1
|
Li Y, Qu S, Zuo J, Long H, Cao F, Jiang F. Progress on the functions and mechanisms of natural products in anti-glioma therapy. Chin J Nat Med 2025; 23:541-559. [PMID: 40383611 DOI: 10.1016/s1875-5364(25)60815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 01/14/2025] [Indexed: 05/20/2025]
Abstract
Glioma, the most prevalent primary tumor of the central nervous system (CNS), is also the most lethal primary malignant tumor. Currently, there are limited chemotherapeutics available for glioma treatment, necessitating further research to identify and develop new chemotherapeutic agents. A significant approach to discovering anti-glioma drugs involves isolating antitumor active ingredients from natural products (NPs) and optimizing their structures. Additionally, targeted drug delivery systems (TDDSs) are employed to enhance drug solubility and stability and overcome the blood-brain barrier (BBB). TDDSs can penetrate deep into the brain, increase drug concentration and retention time in the CNS, and improve the targeting efficiency of NPs, thereby reducing adverse effects and enhancing anti-glioma efficacy. This paper reviews the research progress of anti-glioma activities of NPs, including alkaloids, polyphenols, flavonoids, terpenoids, saponins, quinones, and their synthetic derivatives over the past decade. The review also summarizes anti-glioma mechanisms, such as suppression of related protein expression, regulation of reactive oxygen species (ROS) levels, control of apoptosis signaling pathways, reduction of matrix metalloproteinases (MMPs) expression, blocking of vascular endothelial growth factor (VEGF), and reversal of immunosuppression. Furthermore, the functions and advantages of NP-based TDDSs in anti-glioma therapy are examined. The key information presented in this review will be valuable for the research and development of NP-based anti-glioma drugs and related TDDSs.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuhui Qu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiayi Zuo
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haoping Long
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Yu KKH, Basu S, Baquer G, Ahn R, Gantchev J, Jindal S, Regan MS, Abou-Mrad Z, Prabhu MC, Williams MJ, D'Souza AD, Malinowski SW, Hopland K, Elhanati Y, Stopka SA, Stortchevoi A, Couturier C, He Z, Sun J, Chen Y, Espejo AB, Chow KH, Yerrum S, Kao PL, Kerrigan BP, Norberg L, Nielsen D, Puduvalli VK, Huse J, Beroukhim R, Kim BYS, Goswami S, Boire A, Frisken S, Cima MJ, Holdhoff M, Lucas CHG, Bettegowda C, Levine SS, Bale TA, Brennan C, Reardon DA, Lang FF, Chiocca EA, Ligon KL, White FM, Sharma P, Tabar V, Agar NYR. Investigative needle core biopsies support multimodal deep-data generation in glioblastoma. Nat Commun 2025; 16:3957. [PMID: 40295505 PMCID: PMC12037860 DOI: 10.1038/s41467-025-58452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer with few effective therapies. Stereotactic needle biopsies are routinely used for diagnosis; however, the feasibility and utility of investigative biopsies to monitor treatment response remains ill-defined. Here, we demonstrate the depth of data generation possible from routine stereotactic needle core biopsies and perform highly resolved multi-omics analyses, including single-cell RNA sequencing, spatial transcriptomics, metabolomics, proteomics, phosphoproteomics, T-cell clonotype analysis, and MHC Class I immunopeptidomics on standard biopsy tissue obtained intra-operatively. We also examine biopsies taken from different locations and provide a framework for measuring spatial and genomic heterogeneity. Finally, we investigate the utility of stereotactic biopsies as a method for generating patient-derived xenograft (PDX) models. Multimodal dataset integration highlights spatially mapped immune cell-associated metabolic pathways and validates inferred cell-cell ligand-receptor interactions. In conclusion, investigative biopsies provide data-rich insight into disease processes and may be useful in evaluating treatment responses.
Collapse
Affiliation(s)
- Kenny K H Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sreyashi Basu
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryuhjin Ahn
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer Gantchev
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonali Jindal
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zaki Abou-Mrad
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael C Prabhu
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc J Williams
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia D D'Souza
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seth W Malinowski
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelsey Hopland
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexei Stortchevoi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles Couturier
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhong He
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Sun
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulong Chen
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexsandra B Espejo
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kin Hoe Chow
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Smitha Yerrum
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pei-Lun Kao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany Parker Kerrigan
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa Norberg
- Department of Anatomic Pathology, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Douglas Nielsen
- Department of Anatomic Pathology, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The Brain Tumor Center, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Huse
- Department of Anatomic Pathology, Division of Pathology-Lab Medicine Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Frisken
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Cima
- Department of Materials Science and Engineering, Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stuart S Levine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David A Reardon
- Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Frederick F Lang
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Forest M White
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Padmanee Sharma
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Ożarowski M, Karpiński TM, Czerny B, Kamiński A, Seremak-Mrozikiewicz A. Plant Alkaloids as Promising Anticancer Compounds with Blood-Brain Barrier Penetration in the Treatment of Glioblastoma: In Vitro and In Vivo Models. Molecules 2025; 30:1561. [PMID: 40286187 PMCID: PMC11990316 DOI: 10.3390/molecules30071561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Glioblastoma (GBM) is one of the most invasive central nervous system tumors, with rising global incidence. Therapy resistance and poor prognosis highlight the urgent need for new anticancer drugs. Plant alkaloids, a largely unexplored yet promising class of compounds, have previously contributed to oncology treatments. While past reviews provided selective insights, this review aims to collectively compare data from the last decade on (1) plant alkaloid-based anticancer drugs, (2) alkaloid transport across the blood-brain barrier (BBB) in vitro and in vivo, (3) alkaloid mechanisms of action in glioblastoma models (in vitro, in vivo, ex vivo, and in silico), and (4) cytotoxicity and safety profiles. Additionally, innovative drug delivery systems (e.g., nanoparticles and liposomes) are discussed. Focusing on preclinical studies of single plant alkaloids, this review includes 22 botanical families and 28 alkaloids that demonstrated anti-GBM activity. Most alkaloids act in a concentration-dependent manner by (1) reducing glioma cell viability, (2) suppressing proliferation, (3) inhibiting migration and invasion, (4) inducing cell death, (5) downregulating Bcl-2 and key signaling pathways, (6) exhibiting antiangiogenic effects, (7) reducing tumor weight, and (8) improving survival rates. The toxic and adverse effect analysis suggests that alkaloids such as noscapine, lycorine, capsaicin, chelerythrine, caffeine, boldine, and colchicine show favorable therapeutic potential. However, tetrandrine, nitidine, harmine, harmaline, cyclopamine, cocaine, and brucine may pose greater risks than benefits. Piperine's toxicity and berberine's poor bioavailability suggest the need for novel drug formulations. Several alkaloids (kukoamine A, cyclovirobuxine D, α-solanine, oxymatrine, rutaecarpine, and evodiamine) require further pharmacological and toxicological evaluation. Overall, while plant alkaloids show promise in glioblastoma therapy, progress in assessing their BBB penetration remains limited. More comprehensive studies integrating glioma research and advanced drug delivery technologies are needed.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland;
- Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Adam Kamiński
- Department of Orthopaedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
| |
Collapse
|
4
|
Indongo G, Abraham MK, Rajeevan G, Kala AB, Dhahir DM, George S. Fluorescence 'turn-on' sensing of glial fibrillary acidic protein using graphene oxide-quenched copper nanoclusters. Mikrochim Acta 2025; 192:260. [PMID: 40140017 DOI: 10.1007/s00604-025-07103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025]
Abstract
This study introduces a fluorescence based sensing platform made to detect glial fibrillary acidic protein (GFAP), a critical biomarker associated with glioblastoma and other astrocytic malignancies. Leveraging the unique optical properties of copper nanoclusters (CuNCs) functionalized with GFAP antibodies (GFAP Ab), the platform incorporates graphene oxide (GO) as a fluorescence quencher to create a highly sensitive turn on sensor responsive to GFAP antigens. The detection mechanism relies on Förster resonance energy transfer (FRET), wherein the binding of GFAP antigens disrupts the GFAP Ab@CuNCs-GO interaction, effectively restoring fluorescence. The CuNCs stabilized with l-cysteine to enhance biocompatibility and stability, exhibited strong green fluorescence with a quantum yield of 1.0%. Graphene oxide efficiently quenched the fluorescence of GFAP Ab@CuNCs therefore enhancing the platform's sensitivity. The sensor displayed a linear fluorescence response across a GFAP concentration range 0-46 ng/mL, with a detection limit of 32 pg/mL, demonstrating its capability to detect GFAP at clinically relevant levels. Validation of the sensor in biological fluids, including saliva, serum and urine, confirmed its applicability for minimally invasive diagnostics. Situated at the intersection of biosensing and clinical relevance, this study aims to address the need for cost effective and accessible diagnostic and screening tools for glioblastoma.
Collapse
Affiliation(s)
- Geneva Indongo
- Department of Biotechnology, Faculty of Applied Sciences and Technology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Arathy B Kala
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Dheyaa Mohammed Dhahir
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
- International Inter University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
5
|
Mody AA, Mukthavaram R, Jiang P, Gangangari K, Pillarsetty N, Kesari PR, Padul V, Kesari SL, Rahbarlayegh E, Glassy MC, Kesari S. Characterization of pritumumab in murine models and primate safety study. Sci Rep 2025; 15:10178. [PMID: 40128557 PMCID: PMC11933471 DOI: 10.1038/s41598-025-95360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/20/2025] [Indexed: 03/26/2025] Open
Abstract
Pritumumab is a human IgG1 kappa antibody that targets ecto-domain vimentin (EDV) which is overexpressed in several malignant tumors including glioblastomas. To understand preclinical biological activity and safety of pritumumab derived from Chinese hamster ovary (CHO) cells, we evaluated tumor targeting ability, brain-tumor barrier permeability, growth inhibition, and primate safety studies. In-vivo and ex-vivo imaging studies demonstrate pritumumab to cross the blood brain/blood tumor barrier and an 89Zr-labeled pritumumab immunoconjugate showed the antibody specifically targeted tumor cells. In mouse xenograft models, pritumumab inhibited the growth of U251 glioblastoma and PANC-1 pancreatic cancer cells. A 29-day intravenous toxicology study in cynomolgus monkeys was carried out to analyze the safety and toxicity of pritumumab, and no toxic effects were observed. Overall, these data together suggest pritumumab is biologically active and animal models can be used to further understand the various functions of the antibody. Clinical trials in brain cancer patients assessing safety and efficacy of pritumumab as a therapeutic for brain cancer are in process.
Collapse
Affiliation(s)
| | - Rajesh Mukthavaram
- Translational Neuro-Oncology Laboratory, University of California, San Diego, Moores Cancer Center, La Jolla, CA, USA
- Capstan Therapeutics, San Diego, CA, USA
| | - Pengfei Jiang
- Translational Neuro-Oncology Laboratory, University of California, San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Kishore Gangangari
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Elnaz Rahbarlayegh
- Saint John's Health Center, Pacific Neurosciences Institute and Saint John's Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Mark C Glassy
- Translational Neuro-Oncology Laboratory, University of California, San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Santosh Kesari
- Saint John's Health Center, Pacific Neurosciences Institute and Saint John's Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA.
| |
Collapse
|
6
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2169-2207. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
7
|
Seong M, Bak-Gordon P, Liu Z, Canoll PD, Manley JL. Splicing dysregulation in glioblastoma alters the function of cell migration-related genes. Glia 2025; 73:251-270. [PMID: 39448549 DOI: 10.1002/glia.24630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Glioblastoma (GBM) has a poor prognosis with a high recurrence and low survival rate. Previous RNA-seq analyses have revealed that alternative splicing (AS) plays a role in GBM progression. Here, we present a novel AS analysis method (Semi-Q) and describe its use to identify GBM-specific AS events. We analyzed RNA-seq data from normal brain (NB), normal human astrocytes (NHAs) and GBM samples, and found that comparison between NHA and GBM was especially informative. Importantly, this analysis revealed that genes encoding cell migration-related proteins, including filamins (FLNs) and actinins (ACTNs), were among those most affected by differential AS. Functional assays revealed that dysregulated AS of FLNA, B and C transcripts produced protein isoforms that not only altered transcription of cell proliferation-related genes but also led to enhanced cell migration, resistance to cell death and/or mitochondrial respiratory function, while a dysregulated AS isoform of ACTN4 enhanced cell migration. Together, our results indicate that cell migration and actin cytoskeleton-related genes are differentially regulated by AS in GBM, supporting a role for AS in facilitating tumor growth and invasiveness.
Collapse
Affiliation(s)
- Minu Seong
- Department of Biological Science, Columbia University, New York, New York, USA
| | - Pedro Bak-Gordon
- Department of Biological Science, Columbia University, New York, New York, USA
| | - Zhaoqi Liu
- Department of Systems Biology, Columbia University, New York, New York, USA
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Peter D Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - James L Manley
- Department of Biological Science, Columbia University, New York, New York, USA
| |
Collapse
|
8
|
Tanriverdi G, Kaleci B, Yavuz F, Sahin H, Purelku M, Yazici Z, Kokturk S. The effects of the combination of temozolomide and Eribulin on T98G human glioblastoma cell line: an ultrastructural study. Ultrastruct Pathol 2024; 48:323-337. [PMID: 38916264 DOI: 10.1080/01913123.2024.2371821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Glioblastoma tumors are the most aggressive primary brain tumors that develop resistance to temozolomide (TMZ). Eribulin (ERB) exhibits a unique mechanism of action by inhibiting microtubule dynamics during the G2/M cell cycle phase. We utilized the T98G human glioma cell line to investigate the effects of ERB and TMZ, both individually and in combination. The experimental groups were established as follows: control, E5 (5 nM ERB), T0.75 (0.75 mM TMZ), T1 (1.0 mM TMZ), and combination groups (E5+T0.75 and E5+T1). All groups showed a significant decrease in cell proliferation. Apoptotic markers revealed a time-dependent increase in annexin-V expression, across all treatment groups at the 48-hour time point. Caspase-3, exhibited an increase in the combination treatment groups at the 48-hour mark. Transmission electron microscopy (TEM) revealed normal ultrastructural features in the glioma cells of the control group. However, treatments induced ultrastructural changes within the spheroid glioblastoma model, particularly in the combination groups. These changes included a dose-dependent increase in autophagic vacuoles and apoptotic morphology of the cells. In conclusion, the similarity in the mechanism of action between ERB and TMZ suggests the potential for synergistic effects when combined. Our results highlight that this combination induced severe damage and autophagy in glioma spheroids after 48 hours.
Collapse
Affiliation(s)
- Gamze Tanriverdi
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Belisa Kaleci
- Ministry of Health and Social Protection, University Dental Clinic, Tirane, Albania
| | - Furkan Yavuz
- Radiation Oncology Department, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Hakan Sahin
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merjem Purelku
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeliha Yazici
- Medical Pharmacology, Medicine, Istanbul Arel University, İstanbul, Türkiye
| | - Sibel Kokturk
- Department of Histology and Embryology, Medicine Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
9
|
Ghorbani A, Chatanaka MK, Avery LM, Wang M, Brown J, Cohen R, Gorham T, Misaghian S, Padmanabhan N, Romero D, Stengelin M, Mathew A, Sigal G, Wohlstadter J, Horbinski C, McCortney K, Xu W, Zadeh G, Mansouri A, Yousef GM, Diamandis EP, Prassas I. Glial fibrillary acidic protein, neurofilament light, matrix metalloprotease 3 and fatty acid binding protein 4 as non-invasive brain tumor biomarkers. Clin Proteomics 2024; 21:41. [PMID: 38879494 PMCID: PMC11179213 DOI: 10.1186/s12014-024-09492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Gliomas are aggressive malignant tumors, with poor prognosis. There is an unmet need for the discovery of new, non-invasive biomarkers for differential diagnosis, prognosis, and management of brain tumors. Our objective is to validate four plasma biomarkers - glial fibrillary acidic protein (GFAP), neurofilament light (NEFL), matrix metalloprotease 3 (MMP3) and fatty acid binding protein 4 (FABP4) - and compare them with established brain tumor molecular markers and survival. METHODS Our cohort consisted of patients with benign and malignant brain tumors (GBM = 77, Astrocytomas = 26, Oligodendrogliomas = 23, Secondary tumors = 35, Meningiomas = 70, Schwannomas = 15, Pituitary adenomas = 15, Normal individuals = 30). For measurements, we used ultrasensitive electrochemiluminescence multiplexed immunoassays. RESULTS High plasma GFAP concentration was associated with GBM, low GFAP and high FABP4 were associated with meningiomas, and low GFAP and low FABP4 were associated with astrocytomas and oligodendrogliomas. NEFL was associated with progression of disease. Several prognostic genetic alterations were significantly associated with all plasma biomarker levels. We found no independent associations between plasma GFAP, NEFL, FABP4 and MMP3, and overall survival. The candidate biomarkers could not reliably discriminate GBM from primary or secondary CNS lymphomas. CONCLUSIONS GFAP, NEFL, FABP4 and MMP3 are useful for differential diagnosis and prognosis, and are associated with molecular changes in gliomas.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Miyo K Chatanaka
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lisa M Avery
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Mingyue Wang
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | | | - Rachel Cohen
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | - Taron Gorham
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | | | | | | | | | - Anu Mathew
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | - George Sigal
- Meso Scale Diagnostics, LLC., Rockville, MD, USA
| | | | - Craig Horbinski
- Feinberg School of Medicine, Northwestern Medicine, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Katy McCortney
- Feinberg School of Medicine, Northwestern Medicine, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Wei Xu
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Hershey Medical Center, Hershey, PA, USA
- Penn State Cancer Institute, Hershey Medical Center, Hershey, PA, USA
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, Canada.
| |
Collapse
|
10
|
Kovalenko TF, Yadav B, Anufrieva KS, Larionova TD, Aksinina TE, Latyshev YA, Bastola S, Shakhparonov MI, Pandey AK, Pavlyukov MS. PTEN regulates expression of its pseudogene in glioblastoma cells in DNA methylation-dependent manner. Biochimie 2024; 219:74-83. [PMID: 37619809 DOI: 10.1016/j.biochi.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and frequent type of primary brain cancer in adult patients. One of the key molecular features associated with GBM pathogenesis is the dysfunction of PTEN oncosuppressor. In addition to PTEN gene, humans and several primates possess processed PTEN pseudogene (PTENP1) that gives rise to long non-coding RNA lncPTENP1-S. Regulation and functions of PTEN and PTENP1 are highly interconnected, however, the exact molecular mechanism of how these two genes affect each other remains unclear. Here, we analyzed the methylation level of the CpG islands (CpGIs) in the promoter regions of PTEN and PTENP1 in patient-derived GBM neurospheres. We found that increased PTEN methylation corelates with decreased PTEN mRNA level. Unexpectedly, we showed the opposite trend for PTENP1. Using targeted methylation and demethylation of PTENP1 CpGI, we demonstrated that DNA methylation increases lncPTENP1-S expression in the presence of wild type PTEN protein but decreases lncPTENP1-S expression if PTEN protein is absent. Further experiments revealed that PTEN protein binds to PTENP1 promoter region and inhibits lncPTENP1-S expression if its CpGI is demethylated. Interestingly, we did not detect any effect of lncPTENP1-S on the level of PTEN mRNA, indicating that in GBM cells PTENP1 is a downstream target of PTEN rather than its upstream regulator. Finally, we studied the functions of lncPTENP1-S and demonstrated that it plays a pro-oncogenic role in GBM cells by upregulating the expression of cancer stem cell markers and decreasing cell adhesion.
Collapse
Affiliation(s)
| | - Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, India
| | - Ksenia S Anufrieva
- Laboratory of System Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Yaroslav A Latyshev
- Federal State Autonomous Institution, N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Soniya Bastola
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, India; National Institute of Pharmaceutical Education and Research, Palaj, Gandhinagar, Gujarat, India
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
11
|
Jiang C, Zhang B, Jiang W, Liu P, Kong Y, Zhang J, Teng W. Metal ion stimulation-related gene signatures correlate with clinical and immunologic characteristics of glioma. Heliyon 2024; 10:e27189. [PMID: 38533032 PMCID: PMC10963200 DOI: 10.1016/j.heliyon.2024.e27189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Background Environmental factors serve as one of the important pathogenic factors for gliomas. Yet people focus only on the effect of electromagnetic radiation on its pathogenicity, while metals in the environment are neglected. This study aimed to investigate the relationship between metal ion stimulation and the clinical characteristics and immune status of GM patients. Methods Firstly, mRNA expression profiles of GM patients and normal subjects were obtained from Chinese GM Genome Atlas (CGGA) and Gene Expression Omnibus (GEO) to identify differentially expressed metal ion stimulation-related genes(DEMISGs). Secondly, two molecular subtypes were identified and validated based on these DEMISGs using consensus clustering. Diagnostic and prognostic models for GM were constructed after screening these features based on machine learning. Finally, supervised classification and unsupervised clustering were combined to classify and predict the grade of GM based on SHAP values. Results GM patients are divided into two different response states to metal ion stimulation, M1 and M2, which are related to the grade and IDH status of the GM. Six genes with diagnostic value were obtained: SLC30A3, CRHBP, SYT13, DLG2, CDK1, and WNT5A. The AUC in the external validation set was higher than 0.90. The SHAP value improves the performance of classification prediction. Conclusion The gene features associated with metal ion stimulation are related to the clinical and immune characteristics of transgenic patients. XGboost/LightGBM Kmeans has a higher classification prediction accuracy in predicting glioma grades compared to using purely supervised classification techniques.
Collapse
Affiliation(s)
- Chengzhi Jiang
- Shandong Second Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Binbin Zhang
- Qingdao Municipal Hospital (Group), Qingdao, Shandong, 266000, People's Republic of China
| | - Wenjuan Jiang
- Qingdao Municipal Hospital (Group), Qingdao, Shandong, 266000, People's Republic of China
| | - Pengtao Liu
- Shandong Second Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Yujia Kong
- Shandong Second Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Jianhua Zhang
- Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Wenjie Teng
- Shandong Second Medical University, Weifang, Shandong, 261053, People's Republic of China
| |
Collapse
|
12
|
Yang H, Zhang D, Yuan Z, Qiao H, Xia Z, Cao F, Lu Y, Jiang F. Novel 4-Aryl-4H-chromene derivative displayed excellent in vivo anti-glioblastoma efficacy as the microtubule-targeting agent. Eur J Med Chem 2024; 267:116205. [PMID: 38350361 DOI: 10.1016/j.ejmech.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
In this study, a series of novel 4-Aryl-4H-chromene derivatives (D1-D31) were designed and synthesized by integrating quinoline heterocycle to crolibulin template molecule based on the strategy of molecular hybridization. One of these compounds D19 displayed positive antiproliferative activity against U87 cancer cell line (IC50 = 0.90 ± 0.03 μM). Compound D19 was verified as the microtubule-targeting agent through downregulating tubulin related genes of U87 cells, destroying the cytoskeleton of tubulins and interacting with the colchicine-binding site to inhibit the polymerization of tubulins by transcriptome analysis, immune-fluorescence staining, microtubule dynamics and EBI competition assays as well as molecular docking simulations. Moreover, compound D19 induced G2/M phase arrest, resulted in cell apoptosis and inhibited the migration of U87 cells by flow cytometry analysis and wound healing assays. Significantly, compound D19 dose-dependently inhibited the tumor growth of orthotopic glioma xenografts model (GL261-Luc) and effectively prolonged the survival time of mice, which were extremely better than those of positive drug temozolomide (TMZ). Compound D19 exhibited potent in vivo antivascular activity as well as no observable toxicity. Furthermore, the results of in silico simulation studies and P-gp transwell assays verified the positive correlation between compound D19's Blood-Brain Barrier (BBB) permeability and its in vivo anti-GBM activity. Overall, compound D19 can be used as a promising anti-GBM lead compound for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Haoyi Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Dongyu Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziyang Yuan
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haishi Qiao
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhuolu Xia
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Cao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Jiang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Yu KKH, Basu S, Baquer G, Ahn R, Gantchev J, Jindal S, Regan MS, Abou-Mrad Z, Prabhu MC, Williams MJ, D'Souza AD, Malinowski SW, Hopland K, Elhanati Y, Stopka SA, Stortchevoi A, He Z, Sun J, Chen Y, Espejo AB, Chow KH, Yerrum S, Kao PL, Kerrigan BP, Norberg L, Nielsen D, Puduvalli VK, Huse J, Beroukhim R, Kim YSB, Goswami S, Boire A, Frisken S, Cima MJ, Holdhoff M, Lucas CHG, Bettegowda C, Levine SS, Bale TA, Brennan C, Reardon DA, Lang FF, Antonio Chiocca E, Ligon KL, White FM, Sharma P, Tabar V, Agar NYR. Investigative needle core biopsies for multi-omics in Glioblastoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.29.23300541. [PMID: 38234840 PMCID: PMC10793534 DOI: 10.1101/2023.12.29.23300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Glioblastoma (GBM) is a primary brain cancer with an abysmal prognosis and few effective therapies. The ability to investigate the tumor microenvironment before and during treatment would greatly enhance both understanding of disease response and progression, as well as the delivery and impact of therapeutics. Stereotactic biopsies are a routine surgical procedure performed primarily for diagnostic histopathologic purposes. The role of investigative biopsies - tissue sampling for the purpose of understanding tumor microenvironmental responses to treatment using integrated multi-modal molecular analyses ('Multi-omics") has yet to be defined. Secondly, it is unknown whether comparatively small tissue samples from brain biopsies can yield sufficient information with such methods. Here we adapt stereotactic needle core biopsy tissue in two separate patients. In the first patient with recurrent GBM we performed highly resolved multi-omics analysis methods including single cell RNA sequencing, spatial-transcriptomics, metabolomics, proteomics, phosphoproteomics, T-cell clonotype analysis, and MHC Class I immunopeptidomics from biopsy tissue that was obtained from a single procedure. In a second patient we analyzed multi-regional core biopsies to decipher spatial and genomic variance. We also investigated the utility of stereotactic biopsies as a method for generating patient derived xenograft models in a separate patient cohort. Dataset integration across modalities showed good correspondence between spatial modalities, highlighted immune cell associated metabolic pathways and revealed poor correlation between RNA expression and the tumor MHC Class I immunopeptidome. In conclusion, stereotactic needle biopsy cores are of sufficient quality to generate multi-omics data, provide data rich insight into a patient's disease process and tumor immune microenvironment and can be of value in evaluating treatment responses. One sentence summary Integrative multi-omics analysis of stereotactic needle core biopsies in glioblastoma.
Collapse
|
14
|
Gallego-Yerga L, Chiliquinga AJ, Peláez R. Novel Tetrazole Derivatives Targeting Tubulin Endowed with Antiproliferative Activity against Glioblastoma Cells. Int J Mol Sci 2023; 24:11093. [PMID: 37446273 DOI: 10.3390/ijms241311093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing awareness of the structure of microtubules has made tubulin a relevant target for the research of novel chemotherapies. Furthermore, the particularly high sensitivity of glioblastoma multiforme (GBM) cells to microtubule disruption could open new doors in the search for new anti-GBM treatments. However, the difficulties in developing potent anti-tubulin drugs endowed with improved pharmacokinetic properties necessitates the expansion of medicinal chemistry campaigns. The application of an ensemble pharmacophore screening methodology helped to optimize this process, leading to the development of a new tetrazole-based tubulin inhibitor. Considering this scaffold, we have synthesized a new family of tetrazole derivatives that achieved remarkable antimitotic effects against a broad panel of cancer cells, especially against GBM cells, showing high selectivity in comparison with non-tumor cells. The compounds also exerted high aqueous solubility and were demonstrated to not be substrates of efflux pumps, thus overcoming the main limitations that are usually associated with tubulin binding agents. Tubulin polymerization assays, immunofluorescence experiments, and flow cytometry studies demonstrated that the compounds target tubulin and arrest cells at the G2/M phase followed by induction of apoptosis. The docking experiments agreed with the proposed interactions at the colchicine site and explained the structure-activity relationships.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
15
|
Tasci E, Jagasia S, Zhuge Y, Sproull M, Cooley Zgela T, Mackey M, Camphausen K, Krauze AV. RadWise: A Rank-Based Hybrid Feature Weighting and Selection Method for Proteomic Categorization of Chemoirradiation in Patients with Glioblastoma. Cancers (Basel) 2023; 15:2672. [PMID: 37345009 PMCID: PMC10216128 DOI: 10.3390/cancers15102672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 06/23/2023] Open
Abstract
Glioblastomas (GBM) are rapidly growing, aggressive, nearly uniformly fatal, and the most common primary type of brain cancer. They exhibit significant heterogeneity and resistance to treatment, limiting the ability to analyze dynamic biological behavior that drives response and resistance, which are central to advancing outcomes in glioblastoma. Analysis of the proteome aimed at signal change over time provides a potential opportunity for non-invasive classification and examination of the response to treatment by identifying protein biomarkers associated with interventions. However, data acquired using large proteomic panels must be more intuitively interpretable, requiring computational analysis to identify trends. Machine learning is increasingly employed, however, it requires feature selection which has a critical and considerable effect on machine learning problems when applied to large-scale data to reduce the number of parameters, improve generalization, and find essential predictors. In this study, using 7k proteomic data generated from the analysis of serum obtained from 82 patients with GBM pre- and post-completion of concurrent chemoirradiation (CRT), we aimed to select the most discriminative proteomic features that define proteomic alteration that is the result of administering CRT. Thus, we present a novel rank-based feature weighting method (RadWise) to identify relevant proteomic parameters using two popular feature selection methods, least absolute shrinkage and selection operator (LASSO) and the minimum redundancy maximum relevance (mRMR). The computational results show that the proposed method yields outstanding results with very few selected proteomic features, with higher accuracy rate performance than methods that do not employ a feature selection process. While the computational method identified several proteomic signals identical to the clinical intuitive (heuristic approach), several heuristically identified proteomic signals were not selected while other novel proteomic biomarkers not selected with the heuristic approach that carry biological prognostic relevance in GBM only emerged with the novel method. The computational results show that the proposed method yields promising results, reducing 7k proteomic data to 8 selected proteomic features with a performance value of 96.364%, comparing favorably with techniques that do not employ feature selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andra Valentina Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (E.T.); (S.J.); (Y.Z.); (M.S.); (T.C.Z.); (M.M.); (K.C.)
| |
Collapse
|
16
|
Vítovcová B, Skarková V, Havelek R, Soukup J, Pande A, Caltová K, Rudolf E. Flubendazole exhibits anti-glioblastoma effect by inhibiting STAT3 and promoting cell cycle arrest. Sci Rep 2023; 13:5993. [PMID: 37045903 PMCID: PMC10097688 DOI: 10.1038/s41598-023-33047-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Glioblastoma multiforme (GBM) belongs to most aggressive and invasive primary brain tumor in adults whose prognosis and survival remains poor. Potential new treatment modalities include targeting the cytoskeleton. In our study, we demonstrated that repurposed drug flubendazole (FLU) significantly inhibits proliferation and survival of GBM cells. FLU exerted its effect by affecting microtubule structure and our results also suggest that FLU influences tubulins expression to a certain degree. Moreover, FLU effects decreased activation of STAT3 and also partially inhibited its expression, leading to upregulation of p53 signaling pathway and subsequent cell cycle arrest at G2/M phase as well as caspase-dependent cell death in GBM cells. These results suggest FLU as a promising agent to be used in GBM treatment and prompting further testing of its effects on GBM.
Collapse
Affiliation(s)
- Barbora Vítovcová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic.
| | - Veronika Skarková
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Jiří Soukup
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Králové, Charles University, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Ananya Pande
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Caltová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
17
|
Huang X, Shi S, Wang H, Zhao T, Wang Y, Huang S, Su Y, Zhao C, Yang M. Advances in antibody-based drugs and their delivery through the blood-brain barrier for targeted therapy and immunotherapy of gliomas. Int Immunopharmacol 2023; 117:109990. [PMID: 37012874 DOI: 10.1016/j.intimp.2023.109990] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Gliomas are highly invasive and are the most common type of primary malignant brain tumor. The routine treatments for glioma include surgical resection, radiotherapy, and chemotherapy. However, glioma recurrence and patient survival remain unsatisfactory after employing these traditional treatment approaches. With the rapid development of molecular immunology, significant breakthroughs have been made in targeted glioma therapy and immunotherapy. Antibody-based therapy has excellent advantages in treating gliomas due to its high specificity and sensitivity. This article reviewed various targeted antibody drugs for gliomas, including anti-glioma surface marker antibodies, anti-angiogenesis antibodies, and anti-immunosuppressive signal antibodies. Notably, many antibodies have been validated clinically, such as bevacizumab, cetuximab, panitumumab, and anti-PD-1 antibodies. These antibodies can improve the targeting of glioma therapy, enhance anti-tumor immunity, reduce the proliferation and invasion of glioma, and thus prolong the survival time of patients. However, the existence of the blood-brain barrier (BBB) has caused significant difficulties in drug delivery for gliomas. Therefore, this paper also summarized drug delivery methods through the BBB, including receptor-mediated transportation, nano-based carriers, and some physical and chemical methods for drug delivery. With these exciting advancements, more antibody-based therapies will likely enter clinical practice and allow more successful control of malignant gliomas.
Collapse
Affiliation(s)
- Xin Huang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Shuyou Shi
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Hongrui Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yibo Wang
- The College of Clinical College, Jilin University, Changchun, China
| | - Sihua Huang
- The College of Clinical College, Jilin University, Changchun, China
| | - Yingying Su
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Chunyan Zhao
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| | - Ming Yang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
18
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
19
|
Zurlo M, Romagnoli R, Oliva P, Gasparello J, Finotti A, Gambari R. Synergistic Effects of A Combined Treatment of Glioblastoma U251 Cells with An Anti-miR-10b-5p Molecule and An AntiCancer Agent Based on 1-(3',4',5'-Trimethoxyphenyl)-2-Aryl-1 H-Imidazole Scaffold. Int J Mol Sci 2022; 23:ijms23115991. [PMID: 35682670 PMCID: PMC9181338 DOI: 10.3390/ijms23115991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: In the development of new and more effective anticancer approaches, combined treatments appear of great interest. Combination therapy could be of importance in the management of glioblastoma (GBM), a lethal malignancy that accounts for 42% of cancer of the central nervous system, with a median survival of 15 months. This study aimed to verify the activity on a glioblastoma cancer cell line of one of the most active compounds of a novel series of tubulin polymerization inhibitors based on the 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold, used in combination with a miRNA inhibitor molecule targeting the oncomiRNA miR-10b-5p. This microRNA was selected in consideration of the role of miR-10b-5p on the onset and progression of glioblastoma. (2) Methods: Apoptosis was analyzed by Annexin-V and Caspase 3/7 assays, efficacy of the anti-miR-10b-5p was assessed by determining the miR-10b-5p content by RT-qPCR. (3) Results: The results obtained show that a “combination therapy” performed by combining the use of an anti-miR-10b-5p and a 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole derivative is an encouraging strategy to boost the efficacy of anticancer therapies and at the same time to reduce side effects.
Collapse
Affiliation(s)
- Matteo Zurlo
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (J.G.)
| | - Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, Ferrara University, 44121 Ferrara, Italy; (R.R.); (P.O.)
| | - Paola Oliva
- Department of Chemical, Pharmaceutical and Agricultural Sciences, Ferrara University, 44121 Ferrara, Italy; (R.R.); (P.O.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (J.G.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (J.G.)
- Correspondence: (A.F.); (R.G.)
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (J.G.)
- Correspondence: (A.F.); (R.G.)
| |
Collapse
|
20
|
Wang M, Chen B, Zhang W, Zhang F, Qiu Y, Lin Y, Yang S. Dematin inhibits glioblastoma malignancy through RhoA-mediated CDKs downregulation and cytoskeleton remodeling. Exp Cell Res 2022; 417:113196. [PMID: 35561787 DOI: 10.1016/j.yexcr.2022.113196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is well known as a highly aggressive brain tumor subtype. Here, we show that overexpression (OE) of dematin actin-binding protein (DMTN) inhibits GBM proliferation and invasion by affecting cell cycle regulation and actin remodeling, respectively. RT-qPCR, western blotting, and immunohistochemical (IHC) staining demonstrated a significant reduction in DMTN expression in gliomas, especially in high-grade gliomas (HGG) compared with normal brains, which correlates with worse survival in HGG patients. Functional studies revealed inhibitory effects of DMTN on tumor proliferation and migratory capacities. The attenuation in tumor proliferative ability upon DMTN OE was accompanied by RhoA suppression and CDK1, CDK2, CDK4, and cyclin D1 downregulation, while RhoA rescue restored the proliferative phenotype. Meanwhile, overexpression of DMTN produced profoundly disorganized stress fibers, which led to impaired tumor invasion. Furthermore, DMTN overexpression produced substantial suppression of tumor growth upon subcutaneous and intracranial implantation in mice, and this was accompanied by significantly reduced vinculin expression and Ki67 positivity. Taken together, these findings demonstrate the role of DMTN in regulating GBM cell proliferation, actin cytoskeleton, and cell morphology and identify DMTN as a vital tumor suppressor in GBM progression.
Collapse
Affiliation(s)
- Mengying Wang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Binghong Chen
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, PR China
| | - Wenrui Zhang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Fengchen Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Yongming Qiu
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Yingying Lin
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| | - Shaofeng Yang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| |
Collapse
|
21
|
Lu CH, Wei ST, Liu JJ, Chang YJ, Lin YF, Yu CS, Chang SLY. Recognition of a Novel Gene Signature for Human Glioblastoma. Int J Mol Sci 2022; 23:ijms23084157. [PMID: 35456975 PMCID: PMC9029857 DOI: 10.3390/ijms23084157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GBM) is one of the most common malignant and incurable brain tumors. The identification of a gene signature for GBM may be helpful for its diagnosis, treatment, prediction of prognosis and even the development of treatments. In this study, we used the GSE108474 database to perform GSEA and machine learning analysis, and identified a 33-gene signature of GBM by examining astrocytoma or non-GBM glioma differential gene expression. The 33 identified signature genes included the overexpressed genes COL6A2, ABCC3, COL8A1, FAM20A, ADM, CTHRC1, PDPN, IBSP, MIR210HG, GPX8, MYL9 and PDLIM4, as well as the underexpressed genes CHST9, CSDC2, ENHO, FERMT1, IGFN1, LINC00836, MGAT4C, SHANK2 and VIPR2. Protein functional analysis by CELLO2GO implied that these signature genes might be involved in regulating various aspects of biological function, including anatomical structure development, cell proliferation and adhesion, signaling transduction and many of the genes were annotated in response to stress. Of these 33 signature genes, 23 have previously been reported to be functionally correlated with GBM; the roles of the remaining 10 genes in glioma development remain unknown. Our results were the first to reveal that GBM exhibited the overexpressed GPX8 gene and underexpressed signature genes including CHST9, CSDC2, ENHO, FERMT1, IGFN1, LINC00836, MGAT4C and SHANK2, which might play crucial roles in the tumorigenesis of different gliomas.
Collapse
Affiliation(s)
- Chih-Hao Lu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404333, Taiwan; (C.-H.L.); (J.-J.L.); (Y.-J.C.)
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404333, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
| | - Sung-Tai Wei
- Department of Neurosurgery, China Medical University Hospital, Taichung 404332, Taiwan;
| | - Jia-Jun Liu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404333, Taiwan; (C.-H.L.); (J.-J.L.); (Y.-J.C.)
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404333, Taiwan; (C.-H.L.); (J.-J.L.); (Y.-J.C.)
| | - Yu-Feng Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan;
| | - Chin-Sheng Yu
- Department of Information Engineering and Computer Science, Feng Chia University, Taichung 407102, Taiwan;
| | - Sunny Li-Yun Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Correspondence:
| |
Collapse
|
22
|
Bartak M, Chodkowski M, Słońska A, Grodzik M, Szczepaniak J, Bańbura MW, Cymerys J. Equid Alphaherpesvirus 1 Modulates Actin Cytoskeleton and Inhibits Migration of Glioblastoma Multiforme Cell Line A172. Pathogens 2022; 11:pathogens11040400. [PMID: 35456075 PMCID: PMC9031356 DOI: 10.3390/pathogens11040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/25/2023] Open
Abstract
Equid alphaherpesvirus 1 (EHV-1) causes respiratory diseases, abortion, and neurological disorders in horses. Recently, the oncolytic potential of this virus and its possible use in anticancer therapy has been reported, but its influence on cytoskeleton was not evaluated yet. In the following study, we have examined disruptions in actin cytoskeleton of glioblastoma multiforme in vitro model—A172 cell line, caused by EHV-1 infection. We used three EHV-1 strains: two non-neuropathogenic (Jan-E and Rac-H) and one neuropathogenic (EHV-1 26). Immunofluorescent labelling, confocal microscopy, real-time cell growth analysis and OrisTM cell migration assay revealed disturbed migration of A172 cells infected with the EHV-1, probably due to rearrangement of actin cytoskeleton and the absence of cell projections. All tested strains caused disruption of the actin network and general depolymerization of microfilaments. The qPCR results confirmed the effective replication of EHV-1. Thus, we have demonstrated, for the first time, that EHV-1 infection leads to inhibition of proliferation and migration in A172 cells, which might be promising for new immunotherapy treatment.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.C.); (A.S.); (M.W.B.); (J.C.)
- Correspondence:
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.C.); (A.S.); (M.W.B.); (J.C.)
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Anna Słońska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.C.); (A.S.); (M.W.B.); (J.C.)
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.G.); (J.S.)
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.G.); (J.S.)
| | - Marcin W. Bańbura
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.C.); (A.S.); (M.W.B.); (J.C.)
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (M.C.); (A.S.); (M.W.B.); (J.C.)
| |
Collapse
|
23
|
Liposomal Formulation of a PLA2-Sensitive Phospholipid-Allocolchicinoid Conjugate: Stability and Activity Studies In Vitro. Int J Mol Sci 2022; 23:ijms23031034. [PMID: 35162957 PMCID: PMC8835198 DOI: 10.3390/ijms23031034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/15/2023] Open
Abstract
To assess the stability and efficiency of liposomes carrying a phospholipase A2-sensitive phospholipid-allocolchicinoid conjugate (aC-PC) in the bilayer, egg phosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylglycerol-based formulations were tested in plasma protein binding, tubulin polymerization inhibition, and cytotoxicity assays. Liposomes L-aC-PC10 containing 10 mol. % aC-PC in the bilayer bound less plasma proteins and were more stable in 50% plasma within 4 h incubation, according to calcein release and FRET-based assays. Liposomes with 25 mol. % of the prodrug (L-aC-PC25) were characterized by higher storage stability judged by their hydrodynamic radius evolution yet enhanced deposition of blood plasma opsonins on their surface according to SDS-PAGE and immunoblotting. Notably, inhibition of tubulin polymerization was found to require that the prodrug should be hydrolyzed to the parent allocolchicinoid. The L-aC-PC10 and L-aC-PC25 formulations demonstrated similar tubulin polymerization inhibition and cytotoxic activities. The L-aC-PC10 formulation should be beneficial for applications requiring liposome accumulation at tumor or inflammation sites.
Collapse
|
24
|
Chuang HY, Hsu LY, Pan CM, Pikatan NW, Yadav VK, Fong IH, Chen CH, Yeh CT, Chiu SC. The E3 Ubiquitin Ligase NEDD4-1 Mediates Temozolomide-Resistant Glioblastoma through PTEN Attenuation and Redox Imbalance in Nrf2-HO-1 Axis. Int J Mol Sci 2021; 22:10247. [PMID: 34638586 PMCID: PMC8549703 DOI: 10.3390/ijms221910247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. It is highly resistant to chemotherapy, and tumor recurrence is common. Neuronal precursor cell-expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ligase that controls embryonic development and animal growth. NEDD4-1 regulates the tumor suppressor phosphatase and tensin homolog (PTEN), one of the major regulators of the PI3K/AKT/mTOR signaling axis, as well as the response to oxidative stress. METHODS The expression levels of NEDD4-1 in GBM tissues and different cell lines were determined by quantitative real-time polymerase chain reaction and immunohistochemistry. In vitro and in vivo assays were performed to explore the biological effects of NEDD4-1 on GBM cells. Temozolomide (TMZ)-resistant U87MG and U251 cell lines were specifically established to determine NEDD4-1 upregulation and its effects on the tumorigenicity of GBM cells. Subsequently, miRNA expression in TMZ-resistant cell lines was investigated to determine the dysregulated miRNA underlying the overexpression of NEDD4-1. Indole-3-carbinol (I3C) was used to inhibit NEDD4-1 activity, and its effect on chemoresistance to TMZ was verified. RESULTS NEDD4-1 was significantly overexpressed in the GBM and TMZ-resistant cells and clinical samples. NEDD4-1 was demonstrated to be a key oncoprotein associated with TMZ resistance, inducing oncogenicity and tumorigenesis of TMZ-resistant GBM cells compared with TMZ-responsive cells. Mechanistically, TMZ-resistant cells exhibited dysregulated expression of miR-3129-5p and miR-199b-3p, resulting in the induced NEDD4-1 mRNA-expression level. The upregulation of NEDD4-1 attenuated PTEN expression and promoted the AKT/NRF2/HO-1 oxidative stress signaling axis, which in turn conferred amplified defense against reactive oxygen species (ROS) and eventually higher resistance against TMZ treatment. The combination treatment of I3C, a known inhibitor of NEDD4-1, with TMZ resulted in a synergistic effect and re-sensitized TMZ-resistant tumor cells both in vitro and in vivo. CONCLUSIONS These findings demonstrate the critical role of NEDD4-1 in regulating the redox imbalance in TMZ-resistant GBM cells via the degradation of PTEN and the upregulation of the AKT/NRF2/HO-1 signaling pathway. Targeting this regulatory axis may help eliminate TMZ-resistant glioblastoma.
Collapse
Affiliation(s)
- Hao-Yu Chuang
- School of Medicine, China Medical University, Taichung 40447, Taiwan;
- Translational Cell Therapy Center, Tainan Municipal An-Nan Hospital-China Medical University, Tainan 70967, Taiwan
- Division of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan 70967, Taiwan
- Division of Neurosurgery, China Medical University Beigang Hospital, Beigang Township 65152, Taiwan
| | - Li-Yun Hsu
- Department of Emergency Medicine, Shuang-Ho Hospital-Taipei Medical University, New Taipei City 23561, Taiwan;
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110, Taiwan
- Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Ming Pan
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Narpati Wesa Pikatan
- Doctorate Program of Medical and Health Science, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (V.K.Y.); (I.-H.F.)
| | - Vijesh Kumar Yadav
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (V.K.Y.); (I.-H.F.)
| | - Iat-Hang Fong
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (V.K.Y.); (I.-H.F.)
| | - Chao-Hsuan Chen
- Biomedicine Institution, Department of Neurosurgery, China Medical University, Taichung 40447, Taiwan;
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (V.K.Y.); (I.-H.F.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Shao-Chih Chiu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan
- Drug Development Center, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|