1
|
Clarissa EM, Kumar S, Park J, Karmacharya M, Oh IJ, Kim MH, Ryu JS, Cho YK. Digital Profiling of Tumor Extracellular Vesicle-Associated RNAs Directly from Unprocessed Blood Plasma. ACS NANO 2025; 19:5526-5538. [PMID: 39792041 DOI: 10.1021/acsnano.4c14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip. Optimized CLIP surface charge enables exceptional sensitivity and selectivity for EV-derived miRNAs and mRNAs. This approach streamlines detection with minimal plasma volume (20 μL) and eliminates the need for prior EV isolation or RNA preparation, preventing loss of EVs or RNA. In testing with 83 patient samples, EV-CLIP detected EGFR L858R and T790M mutations with high AUC values of 1.0000 and 0.9784, respectively. Its success in serial monitoring during chemotherapy highlights its potential for precise quantification of rare EV subpopulations, facilitating the exploration of single EV RNA content and enhancing understanding of diverse EV populations in various disease states.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
- Center for Algorithmic and Robotic Synthesis, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sumit Kumar
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
- Center for Algorithmic and Robotic Synthesis, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Juhee Park
- Center for Algorithmic and Robotic Synthesis, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotic Synthesis, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, and Hwasun Hospital, Hwasun 58128, Jeollanam-do, South Korea
| | - Mi-Hyun Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National Hospital, 179, Gudeok-ro, Seo-Gu, Busan 49241, South Korea
| | - Jeong-Seon Ryu
- Center for Lung Cancer, Department of Pulmonology, Inha University Hospital, Inha University College of Medicine, 27, Inhang-Ro, Jung-Gu, Incheon 22322, South Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
- Center for Algorithmic and Robotic Synthesis, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| |
Collapse
|
2
|
Fan R, Chen S, Lan F, Li W, Zhu Y, Zhang L, Zhang Y, Li L. Surface-Enhanced Raman Scattering (SERS)-based biosensors for advanced extracellular vesicle detection: A review. Anal Chim Acta 2025; 1336:343264. [PMID: 39788643 DOI: 10.1016/j.aca.2024.343264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Extracellular Vesicles (EVs), as nano-scale vesicles rich in biological information, hold an indispensable status in the biomedical field. However, due to the intrinsic small size and low abundance of EVs, their effective detection presents significant challenges. Although various EV detection techniques exist, their sensitivity and ease of operation still need enhancement. RESULTS Surface-Enhanced Raman Scattering (SERS) is known for its high sensitivity and specificity. It stands out in tackling the challenges that traditional EV detection methods face. In this review, we focus on the application of SERS-based biosensors in EV detection. It provides a detailed introduction to the recognition and capture of EVs, strategies for mediating signal amplification, and detection of EV biomarkers. Finally, the challenges and prospects of SERS-based biosensors are discussed. SIGNIFICANCE SERS-based biosensor enhances the Raman signal, allowing for the detection of biomarkers at low concentrations. This capability reveals its substantial potential in identifying EVs and analyzing molecular data. It paves the path for advanced EV detection.
Collapse
Affiliation(s)
- Rui Fan
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Siting Chen
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Fei Lan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Yitong Zhu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Lifeng Zhang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Wang J, Zhang H, Li J, Ni X, Yan W, Chen Y, Shi T. Exosome-derived proteins in gastric cancer progression, drug resistance, and immune response. Cell Mol Biol Lett 2024; 29:157. [PMID: 39719600 PMCID: PMC11667977 DOI: 10.1186/s11658-024-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer (GC) represents a prevalent malignancy globally, often diagnosed at advanced stages owing to subtle early symptoms, resulting in a poor prognosis. Exosomes are extracellular nano-sized vesicles and are secreted by various cells. Mounting evidence indicates that exosomes contain a wide range of molecules, such as DNA, RNA, lipids, and proteins, and play crucial roles in multiple cancers including GC. Recently, with the rapid development of mass spectrometry-based detection technology, researchers have paid increasing attention to exosomal cargo proteins. In this review, we discussed the origin of exosomes and the diagnostic and prognostic roles of exosomal proteins in GC. Moreover, we summarized the biological functions of exosomal proteins in GC processes, such as proliferation, metastasis, drug resistance, stemness, immune response, angiogenesis, and traditional Chinese medicine therapy. In summary, this review synthesizes current advancements in exosomal proteins associated with GC, offering insights that could pave the way for novel diagnostic and therapeutic strategies for GC in the foreseeable future.
Collapse
Affiliation(s)
- Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huan Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
| | - Juntao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Ni
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.
- Center for Systems Biology, Soochow University, Suzhou, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou, China.
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of The First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Hu Z, Qian S, Zhao Q, Lu B, Lu Q, Wang Y, Zhang L, Mao X, Wang D, Cui W, Sun X. Engineering strategies for apoptotic bodies. SMART MEDICINE 2024; 3:e20240005. [PMID: 39420952 PMCID: PMC11425054 DOI: 10.1002/smmd.20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles containing proteins, lipids, nucleic acids, and metabolites secreted by cells under various physiological and pathological conditions that mediate intercellular communication. The main types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are vesicles released during the terminal stages of cellular apoptosis, enriched with diverse biological entities and characterized by distinct morphological features. As a result, ABs possess great potential in fields like disease diagnosis, immunotherapy, regenerative therapy, and drug delivery due to their specificity, targeting capacity, and biocompatibility. However, their therapeutic efficacy is notably heterogeneous, and an overdose can lead to side effects such as accumulation in the liver, spleen, lungs, and gastrointestinal system. Through bioengineering, the properties of ABs can be optimized to enhance drug-loading efficiency, targeting precision, and multifunctionality for clinical implementations. This review focuses on strategies such as transfection, sonication, electroporation, surface engineering, and integration with biomaterials to enable ABs to load cargoes and enhance targeting, providing insights into the engineering of ABs.
Collapse
Affiliation(s)
- Zheyuan Hu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shutong Qian
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Plastic SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qian Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuhuan Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danru Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Liu J, Chai L, Zhang X. Advances in the Biological Functions of Extracellular Vesicles and their Potential Use in Treating Oral Cancer. Cell Biochem Biophys 2023; 81:1-5. [PMID: 36441372 DOI: 10.1007/s12013-022-01120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are membranous spheroid organelles secreted by various cells during their development. Previous studies have proved that the elimination of metabolic waste products from the cells is one of the key biological functions of EVs. Besides, recent studies suggest that EVs also promote intercellular information transmission thus further regulating the external environment of cells, especially during the development of cancer. Different EVs are produced by tumor cells and tumor-related cells during the development of tumors. Based on their sources and contents, different EVs may promote the proliferation of tumor cells, interfere with the function of immune cells, or destroy normal tissue barriers. As a landmark component in the occurrence and development of tumors, EVs can be used to solve the biological behaviors that hinder tumor treatment, such as drug resistance and immune escape. Oral cancer is a highly prevalent cancer type in clinic and current therapies often fail to effectively inhibit its deterioration. Based on their essential roles in cancer development, EVs therefore possess great potential to be a target for oral cancer treatment. In this review, we focused on the origin and classification of vesicles in oral cancer tissues around the tumor microenvironment, described their biological functions, and discussed their potential for cancer treatment in combination with existing research methods. In addition, we highlighted the current challenges and recommendations of EVs for the treatment of oral cancer in clinic.
Collapse
Affiliation(s)
- Jingwen Liu
- The Affiliated People's Hospital of Ningbo University, Zhejiang, 315000, China.
| | - Luyi Chai
- The Affiliated People's Hospital of Ningbo University, Zhejiang, 315000, China
| | - Xia Zhang
- The Affiliated People's Hospital of Ningbo University, Zhejiang, 315000, China
| |
Collapse
|
6
|
Matsuzaka Y, Yashiro R. Advances in Purification, Modification, and Application of Extracellular Vesicles for Novel Clinical Treatments. MEMBRANES 2022; 12:membranes12121244. [PMID: 36557150 PMCID: PMC9787595 DOI: 10.3390/membranes12121244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EV) are membrane vesicles surrounded by a lipid bilayer membrane and include microvesicles, apoptotic bodies, exosomes, and exomeres. Exosome-encapsulated microRNAs (miRNAs) released from cancer cells are involved in the proliferation and metastasis of tumor cells via angiogenesis. On the other hand, mesenchymal stem cell (MSC) therapy, which is being employed in regenerative medicine owing to the ability of MSCs to differentiate into various cells, is due to humoral factors, including messenger RNA (mRNA), miRNAs, proteins, and lipids, which are encapsulated in exosomes derived from transplanted cells. New treatments that advocate cell-free therapy using MSC-derived exosomes will significantly improve clinical practice. Therefore, using highly purified exosomes that perform their original functions is desirable. In this review, we summarized advances in the purification, modification, and application of EVs as novel strategies to treat some diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-0004, Japan
| |
Collapse
|
7
|
Matsuzaka Y, Yashiro R. Regulation of Extracellular Vesicle-Mediated Immune Responses against Antigen-Specific Presentation. Vaccines (Basel) 2022; 10:1691. [PMID: 36298556 PMCID: PMC9607341 DOI: 10.3390/vaccines10101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) produced by various immune cells, including B and T cells, macrophages, dendritic cells (DCs), natural killer (NK) cells, and mast cells, mediate intercellular communication and have attracted much attention owing to the novel delivery system of molecules in vivo. DCs are among the most active exosome-secreting cells of the immune system. EVs produced by cancer cells contain cancer antigens; therefore, the development of vaccine therapy that does not require the identification of cancer antigens using cancer-cell-derived EVs may have significant clinical implications. In this review, we summarise the molecular mechanisms underlying EV-based immune responses and their therapeutic effects on tumour vaccination.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan
| |
Collapse
|
8
|
Zhou M, Li YJ, Tang YC, Hao XY, Xu WJ, Xiang DX, Wu JY. Apoptotic bodies for advanced drug delivery and therapy. J Control Release 2022; 351:394-406. [PMID: 36167267 DOI: 10.1016/j.jconrel.2022.09.045] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) have emerged as promising candidates for multiple biomedical applications. Major types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are conferred most properties from parent cells in the final stages of apoptosis. A wide variety of sources and stable morphological features are endowed to ABs by the rigorous apoptotic program. ABs accommodate more functional biomolecules by relying on the larger volume and maintaining their naturalness in circulation. The predominant body surface ratio of ABs facilitates their recognition by recipient cells and is advantageous for interactions with microenvironments. ABs can modulate and alleviate symptoms of numerous diseases for their origins, circulation, and high biocompatibility. In addition, ABs have been emerging in disease diagnosis, immunotherapy, regenerative therapy, and drug delivery. Here, we aim to present a thorough discussion on current knowledge about ABs. Of particular interest, we will summarize the application of AB-based strategies for diagnosis and disease therapy. Perspectives for the development of ABs in biomedical applications are highlighted.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Yu-Cheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Xin-Yan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Wen-Jie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China.
| | - Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China.
| |
Collapse
|
9
|
MicroRNA-4516 in Urinary Exosomes as a Biomarker of Premature Ovarian Insufficiency. Cells 2022; 11:cells11182797. [PMID: 36139370 PMCID: PMC9497098 DOI: 10.3390/cells11182797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/21/2022] Open
Abstract
Premature ovarian insufficiency (POI) is a typical disorder of amenorrhea that lasts for a minimum of four months in women < 40 years old and is typically characterized by reduced estrogen levels and elevated serum concentrations of follicle-stimulating hormone. We collected urine samples from two participant cohorts from Gil Hospital of Gachon University (Incheon, Korea): a sequencing cohort of 19 participants (seven patients with POI (POI patients without Turner syndrome), seven patients with Turner syndrome (POI patients with Turner syndrome), and five control individuals (age-matched controls with confirmed ovarian sufficiency)) and a validation cohort of 46 participants (15 patients with POI, 11 patients with Turner syndrome, and 20 control individuals). Among differentially expressed miRNAs, hsa-miR-4516 was significantly upregulated in patients with POI in both cohorts, independent of the presence of Turner syndrome. Moreover, the upregulation of miR-4516 was confirmed in the ovary—but not in the uterus—of a cyclophosphamide and busulfan-induced POI mouse model. This was accompanied by a decrease in STAT3 protein level, a predicted target of miR-4516, via miRTarBase2020. Our study provides compelling evidence that miR-4516 is highly expressed in patients with POI and POI mouse models, suggesting that miR-4516 is a diagnostic marker of POI.
Collapse
|