- Faculty of Data Science, Shiga University, Hikone, Shiga, 522-8522, Japan
| | - Jacques Colinge
- Cancer Bioinformatics and System Biology, Institute of Cancer Research of Montpellier (IRCM), Inserm, University of Montpellier, ICM, 34298, Montpellier, France
| | - Muneaki Shimada
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Satoshi Takeuchi
- Department of Gynecology, Kobe Tokushukai Hospital, Kobe, Hyogo, 655-0017, Japan
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
| | - Hiroyuki Fujiwara
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hidetaka Eguchi
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan
- Diagnosis and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Tetsuro Oishi
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Tottori, 683-8504, Japan
- Department of Obstetrics and Gynecology, Matsue City Hospital, Matsue, Shimane, 690-8509, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Iwate, 020-8505, Japan
- Department of Obstetrics and Gynecology, St. Mary's Hospital, Kurume, Fukuoka, 830-8543, Japan
| | - Mitsuaki Suzuki
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, 350-1298, Japan
- Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, 350-1298, Japan
- Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma, 371-8511, Japan.
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan.
- Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan.
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
5
|
Zhang J, Shu J, Stout RW, Russo PS, Liu Z. Solubilization of Paclitaxel with Natural Compound Rubusoside toward Improving Oral Bioavailability in a Rodent Model. Pharmaceutics 2024; 16:1104. [PMID: 39204449 PMCID: PMC11359394 DOI: 10.3390/pharmaceutics16081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Paclitaxel, which features low water solubility and permeability, is an efflux pump substrate. The current paclitaxel drugs are given intravenously after resolving the solubility issue. Yet, oral delivery to achieve therapeutic bioavailability is not effective due to low absorption. This study evaluated a natural compound, rubusoside, to improve oral bioavailability in an animal model. Free paclitaxel molecules were processed into nano-micelles formed in water with rubusoside. The particle size of the nano-micelles in water was determined using dynamic light scattering. The oral bioavailability of paclitaxel in nano-micelles was determined against Cremophor/alcohol-solubilized Taxol after oral and intravenous administration to pre-cannulated Sprague Dawley rats. When loaded into the rubusoside-formed nano-micelles, paclitaxel reached a supersaturated concentration of 6 mg/mL, 60,000-fold over its intrinsic saturation of 0.1 µg/mL. The mean particle size was 4.7 ± 0.7 nm in diameter. Compared with Taxol®, maximum blood concentration was increased by 1.5-fold; the time to reach maximum concentration shortened to 0.8 h from 1.7 h; and, relative oral bioavailability increased by 88%. Absolute oral bioavailability was 1.7% and 1.3% for the paclitaxel nano-micelles and Taxol®, respectively. Solubilizing paclitaxel with rubusoside was successful, but oral bioavailability remained low. Further inhibition of the efflux pump and/or first metabolism may allow more oral paclitaxel to enter systemic circulation.
Collapse
Affiliation(s)
- Jian Zhang
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.Z.); (J.S.)
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jicheng Shu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.Z.); (J.S.)
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang 330004, China
| | - Rhett W. Stout
- Department of Pathological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Paul S. Russo
- Department of Materials Science, Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Zhijun Liu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.Z.); (J.S.)
| |
Collapse
|
6
|
Lin XW, Chen H, Xie XY, Liu CT, Lin YW, Xu YW, Wang XJ, Wu FC. Nomogram based on pretreatment hepatic and renal function indicators for survival prediction of locally advanced esophageal squamous cell carcinoma with treatment of neoadjuvant chemoradiotherapy plus surgery. Updates Surg 2024; 76:1377-1388. [PMID: 37957531 DOI: 10.1007/s13304-023-01693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
The parameters for survival prediction of esophageal squamous cell carcinoma (ESCC) patients treated with neoadjuvant chemoradiotherapy (NCRT) combined with surgery are unclear. Here, we aimed to construct a nomogram for survival prediction of ESCC patients treated with NCRT combined with surgery based on pretreatment serological hepatic and renal function tests. A total of 174 patients diagnosed as ESCC were enrolled as a training cohort from July 2007 to June 2019, and approximately 50% of the cases (n = 88) were randomly selected as an internal validation cohort. Univariate and multivariate Cox survival analyses were performed to identify independent prognostic factors to establish a nomogram. Predictive accuracy of the nomogram was evaluated by Harrell's concordance index (C-index) and calibration curve. ALT, ALP, TBA, TP, AST, TBIL and CREA were identified as independent prognostic factors and incorporated into the construction of the hepatic and renal function test nomogram (HRFTNomogram). The C-index of the HRFTNomogram for overall survival (OS) was 0.764 (95% CI 0.701-0.827) in the training cohort, which was higher than that of the TNM staging system (0.507 (95% CI 0.429-0.585), P < 0.001). The 5-year OS calibration curve of the training cohort demonstrated that the predictive accuracy of the HRFTNomogram was satisfactory. Moreover, patients in the high-risk group stratified by the HRFTNomogram had poorer 5-year OS than those in the low-risk group in the training cohort (27.4% vs. 80.3%, P < 0.001). Similar results were observed in the internal validation cohort. A novel HRFTNomogram might help predict the survival of locally advanced ESCC patients treated with NCRT followed by esophagectomy.
Collapse
Affiliation(s)
- Xiao-Wen Lin
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Department of Clinical Laboratory Medicine, Maternity and Child, Healthcare Hospital of Nanshan District, Shenzhen, Guangdong, People's Republic of China
| | - Hao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong, People's Republic of China
| | - Xiu-Ying Xie
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong, People's Republic of China
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong, People's Republic of China
- Esophageal Cancer Prevention and Control Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yi-Wei Lin
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong, People's Republic of China
- Esophageal Cancer Prevention and Control Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong, People's Republic of China.
- Esophageal Cancer Prevention and Control Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
| | - Xin-Jia Wang
- Esophageal Cancer Prevention and Control Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
- Department of Orthopedics, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| | - Fang-Cai Wu
- Esophageal Cancer Prevention and Control Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Zou Y, Xu L, Wang W, Zhu X, Lin J, Li H, Chen J, Xu W, Gao H, Wu X, Yin Z, Wang Q. Muscone restores anoikis sensitivity in TMZ-resistant glioblastoma cells by suppressing TOP2A via the EGFR/Integrin β1/FAK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155714. [PMID: 38723526 DOI: 10.1016/j.phymed.2024.155714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Temozolomide (TMZ) resistance is the main obstacle faced by glioblastoma multiforme (GBM) treatment. Muscone, one of the primary active pharmacological ingredients of Shexiang (Moschus), can cross the blood-brain barrier (BBB) and is being investigated as an antineoplastic medication. However, muscone treatment for GBM has received little research, and its possible mechanisms are still unclear. PURPOSE This study aims to evaluate the effect and the potential molecular mechanism of muscone on TMZ-resistant GBM cells. METHODS The differentially expressed genes (DEGs) between TMZ-resistant GBM cells and TMZ-sensitive GBM cells were screened using GEO2R. By progressively raising the TMZ concentration, a relatively stable TMZ-resistant human GBM cell line was established. The drug-resistance traits of U251-TR cells were assessed via the CCK-8 assay and Western Blot analysis of MGMT and TOP2A expression. Cell viability, cell proliferation, cell migration ability, and drug synergism were detected by the CCK-8 assay, colony formation assay, wound healing assay, and drug interaction relationship test, respectively. Anoikis was quantified by Calcein-AM/EthD-1 staining, MTT assay, and flow cytometry. Measurements of cell cycle arrest, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) were performed using cell cycle staining, Annexin V-FITC/PI labeling, JC-1 assay, and ROS assay, respectively. DNA damage was measured by TUNEL assay, alkaline comet assay, and γ-H2AX foci assay. GEPIA was used to investigate the link between the anoikis marker (FAK)/drug resistance gene and critical proteins in the EGFR/Integrin β1 signaling pathway. Molecular docking was used to anticipate the probable targets of muscone. The intracellular co-localization and expression of EGFR and FAK were shown using immunofluorescence. The U251-TR cell line stably overexpressing EGFR was constructed using lentiviral transduction to assess the involvement of EGFR-related signaling in anoikis resistance. Western Blot was employed to detect the expression of migration-related proteins, cyclins, anoikis-related proteins, DNA damage/repair-related proteins, and associated pathway proteins. RESULTS DEGs analysis identified 97 deregulated chemotherapy-resistant genes and 3779 upregulated genes in TMZ-resistant GBM cells. Subsequent experiments verified TMZ resistance and the hyper-expression of DNA repair-related genes (TOP2A and MGMT) in continuously low-dose TMZ-induced U251-TR cells. Muscone exhibited dose-dependent inhibition of U251-TR cell migration and proliferation, and its co-administration with TMZ showed the potential for enhanced therapeutic efficacy. By downregulating FAK, muscone reduced anoikis resistance in anchorage-independent U251-TR cells. It also caused cell cycle arrest in the G2/M phase by upregulating p21 and downregulating CDK1, CDK2, and Cyclin E1. Muscone-induced anoikis was accompanied by mitochondrial membrane potential collapse, ROS production, an increase in the BAX/Bcl-2 ratio, as well as elevated levels of Cytochrome c (Cyt c), cleaved caspase-9, and cleaved caspase-3. These findings indicated that muscone might trigger mitochondrial-dependent anoikis via ROS generation. Moreover, significant DNA damage, DNA double-strand breaks (DSBs), the formation of γ-H2AX foci, and a reduction in TOP2A expression are also associated with muscone-induced anoikis. Overexpression of EGFR in U251-TR cells boosted the expression of Integrin β1, FAK, β-Catenin, and TOP2A, whereas muscone suppressed the expression levels of EGFR, Integrin β1, β-Catenin, FAK, and TOP2A. Muscone may influence the expression of the key DNA repair enzyme, TOP2A, by suppressing the EGFR/Integrin β1/FAK pathway. CONCLUSION We first demonstrated that muscone suppressed TOP2A expression through the EGFR/Integrin β1/FAK pathway, hence restoring anoikis sensitivity in TMZ-resistant GBM cells. These data suggest that muscone may be a promising co-therapeutic agent for enhancing GBM treatment, particularly in cases of TMZ-resistant GBM with elevated TOP2A expression.
Collapse
Affiliation(s)
- Yuheng Zou
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lanyang Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wanyu Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Zhu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaqi Lin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huazhao Li
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiali Chen
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haiqiong Gao
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xianghui Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhixin Yin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qirui Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
8
|
Peng Y, Yang Z, Li J, Liu S. Research progress on nanotechnology of traditional Chinese medicine to enhance the therapeutic effect of osteoarthritis. Drug Deliv Transl Res 2024; 14:1517-1534. [PMID: 38225521 DOI: 10.1007/s13346-024-01517-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic condition that primarily impacts the articular cartilage and surrounding bone tissue, resulting in joint inflammation and structural deterioration. The etiology of OA is multifaceted and intricately linked to the oxidative stress response of joint tissue. Oxidative stress (OS) in OA leads to the creation of reactive oxygen species (ROS) and other oxidizing agents, resulting in detrimental effects on chondrocytes. This oxidative damage diminishes the flexibility and robustness of cartilage, thereby expediting the progression of joint deterioration. Therefore, the antioxidant effect is crucial in the treatment of OA. Currently, a considerable number of components found in traditional Chinese medicine (TCM) have been scientifically demonstrated to exhibit remarkable antioxidant and anti-inflammatory properties. Nevertheless, the utilization of this program is considerably constrained as a result of intrinsic deficiencies, notably stability concerns. The successful amalgamation of TCM components with nanotechnology has properly tackled these concerns and enhanced the efficacy of therapeutic results. The objective of this study is to delineate the antioxidant characteristics of nano-TCM and assess the current inventory of literature pertaining to the application of nano-TCM in the treatment of OA. In conclusion, this paper will now turn to the constraints and potential avenues for the advancement of nano-TCM within the realm of OA therapy.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Jinling Li
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
9
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
10
|
Turkez H, Arslan ME, Selvitopi H, Kadi A, Oner S, Mardinoglu A. Drug Synergism of Anticancer Action in Combination with Favipiravir and Paclitaxel on Neuroblastoma Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:82. [PMID: 38256343 PMCID: PMC10820816 DOI: 10.3390/medicina60010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Favipiravir (FPV) is an antiviral medication and has an inhibitory effect on Cytochrome P450 (CYP2C8) protein, which is mainly involved in drug metabolism in the liver, and the expression of this gene is known to be enhanced in neuronal cells. The metabolization of Paclitaxel (PTX), a chemotherapeutic drug used in cancer patients, was analyzed for the first time in the human SH-SY5Y neuroblastoma cell line for monitoring possible synergistic effects when administered with FPV. Materials and Methods: Further, in vitro cytotoxic and genotoxic evaluations of FPV and PTX were also performed using wide concentration ranges in a human fibroblast cell culture (HDFa). Nuclear abnormalities were examined under a fluorescent microscope using the Hoechst 33258 fluorescent staining technique. In addition, the synergistic effects of these two drugs on cultured SH-SY5Y cells were determined by MTT cell viability assay. In addition, the death mechanisms that can occur in SHSY-5Y were revealed by using the flow cytometry technique. Results: Cell viability analyses on the HDFa healthy cell culture showed that both FPV and PTX have inhibitory effects at higher concentrations. On the other hand, there were no significant differences in nuclear abnormality numbers when both of the compounds were applied together. Cell viability analyses showed that FPV and PTX applications have higher cytotoxicity, which indicated synergistic toxicity against the SHSY-5Y cell line. Also, PTX exhibited higher anticancer properties against the neuroblastoma cell line when applied with FPV, as shown in both cytotoxicity and flow cytometry analyses. Conclusions: In light of our findings, the anticancer properties of PTX can be enhanced when the drug application is coupled with FPV exposure. Moreover, these results put forth that the anticancer drug dosage should be evaluated carefully in cancer patients who take COVID-19 treatment with FPV.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey; (M.E.A.); (A.K.); (S.O.)
| | - Harun Selvitopi
- Department of Mathematics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey;
| | - Abdurrahim Kadi
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey; (M.E.A.); (A.K.); (S.O.)
| | - Sena Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey; (M.E.A.); (A.K.); (S.O.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
11
|
Yue D, Hirao H. Mechanism of Selective Aromatic Hydroxylation in the Metabolic Transformation of Paclitaxel Catalyzed by Human CYP3A4. J Chem Inf Model 2023; 63:7826-7836. [PMID: 38039955 DOI: 10.1021/acs.jcim.3c01630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Paclitaxel (PTX) is heralded as one of the most successful natural-product drugs for the treatment of refractory cancers. In humans, the hepatic metabolic transformation of PTX is primarily mediated by two cytochrome P450 enzymes (P450s): CYP3A4 and CYP2C8. The impact of P450 metabolism on the anticancer effectiveness of PTX is significant. However, the precise mechanism underlying selective P450-catalyzed reactions in PTX metabolism remains elusive. To address this knowledge gap, we conducted molecular docking and molecular dynamics simulations using multiple crystal structures of CYP3A4, which originally contained other ligands. These methods enabled us to determine the most plausible binding structure of PTX within the enzyme. By further employing hybrid quantum mechanics and molecular mechanics calculations, we successfully identified two primary pathways for the reaction between compound I (Cpd I) of CYP3A4 and PTX. One of these pathways involves the formation of an epoxide, while the other proceeds through a ketone intermediate.
Collapse
Affiliation(s)
- Dongxiao Yue
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
12
|
Muhamad N, Na‐Bangchang K. The roles of CYP2C19 and CYP3A4 in the in vitro metabolism of β-eudesmol in human liver: Reaction phenotyping and enzyme kinetics. Pharmacol Res Perspect 2023; 11:e01149. [PMID: 37902256 PMCID: PMC10614204 DOI: 10.1002/prp2.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
β-eudesmol is a major bioactive component of Atractylodes lancea (AL). AL has been developed as the capsule formulation of standardized AL extract for treating cholangiocarcinoma (CCA). However, the complex constituents of herbal products increase the risk of adverse drug interactions. β-eudesmol has demonstrated inhibitory effects on rCYP2C19 and rCYP3A4 in the previous research. This study aimed to identify the cytochrome P450 (CYP) isoforms responsible for the metabolism of β-eudesmol and determine the enzyme kinetic parameters and the metabolic stability of β-eudesmol metabolism in the microsomal system. Reaction phenotyping using human recombinant CYPs (rCYPs) and selective chemical inhibitors of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 was performed, and enzyme kinetics and metabolic stability were investigated using human liver microsome (HLM). The results suggest that CYP2C19 and CYP3A4 play significant roles in β-eudesmol metabolism. The disappearance half-life (t1/2 ) and intrinsic clearance (CLint ) of β-eudesmol were 17.09 min and 0.20 mL/min·mg protein, respectively. Enzyme kinetic analysis revealed the Michaelis-Menten constant (Km ) and maximum velocity (Vmax ) of 16.76 μM and 3.35 nmol/min·mg protein, respectively. As a component of AL, β-eudesmol, as a substrate and inhibitor of CYP2C19 and CYP3A4, has a high potential for drug-drug interactions when AL is co-administered with other herbs or conventional medicines.
Collapse
Affiliation(s)
- Nadda Muhamad
- Graduate Studies, Chulabhorn International College of MedicineThammasat UniversityPathumthaniThailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat UniversityPathumthaniThailand
| | - Kesara Na‐Bangchang
- Graduate Studies, Chulabhorn International College of MedicineThammasat UniversityPathumthaniThailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat UniversityPathumthaniThailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat UniversityPathumthaniThailand
| |
Collapse
|
13
|
Bano A, Stevens JH, Modi PS, Gustafsson JÅ, Strom AM. Estrogen Receptor β4 Regulates Chemotherapy Resistance and Induces Cancer Stem Cells in Triple Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24065867. [PMID: 36982940 PMCID: PMC10058198 DOI: 10.3390/ijms24065867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) has the worst prognosis among all breast cancers, and survival in patients with recurrence is rarely beyond 12 months due to acquired resistance to chemotherapy, which is the standard of care for these patients. Our hypothesis is that Estrogen Receptor β1 (ERβ1) increases response to chemotherapy but is opposed by ERβ4, which it preferentially dimerizes with. The role of ERβ1 and ERβ4 in influencing chemotherapy sensitivity has never been studied before. CRISPR/CAS9 was used to truncate ERβ1 Ligand Binding Domain (LBD) and knock down the exon unique to ERβ4. We show that the truncated ERβ1 LBD in a variety of mutant p53 TNBC cell lines, where ERβ1 ligand dependent function was inactivated, had increased resistance to Paclitaxel, whereas the ERβ4 knockdown cell line was sensitized to Paclitaxel. We further show that ERβ1 LBD truncation, as well as treatment with ERβ1 antagonist 2-phenyl-3-(4-hydroxyphenyl)-5,7-bis(trifluoromethyl)-pyrazolo[1,5-a] pyrimidine (PHTPP), leads to increase in the drug efflux transporters. Hypoxia Inducible Factors (HIFs) activate factors involved in pluripotency and regulate the stem cell phenotype, both in normal and cancer cells. Here we show that the ERβ1 and ERβ4 regulate these stem cell markers like SOX2, OCT4, and Nanog in an opposing manner; and we further show that this regulation is mediated by HIFs. We show the increase of cancer cell stemness due to ERβ1 LBD truncation is attenuated when HIF1/2α is knocked down by siRNA. Finally, we show an increase in the breast cancer stem cell population due to ERβ1 antagonist using both ALDEFLUORTM and SOX2/OCT4 response element (SORE6) reporters in SUM159 and MDA-MB-231 cell lines. Since most TNBC cancers are ERβ4 positive, while only a small proportion of TNBC patients are ERβ1 positive, we believe that simultaneous activation of ERβ1 with agonists and inactivation of ERβ4, in combination with paclitaxel, can be more efficacious and yield better outcome for chemotherapy resistant TNBC patients.
Collapse
Affiliation(s)
- Ayesha Bano
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| | - Jessica H Stevens
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| | | | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
- Department of BioSciences and Nutrition, Karolinska Institutet, 171 77 Huddinge, Sweden
| | - Anders M Strom
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
14
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
15
|
Phase I study of intraperitoneal aerosolized nanoparticle albumin based paclitaxel (NAB-PTX) for unresectable peritoneal metastases. EBioMedicine 2022; 82:104151. [PMID: 35843174 PMCID: PMC9297106 DOI: 10.1016/j.ebiom.2022.104151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022] Open
Abstract
Background Pressurized intraperitoneal aerosolized chemotherapy (PIPAC) is a novel method to treat patients with peritoneal metastases (PM). We aimed to study the tolerability, safety, pharmacokinetics, and tumour response of nanoparticle albumin bound paclitaxel (NAB-PTX) during PIPAC in a Phase I study. Methods Eligible patients with biopsy-proven PM from ovarian, breast, gastric, hepatobiliary, or pancreatic origin underwent three PIPAC treatments using NAB-PTX with a four-week interval. The dose of NAB-PTX was escalated from 35 to 140 mg/m2 using a Bayesian design to estimate the maximum tolerated dose (MTD). Findings Twenty-three patients were included; thirteen (65%) patients combined PIPAC therapy with continued systemic chemotherapy. The most frequent toxicities were liver toxicity and anaemia. Treatment resulted in seven (35%) responders, six (30%) non-responders and seven (35%) patients with stable PM. Systemic absorption of NAB-PTX was slow, with median peak plasma concentrations reached after 3 to 4 h. Median NAB-PTX tumour tissue concentrations suggested accumulation: 14.6 ng/mg, 19.2 ng/mg and 40.8 ng/mg after the first, second and third PIPAC procedure respectively. EORTC QoL and VAS scores remained stable. Overall survival after one year was 57%. Interpretation PIPAC with NAB-PTX results in a favourable PK profile and promising anticancer activity in patients with unresectable PM. The MTD and recommended Phase II clinical trial dose are 140 mg/m2. In patients with impaired hepatobiliary function, a dose of 112.5 mg/m2 is recommended. Funding Kom op tegen Kanker (Flemish League against Cancer).
Collapse
|
16
|
Zhu H, Zhou W, Wan Y, Lu J, Ge K, Jia C. Light-activatable multifunctional paclitaxel nanoprodrug for synergistic chemo-photodynamic therapy in liver cancer. Biofactors 2022; 48:918-925. [PMID: 35254679 DOI: 10.1002/biof.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Paclitaxel (Ptx) is widely utilized to treat liver cancer, and the treatment benefit of reactive oxygen species (ROS)-responsive Ptx nanoprodrug is investigated in this study. The one-step nano-precipitation method was utilized to self-assembly DSPE-PEG2000 -thioketal linker (TK)-Ptx with pyropheophorbide acid nanoparticles (PPa NPs) to form PPa/Ptx NPs. Dynamic light scattering and transmission electron microscopy were used for characterization, and 2'-7'dichlorofluorescin diacetate staining was utilized for intracellular ROS detection. HepG2 cells viability and tumor growth rate of HepG2 bearing mice were assayed. Hematoxylin and eosin staining, proliferating cell nuclear antigen detection, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay were utilized for histology assessment. PPa/Ptx NPs incubation with light irradiation showed superior cytotoxicity to HepG2 cells with increased intracellular ROS production than PPa/Ptx NPs incubation without light irradiation or PPa NPs incubation with light irradiation. At the same time, PPa/Ptx NPs with light irradiation could significantly decrease the tumor growth in vivo as indicated by diminished tumor volume with the largest necrotic area, the highest rate of apoptotic cells, and the least proliferating cells. PPa/Ptx NPs show synergistic chemo-photodynamic characteristics, which could be considered as a promising treatment option for liver cancer.
Collapse
Affiliation(s)
- Hanzhang Zhu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Weijiang Zhou
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Yafeng Wan
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Jun Lu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| |
Collapse
|
17
|
Marchocki Z, Tone A, Virtanen C, de Borja R, Clarke B, Brown T, May T. Impact of neoadjuvant chemotherapy on somatic mutation status in high-grade serous ovarian carcinoma. J Ovarian Res 2022; 15:50. [PMID: 35501919 PMCID: PMC9059396 DOI: 10.1186/s13048-022-00983-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Patients treated with neoadjuvant chemotherapy (NACT) for advanced high-grade serous ovarian carcinoma (HGSC) have a higher rate and shorter time to platinum-resistant recurrence compared to patients treated with primary cytoreductive surgery (PCS) and adjuvant chemotherapy. The purpose of this study is to determine the impact of NACT on somatic mutation status in platinum-sensitive and resistant HGSC. Patients with advanced HGSC who had a documented response to platinum-based NACT, a banked blood sample, and a banked tumor sample before and after NACT were identified. Whole exome and/or targeted deep sequencing was performed in matched normal and pre/post-NACT tumor samples from 3 platinum-resistant and 2 platinum-sensitive patients to identify somatic non-synonymous mutations at each time point. RESULTS When comparing exonic non-synonymous mutations in pre-NACT and post-NACT samples from the same patient, an average of 41% (1-68%) of genes were mutated at both time points. There were no trends detected in the mutational burden following exposure to NACT in platinum-resistant vs. platinum-sensitive cases. The majority of mutated genes were unique to each case. We identified several genes that were commonly mutated in pre-NACT samples specific to platinum-resistant (CSPG4, SLC35G5, TUBA3D) or sensitive (CYP2D6, NUTM1, DNAH5) cases. Four mutated genes emerged exclusively in the platinum-resistant cases (ADGRV1, MUC17, MUC20, PAK2) following NACT. CONCLUSIONS Patients with advanced HGSC present with significant intra-tumor heterogeneity. NACT significantly impacts the somatic mutation status irrespective of the time to recurrence. The mutated genes detected in chemo-naive pre-NACT tumor samples from either resistant or sensitive cases could potentially have a role in the prediction of chemotherapy response in patients scheduled to receive NACT; larger studies are required to further validate these genes.
Collapse
Affiliation(s)
- Zibi Marchocki
- Department of Surgical Oncology, Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Alicia Tone
- Department of Surgical Oncology, Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Carl Virtanen
- Bioinformatics and HPC Services Core, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Richard de Borja
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Blaise Clarke
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Theodore Brown
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Taymaa May
- Department of Surgical Oncology, Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Kalluru H, Mallayasamy SR, Kondaveeti SS, Chandrasekhar V, Kalachaveedu M. Effect of turmeric supplementation on the pharmacokinetics of paclitaxel in breast cancer patients: A study with population pharmacokinetics approach. Phytother Res 2022; 36:1761-1769. [PMID: 35181963 DOI: 10.1002/ptr.7412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/09/2022]
Abstract
Turmeric is one of the most used herbal supplements among cancer patients. It reportedly modulates the function of CYP450 enzymes and drug transporters. This study investigates the effect of turmeric on the pharmacokinetics of paclitaxel in breast cancer patients. This is a prospective longitudinal study with 60 breast cancer patients on treatment with single-agent paclitaxel and turmeric. The patients were followed up for two consecutive chemotherapy cycles, and their blood samples were collected, first without turmeric (first cycle) and the next after a 21-day concomitant administration of 2 g/day turmeric (second cycle). Plasma samples were quantified for paclitaxel concentration using High Performance Liquid Chromatograph with UV detector (HPLC-UV) method. The sparse concentration-time data of paclitaxel were subjected to population pharmacokinetic modeling, and then noncompartmental analysis (NCA) was performed on the simulated data to estimate the pharmacokinetic parameters of paclitaxel, before and after turmeric supplementation, for comparisons. The population pharmacokinetic parameters of paclitaxel differed from before to after turmeric supplementation. NCA of simulated concentration-time profiles showed a statistically significant reduction of 7.7% and 12.1% in AUCinf and Cmax, respectively. Given the small magnitude of the changes in pharmacokinetic parameters, the observed changes are not clinically relevant. Thereby, turmeric at the recommended dose can be combined safely with paclitaxel.
Collapse
Affiliation(s)
- Hindu Kalluru
- Department of Pharmacognosy, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Surulivel Rajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Satish Srinivas Kondaveeti
- Department of Radiation Oncology, Faculty of Medicine, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Vinodhini Chandrasekhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Mangathayaru Kalachaveedu
- Department of Pharmacognosy, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| |
Collapse
|
19
|
Lohan-Codeço M, Barambo-Wagner ML, Nasciutti LE, Ribeiro Pinto LF, Meireles Da Costa N, Palumbo A. Molecular mechanisms associated with chemoresistance in esophageal cancer. Cell Mol Life Sci 2022; 79:116. [PMID: 35113247 PMCID: PMC11073146 DOI: 10.1007/s00018-022-04131-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
Esophageal cancer (EC) is one of the most incident and lethal tumors worldwide. Although surgical resection is an important approach in EC treatment, late diagnosis, metastasis and recurrence after surgery have led to the management of adjuvant and neoadjuvant therapies over the past few decades. In this scenario, 5-fluorouracil (5-FU) and cisplatin (CISP), and more recently paclitaxel (PTX) and carboplatin (CBP), have been traditionally used in EC treatment. However, chemoresistance to these agents along EC therapeutic management represents the main obstacle to successfully treat this malignancy. In this sense, despite the fact that most of chemotherapy drugs were discovered several decades ago, in many cases, including EC, they still represent the most affordable and widely employed treatment approach for these tumors. Therefore, this review summarizes the main mechanisms through which the response to the most widely chemotherapeutic agents used in EC treatment is impaired, such as drug metabolism, apoptosis resistance, cancer stem cells (CSCs), cell cycle, autophagy, energetic metabolism deregulation, tumor microenvironment and epigenetic modifications.
Collapse
Affiliation(s)
- Matheus Lohan-Codeço
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil
| | - Maria Luísa Barambo-Wagner
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
20
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
21
|
Ghadi M, Hosseinimehr SJ, Amiri FT, Mardanshahi A, Noaparast Z. Itraconazole synergistically increases therapeutic effect of paclitaxel and 99mTc-MIBI accumulation, as a probe of P-gp activity, in HT-29 tumor-bearing nude mice. Eur J Pharmacol 2021; 895:173892. [PMID: 33497608 DOI: 10.1016/j.ejphar.2021.173892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
P-glycoprotein (P-gp), is an important efflux pump involved in chemotherapy resistance in human colon cancer. We investigated the efficacy of itraconazole as a P-gp inhibitor and its therapeutic synergistic relationship to paclitaxel through 99mTc-MIBI accumulation in HT-29 tumor-bearing nude mice. Histopathological screening along with in vitro experiments was done for further assessment. Itraconazole successfully inhibited P-gp mediated 99mTc-MIBI efflux, increasing its in vitro accumulation in itraconazole-receiving dishes. Notably, the co-administration of itraconazole with paclitaxel significantly enhanced the in vitro cytotoxicity effect of paclitaxel in itraconazole + paclitaxel wells containing HT-29 cells. Compared to the control, tumor volume in mice treated with itraconazole, paclitaxel and itraconazole +paclitaxel showed growth suppression approximately by 36.21, 60.02, and 73.3% respectively. And compared to paclitaxel group, the nude mice co-treated with paclitaxel and itraconazole showed suppression of tumor growth by about 33.31 % at the end of the treatment period. Also the biodistribution result showed that the co-administration of itraconazole with paclitaxel raised the mean tumor radioactivity accumulation compared to control and paclitaxel group. When given paclitaxel alone, the ID% of hepatic and cardiac tissue was reduced while co-administration of itraconazole with paclitaxel increased 99mTc-MIBI accumulation in these organs. Furthermore, the histopathological findings confirmed the biodistribution results. These results demonstrate that although monotherapy with itraconazole or paclitaxel has anti-tumor activity against HT-29 human colorectal cancer, a synergistic anti-tumor activity can be achieved when itraconazole is co-administered with paclitaxel. Also, 99mTc-MIBI is an effective radiotracer for monitoring response to treatment in MDR tumors.
Collapse
Affiliation(s)
- Mahdi Ghadi
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mardanshahi
- Department of Radiology, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
22
|
de Weger VA, Vermunt MAC, Stuurman FE, Burylo AM, Damoiseaux D, Hendrikx JJMA, Sawicki E, Moes JJ, Huitema ADR, Nuijen B, Rosing H, Mergui-Roelvink M, Beijnen JH, Marchetti S. A Phase 1 Dose-Escalation Study of Low-Dose Metronomic Treatment With Novel Oral Paclitaxel Formulations in Combination With Ritonavir in Patients With Advanced Solid Tumors. Clin Pharmacol Drug Dev 2020; 10:607-621. [PMID: 33021083 DOI: 10.1002/cpdd.880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
ModraPac001 (MP1) and ModraPac005 (MP5) are novel oral paclitaxel formulations that are coadministered with the cytochrome P450 3A4 inhibitor ritonavir (r), enabling daily low-dose metronomic (LDM) treatment. The primary aim of this study was to determine the safety, pharmacokinetics and maximum tolerated dose (MTD) of MP1/r and MP5/r. The second aim was to establish the recommended phase 2 dose (RP2D) as LDM treatment. This was an open-label phase 1 trial. Patients with advanced solid tumors were enrolled according to a classical 3+3 design. After initial employment of the MP1 capsule, the MP5 tablet was introduced. Safety was assessed using the Common Terminology Criteria for Adverse Events version 4.02. Pharmacokinetic sampling was performed on days 1, 2, 8, and 22 for determination of paclitaxel and ritonavir plasma concentrations. In this study, 37 patients were treated with up to twice-daily 30-mg paclitaxel combined with twice-daily 100-mg ritonavir (MP5/r 30-30/100-100) in 9 dose levels. Dose-limiting toxicities were nausea, (febrile) neutropenia, dehydration and vomiting. At the MTD/RP2D of MP5/r 20-20/100-100, the maximum paclitaxel plasma concentration and area under the concentration-time curve until 24 hours were 34.6 ng/mL (coefficient of variation, 79%) and 255 ng • h/mL (coefficient of variation, 62%), respectively. Stable disease was observed as best response in 15 of 31 evaluable patients. Based on these results, LDM therapy with oral paclitaxel coadministrated with ritonavir was considered feasible and safe. The MTD and RP2D were determined as MP5/r 20-20/100-100. Further clinical development of MP5/r as an LDM concept, including potential combination treatment, is warranted.
Collapse
Affiliation(s)
- Vincent A de Weger
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marit A C Vermunt
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frederik E Stuurman
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Artur M Burylo
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Damoiseaux
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilia Sawicki
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Modra Pharmaceuticals BV, Amsterdam, The Netherlands
| | - Johannes J Moes
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Mergui-Roelvink
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Modra Pharmaceuticals BV, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Serena Marchetti
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Chiorean EG, Perkins SM, Strother RM, Younger A, Funke JM, Shahda SG, Hahn NM, Sandrasegaran K, Jones DR, Skaar TC, Schneider BP, Sweeney CJ, Matei DE. Phase I, Pharmacogenomic, Drug Interaction Study of Sorafenib and Bevacizumab in Combination with Paclitaxel in Patients with Advanced Refractory Solid Tumors. Mol Cancer Ther 2020; 19:2155-2162. [PMID: 32847973 DOI: 10.1158/1535-7163.mct-20-0277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/19/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
VEGF blockade does not uniformly result in clinical benefit. We evaluated safety, dose-limiting toxicities (DLT), recommended phase II dose (RP2D), antitumor efficacy, and exploratory biomarkers including pharmacogenomics and pharmacokinetics with sorafenib, bevacizumab, and paclitaxel in patients with refractory cancers. The study had a "3 + 3" design, using paclitaxel 80 mg/m2 every week for 3 weeks, in every 4 week cycles, bevacizumab 5 mg/kg every 2 weeks, and sorafenib 200 or 400 mg twice a day, 5 or 7 days/week (5/7, 7/7). The MTD cohort was expanded. Twenty-seven patients enrolled in 3 cohorts: sorafenib 200 mg twice a day 5/7, 200 mg twice a day 7/7, and 400 mg twice a day 5/7. DLTs were grade 3 neutropenia >7 days (cohort 1, 1), grade 3 hypertension (cohort 2, 1), grade 3 hand-foot skin reaction (HFSR; cohort 3, 2). MTD was sorafenib 200 mg twice a day 7/7. Six DLTs occurred in cohort 2 expansion: grade 3 HFSR (2), grade 2 HFSR with sorafenib delay >7 days (2), grade 4 cerebrovascular accident (1), grade 3 neutropenia >7 days (1). RP2D was sorafenib 200 mg twice a day 5/7. Most patients (62%) dose reduced sorafenib to 200 mg daily 5/7 after a median 3 (range, 2-17) cycles. Response rates were 48% overall (27) and 64% for ovarian cancers (14). VEGF-A-1154AA and -7TT recessive homozygous genotypes conferred worse overall survival versus alternative genotypes (7 vs. 22 months). Intermittent, low-dose sorafenib (200 mg twice a day 5/7) combined with bevacizumab and paclitaxel was tolerable and had high antitumor efficacy in patients with refractory cancer (NCT00572078).
Collapse
Affiliation(s)
- E Gabriela Chiorean
- University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Susan M Perkins
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | | | - Anne Younger
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Jennifer M Funke
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Safi G Shahda
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Noah M Hahn
- Johns Hopkins University, Baltimore, Maryland
| | | | - David R Jones
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Todd C Skaar
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Bryan P Schneider
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | | | | |
Collapse
|
24
|
Labaki C, Rawadi E, Chebel R, Bakouny Z, Droz JP, Kattan JG. Anti-neoplastic agents for patients on peritoneal dialysis: A systematic review. Crit Rev Oncol Hematol 2020; 150:102947. [PMID: 32294609 DOI: 10.1016/j.critrevonc.2020.102947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is no clear consensus on the administration of anti-neoplastic agents to patients on peritoneal dialysis. Dose adjustments to prevent serious adverse events are still not established. Thus, the aim of this study was to systematically review current evidence on the use of systemic oncology therapies in peritoneal dialysis. METHODS A systematic review was conducted using PubMed, Scopus, and Cochrane. All relevant data was collected, including clinical and pharmacokinetic parameters, with comparison to subjects with normal renal function. RESULTS Sixteen studies were included. All were case reports. Eighteen types of anti-cancer drugs were reviewed. Multiple adverse events and altered pharmacokinetics were reported. CONCLUSION Data concerning the use of anti-neoplastic drugs in patients on peritoneal dialysis are still sparse. The elimination of anti-cancer agents seems often altered in such patients, resulting in serious adverse events. Based on the available evidence, we suggest the need for dose adjustment of each drug.
Collapse
Affiliation(s)
- Chris Labaki
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.
| | - Elsa Rawadi
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Roy Chebel
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Ziad Bakouny
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Jean-Pierre Droz
- Department of Oncology, Claude-Bernard Lyon-1 University, Lyon, France
| | - Joseph G Kattan
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
25
|
Rai A, Liu T, Glauser S, Katrukha EA, Estévez-Gallego J, Rodríguez-García R, Fang WS, Díaz JF, Steinmetz MO, Altmann KH, Kapitein LC, Moores CA, Akhmanova A. Taxanes convert regions of perturbed microtubule growth into rescue sites. NATURE MATERIALS 2020; 19:355-365. [PMID: 31819210 DOI: 10.1038/s41563-019-0546-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Microtubules are polymers of tubulin dimers, and conformational transitions in the microtubule lattice drive microtubule dynamic instability and affect various aspects of microtubule function. The exact nature of these transitions and their modulation by anticancer drugs such as Taxol and epothilone, which can stabilize microtubules but also perturb their growth, are poorly understood. Here, we directly visualize the action of fluorescent Taxol and epothilone derivatives and show that microtubules can transition to a state that triggers cooperative drug binding to form regions with altered lattice conformation. Such regions emerge at growing microtubule ends that are in a pre-catastrophe state, and inhibit microtubule growth and shortening. Electron microscopy and in vitro dynamics data indicate that taxane accumulation zones represent incomplete tubes that can persist, incorporate tubulin dimers and repeatedly induce microtubule rescues. Thus, taxanes modulate the material properties of microtubules by converting destabilized growing microtubule ends into regions resistant to depolymerization.
Collapse
Affiliation(s)
- Ankit Rai
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Tianyang Liu
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Simon Glauser
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Eugene A Katrukha
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Juan Estévez-Gallego
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ruddi Rodríguez-García
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Wei-Shuo Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Beijing, China
| | - J Fernando Díaz
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
- University of Basel, Biozentrum, Basel, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Wright WC, Chenge J, Chen T. Structural Perspectives of the CYP3A Family and Their Small Molecule Modulators in Drug Metabolism. LIVER RESEARCH 2019; 3:132-142. [PMID: 32789028 PMCID: PMC7418881 DOI: 10.1016/j.livres.2019.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 enzymes function to catalyze a wide range of reactions, many of which are critically important for drug response. Members of the human cytochrome P450 3A (CYP3A) family are particularly important in drug clearance, and they collectively metabolize more than half of all currently prescribed medications. The ability of these enzymes to bind a large and structurally diverse set of compounds increases the chances of their modulating or facilitating drug metabolism in unfavorable ways. Emerging evidence suggests that individual enzymes in the CYP3A family play discrete and important roles in catalysis and disease progression. Here we review the similarities and differences among CYP3A enzymes with regard to substrate recognition, metabolism, modulation by small molecules, and biological consequence, highlighting some of those with clinical significance. We also present structural perspectives to further characterize the basis of these comparisons.
Collapse
Affiliation(s)
- William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jude Chenge
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
- Corresponding author: Taosheng Chen, Department of Chemical Biology and Therapeutics, MS 1000, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA. Tel: (901) 595-5937; Fax: (901) 595-5715;
| |
Collapse
|
27
|
Sze LP, Li HY, Lai KLA, Chow SF, Li Q, KennethTo KW, Lam TNT, Lee WYT. Oral delivery of paclitaxel by polymeric micelles: A comparison of different block length on uptake, permeability and oral bioavailability. Colloids Surf B Biointerfaces 2019; 184:110554. [PMID: 31627103 DOI: 10.1016/j.colsurfb.2019.110554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/23/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022]
Abstract
Drug solubility and permeability are two major challenges affecting oral delivery, the most popular route of drug administration. Polymeric micelles is an emerging technology for overcoming the current oral drug delivery hurdles. Previous study primarily focused on developing new polymers or new micellar systems and a systematic investigation of the impact of the polymer block length on solubility and permeability enhancement; and their subsequent effect on oral bioavailability is lacking. Herein, by using paclitaxel, a poorly soluble P-glycoproteins (P-gp) substrate, as a model, we aim to assess and compare the drug-loaded micelles prepared with two different molecular weight of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL), with the ultimate goal of establishing a strong scientific rationale for proper design of formulations for oral drug delivery. PEG-b-PCL (750:570) (PEG17-b-PCL5) and PEG-b-PCL (5k:10k) (PEG114-b-PCL88) effectively enhanced the solubility of paclitaxel compared to the free drug. PEG-b-PCL (750:570) increased both P-gp and non P-gp substrate cellular uptake and increased the apparent permeability coefficient of a P-gp substrate. In vivo animal study showed that PEG-b-PCL micelles efficiently enhanced the oral bioavailability of paclitaxel. In addition to solubility enhancement, polymer choice also plays a pivotal role in determining the oral bioavailability improvement, probably via permeation enhancement. In conclusion, the knowledge gained in this study enables rational design of polymeric micelles to overcome the current challenges of oral drug delivery and it also provides a basis for future clinical translation of the technology.
Collapse
Affiliation(s)
- Lai Pan Sze
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ho Yin Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ka Lun Alan Lai
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qingqing Li
- Faculty of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Kin Wah KennethTo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Tai Ning Teddy Lam
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wai Yip Thomas Lee
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
28
|
Dastidar DG, Das A, Datta S, Ghosh S, Pal M, Thakur NS, Banerjee UC, Chakrabarti G. Paclitaxel-encapsulated core–shell nanoparticle of cetyl alcohol for active targeted delivery through oral route. Nanomedicine (Lond) 2019; 14:2121-2150. [DOI: 10.2217/nnm-2018-0419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Paclitaxel (PTX) has no clinically available oral formulations. Cetyl alcohol is metabolized by alcohol dehydrogenase and aldehyde dehydrogenase that are overexpressed in cancer cells. So, PTX-encapsulated core–shell nanoparticle of cetyl alcohol (PaxSLN) could target the cancer cells through oral route. Materials & methods: PaxSLN was synthesized using microemulsion template. Efficiency of PaxSLN was evaluated by ALDEFLUOR™, multicellular tumor spheroid formation inhibition assays and CT26 colorectal carcinoma animal model. Pharmacokinetics and biodistribution studies were done in Sprague Dawley rats. Results: PTX was encapsulated at the core of approximately 78 nm PaxSLN. PaxSLN targeted aldehyde dehydrogenase overexpressing cells. Its oral bioavailability was approximately 95% and chemotherapeutic efficacy was better than Taxol® and nab-PTX. Conclusion: A novel oral nanoformulation of PTX was developed.
Collapse
Affiliation(s)
- Debabrata G Dastidar
- Department of Biotechnology & Dr BC Guha Centre for Genetic Engineering & Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Amlan Das
- Department of Biotechnology & Dr BC Guha Centre for Genetic Engineering & Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Satabdi Datta
- Department of Biotechnology & Dr BC Guha Centre for Genetic Engineering & Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700 054, West Bengal, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata 700 054, West Bengal, India
| | - Neeraj S Thakur
- Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar, Punjab 160 062, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar, Punjab 160 062, India
| | - Gopal Chakrabarti
- Department of Biotechnology & Dr BC Guha Centre for Genetic Engineering & Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| |
Collapse
|
29
|
Amjadi I, Mohajeri M, Borisov A, Hosseini MS. Antiproliferative Effects of Free and Encapsulated Hypericum Perforatum L. Extract and Its Potential Interaction with Doxorubicin for Esophageal Squamous Cell Carcinoma. J Pharmacopuncture 2019; 22:102-108. [PMID: 31338250 PMCID: PMC6645344 DOI: 10.3831/kpi.2019.22.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/13/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Objectives Esophageal squamous cell carcinoma (ESCC) is considered as a deadly medical condition that affects a growing number of people worldwide. Targeted therapy of ESCC has been suggested recently and required extensive research. With cyclin D1 as a therapeutic target, the present study aimed at evaluating the anticancer effects of doxorubicin (Dox) or Hypericum perforatum L. (HP) extract encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles on the ESCC cell line KYSE30. Methods Nanoparticles were prepared using double emulsion method. Cytotoxicity assay was carried out to measure the anti-proliferation activity of Dox-loaded (Dox NPs) and HP-loaded nanoparticles (HP NPs) against both cancer and normal cell lines. The mRNA gene expression of cyclin D1 was evaluated to validate the cytotoxicity studies at molecular level. Results Free drugs and nanoparticles significantly inhibited KYSE30 cells by 55–73% and slightly affected normal cells up to 29%. The IC50 of Dox NPs and HP NPs was ~ 0.04–0.06 mg/mL and ~ 0.6–0.7 mg/mL, respectively. Significant decrease occurred in cyclin D1 expression by Dox NPs and HP NPs (P < 0.05). Exposure of KYSE-30 cells to combined treatments including both Dox and HP extract significantly increased the level of cyclin D1 expression as compared to those with individual treatments (P < 0.05). Conclusion Dox NPs and HP NPs can successfully and specifically target ESCC cells through downregulation of cyclin D1. The simultaneous use of Dox and HP extract should be avoided for the treatment of ESCC.
Collapse
Affiliation(s)
- Issa Amjadi
- Department of Biomedical Engineering, Wayne State University, Detroit, United States
| | - Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Andrei Borisov
- Department of Biomedical Engineering, Wayne State University, Detroit, United States
| | - Motahare-Sadat Hosseini
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
30
|
Lee MX, Tan DS. Weekly versus 3-weekly paclitaxel in combination with carboplatin in advanced ovarian cancer: which is the optimal adjuvant chemotherapy regimen? J Gynecol Oncol 2019; 29:e96. [PMID: 30207104 PMCID: PMC6189442 DOI: 10.3802/jgo.2018.29.e96] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023] Open
Abstract
The 3-weekly regimen of carboplatin and paclitaxel is the backbone of first line adjuvant chemotherapy for advanced ovarian cancer. The landmark Japanese Gynaecologic Oncology Group (JGOG) 3016 study demonstrated significant improvements in progression-free survival and overall survival with dose dense weekly administration of paclitaxel in combination with 3-weekly carboplatin. However, efforts to replicate these benefits have failed in subsequent phase III trials. Weekly paclitaxel is purported to have enhanced antitumor activity, with stronger anti-angiogenic effects, and yet is better tolerated. In this review, we explore the rationale for dose dense weekly paclitaxel, and compare the relevant trials as well as quality of life considerations. Possible reasons for the difference in outcomes between the JGOG 3016 and other studies are reviewed, with a focus on how the addition of bevacizumab, the variations between histological and molecular subtypes of epithelial ovarian cancers, and ethnic pharmacogenetic differences may potentially affect the efficacy of dose dense paclitaxel.
Collapse
Affiliation(s)
- Matilda X Lee
- Department of Medical Oncology, National University Cancer Institute Singapore, National University Health Systems, Singapore
| | - David Sp Tan
- Department of Medical Oncology, National University Cancer Institute Singapore, National University Health Systems, Singapore.,Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore.
| |
Collapse
|
31
|
Blanton HL, Brelsfoard J, DeTurk N, Pruitt K, Narasimhan M, Morgan DJ, Guindon J. Cannabinoids: Current and Future Options to Treat Chronic and Chemotherapy-Induced Neuropathic Pain. Drugs 2019; 79:969-995. [PMID: 31127530 PMCID: PMC8310464 DOI: 10.1007/s40265-019-01132-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increases in cancer diagnosis have tremendous negative impacts on patients and their families, and major societal and economic costs. The beneficial effect of chemotherapeutic agents on tumor suppression comes with major unwanted side effects such as weight and hair loss, nausea and vomiting, and neuropathic pain. Chemotherapy-induced peripheral neuropathy (CIPN), which can include both painful and non-painful symptoms, can persist 6 months or longer after the patient's last chemotherapeutic treatment. These peripheral sensory and motor deficits are poorly treated by our current analgesics with limited effectiveness. Therefore, the development of novel treatment strategies is an important preclinical research focus and an urgent need for patients. Approaches to prevent CIPN have yielded disappointing results since these compounds may interfere with the anti-tumor properties of chemotherapeutic agents. Nevertheless, the first (serotonin noradrenaline reuptake inhibitors [SNRIs], anticonvulsants, tricyclic antidepressants) and second (5% lidocaine patches, 8% capsaicin patches and weak opioids such as tramadol) lines of treatment for CIPN have shown some efficacy. The clinical challenge of CIPN management in cancer patients and the need to target novel therapies with long-term efficacy in alleviating CIPN are an ongoing focus of research. The endogenous cannabinoid system has shown great promise and efficacy in alleviating CIPN in preclinical and clinical studies. In this review, we will discuss the mechanisms through which the platinum, taxane, and vinca alkaloid classes of chemotherapeutics may produce CIPN and the potential therapeutic effect of drugs targeting the endocannabinoid system in preclinical and clinical studies, in addition to cannabinoid compounds diffuse mechanisms of action in alleviation of CIPN.
Collapse
Affiliation(s)
- Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jennifer Brelsfoard
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Nathan DeTurk
- Department of Anesthesiology and Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX, 79430, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Daniel J Morgan
- Department of Anesthesiology and Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
32
|
Du S, Xiong H, Xu C, Lu Y, Yao J. Attempts to strengthen and simplify the tumor vascular normalization strategy using tumor vessel normalization promoting nanomedicines. Biomater Sci 2019; 7:1147-1160. [DOI: 10.1039/c8bm01350k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor vascular normalization theory opened the door for the rational use of antiangiogenic agents and chemotherapeutics.
Collapse
Affiliation(s)
- Shi Du
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Stability of Biopharmaceuticals
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Stability of Biopharmaceuticals
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Cheng Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Stability of Biopharmaceuticals
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yun Lu
- Pharmaceutical R&D Institute
- Jiangsu Hengrui Medicine Co
- Ltd
- 222047
- China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Stability of Biopharmaceuticals
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
33
|
Xu J, Seung-Young Lee S, Seo H, Pang L, Jun Y, Zhang RY, Zhang ZY, Kim P, Lee W, Kron SJ, Yeo Y. Quinic Acid-Conjugated Nanoparticles Enhance Drug Delivery to Solid Tumors via Interactions with Endothelial Selectins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803601. [PMID: 30411856 PMCID: PMC6361670 DOI: 10.1002/smll.201803601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/11/2018] [Indexed: 05/26/2023]
Abstract
Current nanoparticle (NP) drug carriers mostly depend on the enhanced permeability and retention (EPR) effect for selective drug delivery to solid tumors. However, in the absence of a persistent EPR effect, the peritumoral endothelium can function as an access barrier to tumors and negatively affect the effectiveness of NPs. In recognition of the peritumoral endothelium as a potential barrier in drug delivery to tumors, poly(lactic-co-glycolic acid) (PLGA) NPs are modified with a quinic acid (QA) derivative, synthetic mimic of selectin ligands. QA-decorated NPs (QA-NP) interact with human umbilical vein endothelial cells expressing E-/P-selectins and induce transient increase in endothelial permeability to translocate across the layer. QA-NP reach selectin-upregulated tumors, achieving greater tumor accumulation and paclitaxel (PTX) delivery than polyethylene glycol-decorated NPs (PEG-NP). PTX-loaded QA-NP show greater anticancer efficacy than Taxol or PTX-loaded PEG-NP at the equivalent PTX dose in different animal models and dosing regimens. Repeated dosing of PTX-loaded QA-NP for two weeks results in complete tumor remission in 40-60% of MDA-MB-231 tumor-bearing mice, while those receiving control treatments succumb to death. QA-NP can exploit the interaction with selectin-expressing peritumoral endothelium and deliver anticancer drugs to tumors to a greater extent than the level currently possible with the EPR effect.
Collapse
Affiliation(s)
- Jun Xu
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA,
| | - Steve Seung-Young Lee
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, and Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL 60637, USA
| | - Howon Seo
- Graduate School of Nanoscience and Technology and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Liang Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People’s Republic of China
| | - Yearin Jun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Stephen J. Kron
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, and Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL 60637, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA, ; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
34
|
Wang X, Yang L, Zhang H, Tian B, Li R, Hou X, Wei F. Fluorescent magnetic PEI-PLGA nanoparticles loaded with paclitaxel for concurrent cell imaging, enhanced apoptosis and autophagy in human brain cancer. Colloids Surf B Biointerfaces 2018; 172:708-717. [PMID: 30245296 DOI: 10.1016/j.colsurfb.2018.09.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/09/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Magnetic nanoparticles are regarded as a promising drug delivery vehicle with the improved efficacy and lowered side effects for antitumor therapy. Herein, the poly lactic-co-glycolic acid (PLGA) modified magnetic nanoplatform was synthesized using superparamagnetic γ-Fe2O3 nanoparticles (MNPs) as a core, and then labelled with polyethylenimine (PEI)-conjugated fluorescein isothiocyanate (FITC), and simultaneously loaded with antitumor drug paclitaxel (PTX) for theranostic analysis of antitumor effects investigated in human brain glioblastoma U251 cells. As a result, the prepared PEI-PLGA-MNPs showed a relatively round sphere with an average size of 80 nm approximately, and the FITC-labeling PEI-PLGA-MNPs were efficiently endocytosed by the U251 cells for cellular imaging. Moreover, the fabricated PEI-PLGA-PTX-MNPs also demonstrated an inhibition of the targeted cell proliferation and migration, and a programmed cell death, via both apoptosis modulating by a burst of reactive oxygen species (ROS) and autophagy with accumulation of autophagosomes and LC3-II signals detected in the treated glioblastoma U251 cells after uptaking. Therefore, the constructed nanoplatform could be effectively applied for simultaneous cellular imaging and drug delivery in human brain glioblastoma treatment in future.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Liping Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huiru Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoming Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ruifang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xuandi Hou
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Fang Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
35
|
Du W, Hu X, Wei W, Liang G. Intracellular Peptide Self-Assembly: A Biomimetic Approach for in Situ Nanodrug Preparation. Bioconjug Chem 2018; 29:826-837. [PMID: 29316785 DOI: 10.1021/acs.bioconjchem.7b00798] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most nanodrugs are preprepared by encapsulating or loading the drugs with nanocarriers (e.g., dendrimers, liposomes, micelles, and polymeric nanoparticles). However, besides the low bioavailability and fast excretion of the nanodrugs in vivo, nanocarriers often exhibit in vitro and in vivo cytotoxicity, oxidative stress, and inflammation. Self-assembly is a ubiquitous process in biology where it plays important roles and underlies the formation of a wide variety of complex biological structures. Inspired by some cellular nanostructures (e.g., actin filaments, microtubules, vesicles, and micelles) in biological systems which are formed via molecular self-assembly, in recent decades, scientists have utilized self-assembly of oligomeric peptide under specific physiological or pathological environments to in situ construct nanodrugs for lesion-targeted therapies. On one hand, peptide-based nanodrugs always have some excellent intrinsic chemical (specificity, intrinsic bioactivity, biodegradability) and physical (small size, conformation) properties. On the other hand, stimuli-regulated intracellular self-assembly of nanodrugs is quite an efficient way to accumulate the drugs in lesion location and can realize an in situ slow release of the drugs. In this review article, we provided an overview on recent design principles for intracellular peptide self-assembly and illustrate how these principles have been applied for the in situ preparation of nanodrugs at the lesion location. In the last part, we list some challenges underlying this strategy and their possible solutions. Moreover, we envision the future possible theranostic applications of this strategy.
Collapse
Affiliation(s)
- Wei Du
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Xiaomu Hu
- Department of Medicinal Chemistry, School of Pharmacy , The Fourth Military Medical University , Changle West Road 169 , Xi'an , Shanxi 710032 , China
| | - Weichen Wei
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| |
Collapse
|
36
|
Prediction of neutrophil reduction using plasma paclitaxel concentration after administration in patients with uterine, ovarian, or cervical cancers in an outpatient clinic. Cancer Chemother Pharmacol 2018; 81:399-411. [DOI: 10.1007/s00280-017-3506-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 12/25/2017] [Indexed: 10/18/2022]
|
37
|
Perez-Ortiz AC, Ramírez I, Cruz-López JC, Villarreal-Garza C, Luna-Angulo A, Lira-Romero E, Jiménez-Chaidez S, Díaz-Chávez J, Matus-Santos JA, Sánchez-Chapul L, Mendoza-Lorenzo P, Estrada-Mena FJ. Pharmacogenetics of response to neoadjuvant paclitaxel treatment for locally advanced breast cancer. Oncotarget 2017; 8:106454-106467. [PMID: 29290962 PMCID: PMC5739747 DOI: 10.18632/oncotarget.22461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023] Open
Abstract
Locally advanced breast cancer (LABC) cases have a varying five-year survival rate, mainly influenced by the tumor response to chemotherapy. Paclitaxel activity (response rate) varies across populations from 21.5% to 84%. There are some reports on genetic traits and paclitaxel; however, there is still considerable residual unexplained variability. In this study, we aimed to test the association between eleven novel markers and tumor response to paclitaxel and to explore if any of them influenced tumor protein expression. We studied a cohort of 140 women with LABC. At baseline, we collected a blood sample (for genotyping), fine needle aspirates (for Western blot), and tumor measurements by imaging. After follow-up, we ascertained the response to paclitaxel monotherapy by comparing the percent change in the pre-, post- tumor measurements after treatment. To allocate exposure, we genotyped eleven SNPs with TaqMan probes on RT-PCR and regressed them to tumor response using linear modeling. In addition, we compared protein expression, between breast tumors and healthy controls, of those genes whose genetic markers were significantly associated with tumor response. After adjusting for multiple clinical covariates, SNPs on the LPHN2, ROBO1, SNTG1, and GRIK1 genes were significant independent predictors of poor tumor response (tumor growth) despite paclitaxel treatment. Moreover, proteins encoded by those genes are significantly downregulated in breast tumor samples.
Collapse
Affiliation(s)
- Andric C Perez-Ortiz
- Universidad Panamericana, Escuela de Medicina, Mexico City, Mexico.,Yale University School of Public Health, Laboratory of Epidemiology and Public Health, New Haven, CT, USA
| | - Israel Ramírez
- Universidad Panamericana, Escuela de Medicina, Mexico City, Mexico
| | - Juan C Cruz-López
- Hospital Regional ISSSTE Puebla and Hospital General Zona Norte SSEP Puebla, Puebla City, Mexico
| | - Cynthia Villarreal-Garza
- Depto. de Investigacion, Instituto Nacional de Cancerologia, Centro de Cancer de Mama, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | | | | | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Juan A Matus-Santos
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Patricia Mendoza-Lorenzo
- División Académica de Ciencias Básicas, Unidad Chontalpa, Universidad Juárez Autónoma de Tabasco, Tabasco, Mexico
| | | |
Collapse
|
38
|
Soleymani S, Bahramsoltani R, Rahimi R, Abdollahi M. Clinical risks of St John’s Wort (Hypericum perforatum) co-administration. Expert Opin Drug Metab Toxicol 2017; 13:1047-1062. [DOI: 10.1080/17425255.2017.1378342] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Samaneh Soleymani
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Evidence-Based Medicine Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Paolini M, Poul L, Berjaud C, Germain M, Darmon A, Bergère M, Pottier A, Levy L, Vibert E. Nano-sized cytochrome P450 3A4 inhibitors to block hepatic metabolism of docetaxel. Int J Nanomedicine 2017; 12:5537-5556. [PMID: 28814868 PMCID: PMC5546780 DOI: 10.2147/ijn.s141145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most drugs are metabolized by hepatic cytochrome P450 3A4 (CYP3A4), resulting in their reduced bioavailability. In this study, we present the design and evaluation of bio-compatible nanocarriers trapping a natural CYP3A4-inhibiting compound. Our aim in using nanocarriers was to target the natural CYP3A4-inhibiting agent to hepatic CYP3A4 and leave drug-metabolizing enzymes in other organs undisturbed. In the design of such nanocarriers, we took advantage of the nonspecific accumulation of small nanoparticles in the liver. Specific targeting functionalization was added to direct nanocarriers toward hepatocytes. Nanocarriers were evaluated in vitro for their CYP3A4 inhibition capacity and in vivo for their biodistribution, and finally injected 24 hours prior to the drug docetaxel, for their ability to improve the efficiency of the drug docetaxel. Nanoparticles of poly(lactic-co-glycolic) acid (PLGA) with a hydrodynamic diameter of 63 nm, functionalized with galactosamine, showed efficient in vitro CYP3A4 inhibition and the highest accumulation in hepatocytes. When compared to docetaxel alone, in nude mice bearing the human breast cancer, MDA-MB-231 model, they significantly improved the delay in tumor growth (treated group versus docetaxel alone, percent treated versus control ratio [%T/C] of 32%) and demonstrated a major improvement in overall survival (survival rate of 67% versus 0% at day 55).
Collapse
Affiliation(s)
- Marion Paolini
- Nanobiotix, Paris.,UMR-S 1193 INSERM/Paris-Sud University, Centre Hépato-Biliaire, Hôpital Paul Brousse, Villejuif, France
| | | | | | | | | | | | | | | | - Eric Vibert
- UMR-S 1193 INSERM/Paris-Sud University, Centre Hépato-Biliaire, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
40
|
Gentilin E, Minoia M, Bondanelli M, Tagliati F, Degli Uberti EC, Zatelli MC. Growth Hormone differentially modulates chemoresistance in human endometrial adenocarcinoma cell lines. Endocrine 2017; 56:621-632. [PMID: 27585662 DOI: 10.1007/s12020-016-1085-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
Growth Hormone may influence neoplastic development of endometrial epithelium towards endometrial adenocarcinoma, which is one of the most occurring tumors in acromegalic patients. Since chemoresistance often develops in advanced endometrial adenocarcinoma, we investigated whether Growth Hormone might influence the development of chemoresistance to drugs routinely employed in endometrial adenocarcinoma treatment, such as Doxorubicin, Cisplatin, and Paclitaxel. Growth Hormone and Growth Hormone receptor expression was assessed by immunofluorescence in two endometrial adenocarcinoma cell lines, AN3 CA and HEC-1-A cells. Growth Hormone effects were assessed investigating cell viability, caspase3/7 activation, ERK1/2, and protein kinase C delta protein expression. AN3 CA and HEC-1-A cells display Growth Hormone and Growth Hormone receptor. Growth Hormone does not influence cell viability in both cells lines, but significantly reduces caspase 3/7 activation in AN3 CA cells, an effect blocked by a Growth Hormone receptor antagonist. Growth Hormone rescues AN3 CA cells from the inhibitory effects of Doxorubicin and Cisplatin on cell viability, while it has no effect on Paclitaxel. Growth Hormone does not influence the pro-apoptotic effects of Doxorubicin, but is capable of rescuing AN3 CA cells from the pro-apoptotic effects of Cisplatin. On the other hand, Growth Hormone did not influence the effects of Doxorubicin and Paclitaxel on HEC-1A cell viability. The protective action of Growth Hormone towards the effects of Doxorubicin may be mediated by ERK1/2 activation, while the pro-apoptotic effects of Cisplatin may be mediated by protein kinase C delta inhibition. All together our results indicate that Growth Hormone may differentially contribute to endometrial adenocarcinoma chemoresistance. This may provide new insights on novel therapies against endometrial adenocarcinoma chemoresistant aggressive tumors.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mariella Minoia
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marta Bondanelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Federico Tagliati
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ettore C Degli Uberti
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA) of the University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA) of the University of Ferrara, Ferrara, Italy.
| |
Collapse
|
41
|
Tang W, Yang J, Yuan Y, Zhao Z, Lian Z, Liang G. Paclitaxel nanoparticle awakens immune system to fight against cancer. NANOSCALE 2017; 9:6529-6536. [PMID: 28466929 DOI: 10.1039/c6nr09895a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A high concentration of paclitaxel (PTX) is used as an anti-tumor chemotherapy but is toxic to immune cells. At lower concentrations, PTX was found able to stimulate the anti-tumor potentials of immune cells. Thus, decreasing the cytotoxicity of PTX at high concentration while maintaining its anti-tumor stimulation to immune cells remains challenging. Herein, by employing a click condensation reaction, we rationally designed a PTX derivative, Cys(StBu)-Arg-Arg-Arg-Lys(PTX)-CBT (1), for the facile preparation of its nanoparticle 1-NP. In vitro assays indicated that, at high PTX concentrations, 1-NP showed significantly lower cytotoxicity to macrophages than did PTX, and could be efficiently phagocytosed by macrophages and consequently polarize the cells into an anti-tumor state in a dose-dependent manner. In vivo experiments further confirmed that 1-NP had a higher anti-tumor efficacy than did free PTX but lower cytotoxicity to immune cells in both immune organs and tumor sites. Our results suggest that, by using different doses of 1-NP, patients can precisely regulate the activation of the immune system for an effective anti-tumor and balanced autoimmune responses. We also envision that our strategy could lead to a combined use of immunotherapy and chemotherapy for a more efficient anti-tumor treatment in the future.
Collapse
Affiliation(s)
- Wei Tang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | | | | | | | | | | |
Collapse
|
42
|
Gou J, Yao X, Tang H, Zou K, Liu Y, Zuo H, Zhao X, Li Z. Absorption properties and effects of caffeic acid phenethyl ester and its p-nitro-derivative on P-glycoprotein in Caco-2 cells and rats. PHARMACEUTICAL BIOLOGY 2016; 54:2960-2967. [PMID: 27348457 DOI: 10.1080/13880209.2016.1197284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 05/15/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Caffeic acid phenethyl ester (CAPE), isolated from honeybee propolis, has pharmacological applications. A synthesized CAPE derivative, p-nitro-caffeic acid phenethyl ester (CAPE-NO2), showed similar activities with CAPE. The pharmacological activities of CAPE and CAPE-NO2 are related to their absorption properties. OBJECTIVE To understand the pharmacokinetic profiles of CAPE and CAPE-NO2 in rats and investigate the absorption mechanisms and effects on P-glycoprotein in Caco-2 cells. MATERIALS AND METHODS The pharmacokinetic profiles of CAPE and CAPE-NO2 were obtained after oral administration (10 mg/kg) to rats. Transport studies of CAPE and CAPE-NO2 (5, 10, 20 μM) were performed in Caco-2 cell model. P-gp activities were assayed by rhodamine 123 cellular retention. Expression of P-gp was determined after the cells were administrated with CAPE and CAPE-NO2 (5, 20 μM) for 48 and 72 h. RESULTS The AUC(0-t) of CAPE-NO2 (3239.9 ± 352 ng × h/mL) was two-time greater than CAPE (1659.6 ± 152 ng × h/mL) in rats. The Papp values of CAPE and CAPE-NO2 were (4.86 ± 0.90) × 10-6 cm/s and (12.34 ± 1.6) × 10-6 cm/s, respectively. The accumulation of rhodamine 123 was increased by 1.3- to 1.9-fold and 1.4- to 2.3-fold in CAPE and CAPE-NO2 groups after 1 h administration, respectively. However, CAPE and CAPE-NO2 increased the P-gp levels by 2.1- and 1.7-fold, respectively. CONCLUSION The absorption of CAPE-NO2 can be enhanced in rats and Caco-2 cells compared with CAPE. The two compounds are potential inhibitors of P-gp. The increased P-gp levels generated by CAPE and CAPE-NO2 played a role as a defense mechanism by limiting intracellular xenobiotic levels.
Collapse
Affiliation(s)
- Jing Gou
- a College of Pharmaceutical Sciences , Southwest University , Chongqing , P.R. China
| | - Xiaofang Yao
- a College of Pharmaceutical Sciences , Southwest University , Chongqing , P.R. China
| | - Hao Tang
- a College of Pharmaceutical Sciences , Southwest University , Chongqing , P.R. China
| | - Kaili Zou
- a College of Pharmaceutical Sciences , Southwest University , Chongqing , P.R. China
| | - Yujia Liu
- a College of Pharmaceutical Sciences , Southwest University , Chongqing , P.R. China
| | - Hua Zuo
- a College of Pharmaceutical Sciences , Southwest University , Chongqing , P.R. China
| | - Xiaoyan Zhao
- a College of Pharmaceutical Sciences , Southwest University , Chongqing , P.R. China
| | - Zhubo Li
- a College of Pharmaceutical Sciences , Southwest University , Chongqing , P.R. China
| |
Collapse
|
43
|
Wang Y, Strohm EM, Sun Y, Wang Z, Zheng Y, Wang Z, Kolios MC. Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods. BIOMEDICAL OPTICS EXPRESS 2016; 7:4125-4138. [PMID: 27867720 PMCID: PMC5102552 DOI: 10.1364/boe.7.004125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 05/20/2023]
Abstract
In this study, optical-triggered multifunctional theranostic agents for photoacoustic/fluorescent imaging and cancer therapy have been developed. This system consists of a perfluorohexane liquid and gold nanoparticles (GNPs) in the core, stabilized by a Poly (lactide-co-glycolic acid) (PLGA) polymer shell. When cancer cells containing PLGA-GNPs were exposed to laser pulses, cell viability decreased due to the vaporization of the particles in and around the cells. The particle chemo drug loading and delivery capacity was also investigated in vitro experiments. These particles show potential as photoacoustic imaging and therapy agents for future clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Yanjie Wang
- Physics Department, Ryerson University, 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
| | - Eric M. Strohm
- Physics Department, Ryerson University, 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
| | - Yang Sun
- Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Rd., Chongqing, 400010, China
| | - Zhaoxia Wang
- Department of Ultrasound, Children’s Hospital, Affiliated to Chongqing Medical University, No.136, Zhongshan No.2 Rd., Yuzhong District, Chongqing 400014, China
| | - Yuanyi Zheng
- Ultrasound Department, Sixth affiliated hospital of Shanghai Jiaotong University, 600 Yishan Rd., Xuhui District, Shanghai, 200133, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Rd., Chongqing, 400010, China
| | - Michael C. Kolios
- Physics Department, Ryerson University, 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
| |
Collapse
|
44
|
Vaidyanathan J, Yoshida K, Arya V, Zhang L. Comparing Various In Vitro Prediction Criteria to Assess the Potential of a New Molecular Entity to Inhibit Organic Anion Transporting Polypeptide 1B1. J Clin Pharmacol 2016; 56 Suppl 7:S59-72. [DOI: 10.1002/jcph.723] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Jayabharathi Vaidyanathan
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
| | - Kenta Yoshida
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
- Oak Ridge Institution for Science and Education (ORISE) Fellow
| | - Vikram Arya
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
| |
Collapse
|
45
|
Ham SY, Kwon T, Bak Y, Yu JH, Hong J, Lee SK, Yu DY, Yoon DY. Mucin 1-mediated chemo-resistance in lung cancer cells. Oncogenesis 2016; 5:e185. [PMID: 26779808 PMCID: PMC4728677 DOI: 10.1038/oncsis.2015.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel (PTX) is a commonly used drug to treat diverse cancer types. However, its treatment can generate resistance and the mechanisms of PTX-resistance in lung cancers are still unclear. We demonstrated that non-small cell lung cancers (NSCLCs) survive PTX treatment. Compared with the progenitor NSCLC A549 cells, the PTX-resistant A549 cells (A549/PTX) displayed enhanced sphere-formation ability. The proportion of the cancer stem cell marker, aldehyde dehydrogenase-positive cells, and epithelial-mesenchymal transition signaling protein levels were also elevated in A549/PTX. Importantly, the levels of oncoproteins phosphoinositide-3 kinase/Akt, mucin 1 cytoplasmic domain (MUC1-C) and β-catenin were also significantly elevated in A549/PTX. Furthermore, nuclear translocation of MUC1-C and β-catenin increased in A549/PTX. The c-SRC protein, an activator of MUC1-C, was also overexpressed in A549/PTX. These observations led to the hypothesis that enhanced expression of MUC1-C is associated with stemness and PTX resistance in NSCLCs. To test this, we knocked down or overexpressed MUC1-C in A549/PTX and found that inhibition of MUC1-C expression coupled with PTX treatment was sufficient to reduce the sphere-forming ability and survival of A549/PTX. In summary, our in vitro and in vivo studies have revealed a potential mechanism of MUC1-C-mediated PTX resistance and provided insights into a novel therapeutic measure for lung cancers.
Collapse
Affiliation(s)
- S Y Ham
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - T Kwon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Y Bak
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - J-H Yu
- Department of Bacteriology and Genetic, Food Research Institute (FRI), Molecular and Environmental Toxicology Center (METC), University of Wisconsin, Madison, WI, USA
| | - J Hong
- College of Pharmacy, Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - S K Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - D-Y Yu
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - D-Y Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Mittal B, Tulsyan S, Kumar S, Mittal RD, Agarwal G. Cytochrome P450 in Cancer Susceptibility and Treatment. Adv Clin Chem 2015; 71:77-139. [PMID: 26411412 DOI: 10.1016/bs.acc.2015.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytochrome 450 (CYP450) designates a group of enzymes abundant in smooth endoplasmic reticulum of hepatocytes and epithelial cells of small intestines. The main function of CYP450 is oxidative catalysis of various endogenous and exogenous substances. CYP450 are implicated in phase I metabolism of 80% of drugs currently in use, including anticancer drugs. They are also involved in synthesis of various hormones and influence hormone-related cancers. CYP450 genes are highly polymorphic and their variants play an important role in cancer risk and treatment. Association studies and meta-analyses have been performed to decipher the role of CYP450 polymorphisms in cancer susceptibility. Cancer treatment involves multimodal therapies and evaluation of CYP450 polymorphisms is necessary for pharmacogenetic assessment of anticancer therapy outcomes. In addition, CYP450 inhibitors are being evaluated for improved pharmacokinetics and oral formulation of several anticancer drugs.
Collapse
Affiliation(s)
- Balraj Mittal
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
| | - Sonam Tulsyan
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Surendra Kumar
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rama Devi Mittal
- Department of Urology and Renal Transplant, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Gaurav Agarwal
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
47
|
Dagar A, Kuzmis A, Rubinstein I, Sekosan M, Onyuksel H. VIP-targeted Cytotoxic Nanomedicine for Breast Cancer. Drug Deliv Transl Res 2015; 2:454-62. [PMID: 23336096 DOI: 10.1007/s13346-012-0107-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer chemotherapy is hampered by serious toxicity to healthy tissues. Conceivably, encapsulation of cytotoxic drugs in actively-targeted, biocompatible nanocarriers could overcome this problem. Accordingly, we used sterically stabilized mixed micelles (SSMM) composed of biocompatible and biodegradable phospholipids to solubilize paclitaxel (P), a hydrophobic model cytotoxic drug, and deliver it to breast cancer in rats. To achieve active targeting, the surface of SSMM was grafted with a ligand, human vasoactive intestinal peptide (VIP) that selectively interacts with its cognate receptors overexpressed on breast cancer cells. We found that even in vitro cytotoxicity of P-SSMM-VIP was 2-fold higher that that of free paclitaxel (p<0.05). Given the unique attributes of P-SSMM and P-SSMM-VIP, most notable small hydrodynamic diameter (~15nm) and stealth properties, biodistribution of paclitaxel was significantly altered. Accumulation of paclitaxel in breast tumor was highest for P-SSMM-VIP, followed by P-SSMM and Cremophor based paclitaxel (PTX). Importantly, bone marrow accumulation of paclitaxel encapsulated in both SSMM-VIP and SSMM was significantly less than that of PTX. Administration of clinically-relevant dose of paclitaxel (5mg/kg) as P-SSMM-VIP and P-SSMM eradicated carcinogen-induced orthotopic breast cancer in rats, whereas PTX decreased tumor size by only 45%. In addition, a 5-fold lower dose (1mg/kg) of paclitaxel in actively targeted P-SSMM-VIP was associated with ~80% reduction in tumor size while the response to PTX and P-SSMM was significantly less. Hypotension was not observed when VIP was grafted onto SSMM. Based on our findings, we propose further development of effective and safe VIP-grafted phospholipid micelle nanomedicines of anti-cancer drugs for targeted treatment of solid tumors in humans.
Collapse
Affiliation(s)
- Aparna Dagar
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago
| | | | | | | | | |
Collapse
|
48
|
Jang HR, Kim JH, Jung KY. Aerosol synthesis of macroporous silica adsorbents with high performance in paclitaxel purification from plant cell cultures. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2014.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 2014; 37:456-468. [PMID: 25453973 DOI: 10.1016/j.biomaterials.2014.10.044] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/05/2014] [Indexed: 11/24/2022]
Abstract
Cisplatin (CDDP) and paclitaxel (PTX) are two established chemotherapeutic drugs used in combination for the treatment of many cancers, including ovarian cancer. We have recently developed a three-layered linear-dendritic telodendrimer micelles (TM) by introducing carboxylic acid groups in the adjacent layer via "thio-ene" click chemistry for CDDP complexation and conjugating cholic acids via peptide chemistry in the interior layer of telodendrimer for PTX encapsulation. We hypothesize that the co-delivery of low dosage PTX with CDDP could act synergistically to increase the treatment efficacy and reduce their toxic side effects. This design allowed us to co-deliver PTX and CDDP at various drug ratios to ovarian cancer cells. The in vitro cellular assays revealed strongest synergism in anti-tumor effects when delivered at a 1:2 PTX/CDDP loading ratio. Using the SKOV-3 ovarian cancer xenograft mouse model, we demonstrate that our co-encapsulation approach resulted in an efficient tumor-targeted drug delivery, decreased cytotoxic effects and stronger anti-tumor effect, when compared with free drug combination or the single loading TM formulations.
Collapse
|
50
|
Shigehiro T, Kasai T, Murakami M, Sekhar SC, Tominaga Y, Okada M, Kudoh T, Mizutani A, Murakami H, Salomon DS, Mikuni K, Mandai T, Hamada H, Seno M. Efficient drug delivery of Paclitaxel glycoside: a novel solubility gradient encapsulation into liposomes coupled with immunoliposomes preparation. PLoS One 2014; 9:e107976. [PMID: 25264848 PMCID: PMC4180071 DOI: 10.1371/journal.pone.0107976] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/16/2014] [Indexed: 12/20/2022] Open
Abstract
Although the encapsulation of paclitaxel into liposomes has been extensively studied, its significant hydrophobic and uncharged character has generated substantial difficulties concerning its efficient encapsulation into the inner water core of liposomes. We found that a more hydrophilic paclitaxel molecule, 7-glucosyloxyacetylpaclitaxel, retained tubulin polymerization stabilization activity. The hydrophilic nature of 7-glucosyloxyacetylpaclitaxel allowed its efficient encapsulation into the inner water core of liposomes, which was successfully accomplished using a remote loading method with a solubility gradient between 40% ethylene glycol and Cremophor EL/ethanol in PBS. Trastuzumab was then conjugated onto the surface of liposomes as immunoliposomes to selectively target human epidermal growth factor receptor-2 (HER2)-overexpressing cancer cells. In vitro cytotoxicity assays revealed that the immunoliposomes enhanced the toxicity of 7-glucosyloxyacetylpaclitaxel in HER2-overexpressing cancer cells and showed more rapid suppression of cell growth. The immunoliposomes strongly inhibited the tumor growth of HT-29 cells xenografted in nude mice. Notably, mice survived when treated with the immunoliposomes formulation, even when administered at a lethal dose of 7-glucosyloxyacetylpaclitaxel in vivo. This data successfully demonstrates immunoliposomes as a promising candidate for the efficient delivery of paclitaxel glycoside.
Collapse
Affiliation(s)
- Tsukasa Shigehiro
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tomonari Kasai
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Masaharu Murakami
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Sreeja C. Sekhar
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuki Tominaga
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Masashi Okada
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takayuki Kudoh
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Akifumi Mizutani
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hiroshi Murakami
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | | | - Tadakatsu Mandai
- Faculty of Life Science, Kurashiki University of Science and the Arts, Kurashiki, Japan
| | - Hiroki Hamada
- Faculty of Science, Okayama University of Science, Okayama, Japan
- * E-mail: (HH); (MS)
| | - Masaharu Seno
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail: (HH); (MS)
| |
Collapse
|