1
|
Sugata K, Rahman A, Niimura K, Monde K, Ueno T, Rajib SA, Takatori M, Sakhor W, Hossain MB, Sithi SN, Jahan MI, Matsuda K, Ueda M, Yamano Y, Ikeda T, Ueno T, Tsuchiya K, Tanaka Y, Tokunaga M, Maeda K, Utsunomiya A, Okuma K, Ono M, Satou Y. Intragenic viral silencer element regulates HTLV-1 latency via RUNX complex recruitment. Nat Microbiol 2025:10.1038/s41564-025-02006-7. [PMID: 40360701 DOI: 10.1038/s41564-025-02006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
Retroviruses integrate their genetic material into the host genome, enabling persistent infection. Human T cell leukaemia virus type 1 (HTLV-1) and human immunodeficiency virus type 1 (HIV-1) share similarities in genome structure and target cells, yet their infection dynamics differ drastically. While HIV-1 leads to high viral replication and immune system collapse, HTLV-1 establishes latency, promoting the survival of infected cells and, in some cases, leading to leukaemia. The mechanisms underlying this latency preference remain unclear. Here we analyse blood samples from people with HTLV-1 and identify an open chromatin region within the HTLV-1 provirus that functions as a transcriptional silencer and regulates transcriptional burst. The host transcription factor RUNX1 binds to this open chromatin region, repressing viral expression. Mutation of this silencer enhances HTLV-1 replication and immunogenicity, while its insertion into HIV-1 suppresses viral production. These findings reveal a strategy by which HTLV-1 ensures long-term persistence, offering potential insights into retroviral evolution and therapeutic targets.
Collapse
Affiliation(s)
- Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Koki Niimura
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- School of Medicine, Kumamoto University, Kumamoto, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Takatori
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Wajihah Sakhor
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Md Belal Hossain
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sharmin Nahar Sithi
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - M Ishrat Jahan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuetsu Tanaka
- School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Reda O, Monde K, Sugata K, Rahman A, Sakhor W, Rajib SA, Sithi SN, Tan BJY, Niimura K, Motozono C, Maeda K, Ono M, Takeuchi H, Satou Y. HIV-Tocky system to visualize proviral expression dynamics. Commun Biol 2024; 7:344. [PMID: 38509308 PMCID: PMC10954732 DOI: 10.1038/s42003-024-06025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Determinants of HIV-1 latency establishment are yet to be elucidated. HIV reservoir comprises a rare fraction of infected cells that can survive host and virus-mediated killing. In vitro reporter models so far offered a feasible means to inspect this population, but with limited capabilities to dissect provirus silencing dynamics. Here, we describe a new HIV reporter model, HIV-Timer of cell kinetics and activity (HIV-Tocky) with dual fluorescence spontaneous shifting to reveal provirus silencing and reactivation dynamics. This unique feature allows, for the first time, identifying two latent populations: a directly latent, and a recently silenced subset, with the latter having integration features suggestive of stable latency. Our proposed model can help address the heterogeneous nature of HIV reservoirs and offers new possibilities for evaluating eradication strategies.
Collapse
Affiliation(s)
- Omnia Reda
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Wajihah Sakhor
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sharmin Nahar Sithi
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Benjy Jek Yang Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Koki Niimura
- School of Medicine, Kumamoto University, Kumamoto, Japan
| | - Chihiro Motozono
- Division of Infection and Immunology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Hiroaki Takeuchi
- Department of High-risk Infectious Disease Control, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
3
|
Matsuda K, Maeda K. HIV Reservoirs and Treatment Strategies toward Curing HIV Infection. Int J Mol Sci 2024; 25:2621. [PMID: 38473868 DOI: 10.3390/ijms25052621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Combination antiretroviral therapy (cART) has significantly improved the prognosis of individuals living with human immunodeficiency virus (HIV). Acquired immunodeficiency syndrome has transformed from a fatal disease to a treatable chronic infection. Currently, effective and safe anti-HIV drugs are available. Although cART can reduce viral production in the body of the patient to below the detection limit, it cannot eliminate the HIV provirus integrated into the host cell genome; hence, the virus will be produced again after cART discontinuation. Therefore, research into a cure (or remission) for HIV has been widely conducted. In this review, we focus on drug development targeting cells latently infected with HIV and assess the progress including our current studies, particularly in terms of the "Shock and Kill", and "Block and Lock" strategies.
Collapse
Affiliation(s)
- Kouki Matsuda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kenji Maeda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
4
|
Angamuthu D, Vivekanandan S, Hanna LE. Experimental models for HIV latency and molecular tools for reservoir quantification-an update. Clin Microbiol Rev 2023; 36:e0001323. [PMID: 37966222 PMCID: PMC10732067 DOI: 10.1128/cmr.00013-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
A major impediment for HIV cure is the ability of the virus to integrate its genome in the form of replication-competent proviral DNA into the cellular genome of the host and remain transcriptionally silent and hidden from the host's immune defense mechanisms in latent reservoir cells. These latent reservoirs are highly heterogeneous, long-lived cells that are capable of reactivating to restore the viremic stage in virally suppressed individuals upon treatment interruption, thus necessitating life-long antiretroviral treatment. Latency reversal has become one of the most explored therapeutic approaches for eliminating HIV reservoirs and effecting HIV cure. Various aspects governing the establishment, maintenance, and reversal of HIV latency continue to be an enigma and warrant further research. Quantifying the size of the latent reservoir pool is also a challenge as these cells are very few in number and cannot be easily differentiated from uninfected cells. This article provides a comprehensive review of the in vitro and in vivo models currently available for studying HIV latency as well as the recently developed molecular tools for detection and quantification of latent viral reservoirs.
Collapse
Affiliation(s)
- Divyadarshini Angamuthu
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Sandhya Vivekanandan
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Luke Elizabeth Hanna
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Matsuda K, Tan BJY, Rajib SA, Tsuchiya K, Satou Y, Maeda K. Assessing the effects of antiretroviral therapy-latency-reversing agent combination therapy on eradicating replication-competent HIV provirus in a Jurkat cell culture model. STAR Protoc 2023; 4:102547. [PMID: 37751354 PMCID: PMC10520926 DOI: 10.1016/j.xpro.2023.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Eradication of HIV-1 latently infected cells is an important issue in HIV treatment. However, there are limited models available to assess therapeutic efficacy in vitro. Here, we present a protocol for establishing a variety of HIV-infected Jurkat cells, including productive and latent status, evaluating the efficacy of antiviral agents, followed by PCR/sequencing-based detection of replication competent HIV provirus. This protocol is useful for optimization of treatment of HIV-1 and provides insights into the mechanisms of clonal selection of heterogeneous HIV-1-infected cells. For complete details on the use and execution of this protocol, please refer to Matsuda et al. (2021).1.
Collapse
Affiliation(s)
- Kouki Matsuda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan; Japan Foundation for AIDS Prevention, Chiyoda-ku, Tokyo 101-0064, Japan.
| | - Benjy Jek Yang Tan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| | - Samiul Alam Rajib
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Kenji Maeda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan.
| |
Collapse
|
6
|
Więcek K, Chen HC. Understanding latent HIV-1 reservoirs through host genomics approaches. iScience 2023; 26:108342. [PMID: 38026212 PMCID: PMC10665824 DOI: 10.1016/j.isci.2023.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Genetically intact HIV-1 proviruses are a major concern with regard to curing infection because they cause viral rebound after the cessation of antiretroviral therapy. However, intact proviruses are not prevalent in HIV-1 reservoirs. As such, it is essential to precisely determine the position of these proviruses before putting forward a better antiretroviral cure. Recently, a revised HIV-1 deeply latent reservoir concept has been proposed, stating that the progress of the establishment of HIV-1 reservoirs is influenced by immune-mediated selection during the course of infection. This selection force leads to the persistence of genetically intact proviruses as those with the best fit to avoid clearance. This hypothesis refreshes our understanding of HIV-1 latent reservoirs. For this reason, we reviewed current studies relevant to this theme and provide our perspectives to reinforce the overall understanding of HIV-1 latency in the context of the host genome.
Collapse
Affiliation(s)
- Kamil Więcek
- Epigenetics of Infectious Diseases Research Group, Population Diagnostics Center, Lukasiewicz Research Network – PORT Polish Center for Technology Development, Stablowicka 147, 54-066 Wroclaw, Poland
| | - Heng-Chang Chen
- Epigenetics of Infectious Diseases Research Group, Population Diagnostics Center, Lukasiewicz Research Network – PORT Polish Center for Technology Development, Stablowicka 147, 54-066 Wroclaw, Poland
| |
Collapse
|
7
|
Eltalkhawy YM, Takahashi N, Ariumi Y, Shimizu J, Miyazaki K, Senju S, Suzu S. iPS cell-derived model to study the interaction between tissue macrophage and HIV-1. J Leukoc Biol 2023; 114:53-67. [PMID: 36976024 DOI: 10.1093/jleuko/qiad024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Despite effective antiretroviral therapy, HIV-1 persists in cells, including macrophages, which is an obstacle to cure. However, the precise role of macrophages in HIV-1 infection remains unclear because they reside in tissues that are not easily accessible. Monocyte-derived macrophages are widely used as a model in which peripheral blood monocytes are cultured and differentiated into macrophages. However, another model is needed because recent studies revealed that most macrophages in adult tissues originate from the yolk sac and fetal liver precursors rather than monocytes, and the embryonic macrophages possess a self-renewal (proliferating) capacity that monocyte-derived macrophages lack. Here, we show that human induced pluripotent stem cell-derived immortalized macrophage-like cells are a useful self-renewing macrophage model. They proliferate in a cytokine-dependent manner, retain macrophage functions, support HIV-1 replication, and exhibit infected monocyte-derived macrophage-like phenotypes, such as enhanced tunneling nanotube formation and cell motility, as well as resistance to a viral cytopathic effect. However, several differences are also observed between monocyte-derived macrophages and induced pluripotent stem cell-derived immortalized macrophage-like cells, most of which can be explained by the proliferation of induced pluripotent stem cell-derived immortalized macrophage-like cells. For instance, proviruses with large internal deletions, which increased over time in individuals receiving antiretroviral therapy, are enriched more rapidly in induced pluripotent stem cell-derived immortalized macrophage-like cells. Interestingly, inhibition of viral transcription by HIV-1-suppressing agents is more obvious in induced pluripotent stem cell-derived immortalized macrophage-like cells. Collectively, our present study proposes that the model of induced pluripotent stem cell-derived immortalized macrophage-like cells is suitable for mimicking the interplay between HIV-1 and self-renewing tissue macrophages, the newly recognized major population in most tissues that cannot be fully modeled by monocyte-derived macrophages alone.
Collapse
Affiliation(s)
- Youssef M Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Yasuo Ariumi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Jun Shimizu
- MiCAN Technologies Inc., Goryo-ohara 1-36, Kyoto 615-8245, Japan
| | - Kazuo Miyazaki
- MiCAN Technologies Inc., Goryo-ohara 1-36, Kyoto 615-8245, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| |
Collapse
|
8
|
Hernandez CA, Eliseo E. The Role of Pannexin-1 Channels in HIV and NeuroHIV Pathogenesis. Cells 2022; 11:2245. [PMID: 35883688 PMCID: PMC9323506 DOI: 10.3390/cells11142245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV) enters the brain shortly after infection, leading to long-term neurological complications in half of the HIV-infected population, even in the current anti-retroviral therapy (ART) era. Despite decades of research, no biomarkers can objectively measure and, more importantly, predict the onset of HIV-associated neurocognitive disorders. Several biomarkers have been proposed; however, most of them only reflect late events of neuronal damage. Our laboratory recently identified that ATP and PGE2, inflammatory molecules released through Pannexin-1 channels, are elevated in the serum of HIV-infected individuals compared to uninfected individuals and other inflammatory diseases. More importantly, high circulating ATP levels, but not PGE2, can predict a decline in cognition, suggesting that HIV-infected individuals have impaired ATP metabolism and associated signaling. We identified that Pannexin-1 channel opening contributes to the high serological ATP levels, and ATP in the circulation could be used as a biomarker of HIV-associated cognitive impairment. In addition, we believe that ATP is a major contributor to chronic inflammation in the HIV-infected population, even in the anti-retroviral era. Here, we discuss the mechanisms associated with Pannexin-1 channel opening within the circulation, as well as within the resident viral reservoirs, ATP dysregulation, and cognitive disease observed in the HIV-infected population.
Collapse
Affiliation(s)
| | - Eugenin Eliseo
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA;
| |
Collapse
|
9
|
Eshetu A, Ho YC. A multidimensional HIV-1 persistence model for clonal expansion and viral rebound in vitro. CELL REPORTS METHODS 2021; 1:100134. [PMID: 35475216 PMCID: PMC9017154 DOI: 10.1016/j.crmeth.2021.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a replication-competent virus for prolonged in vitro culture, Matsuda et al. captured the heterogenous HIV-1 genome and integration site landscape, examined viral cytopathic effects and clonal expansion capacity, and tested drugs that can eliminate HIV-1-infected cells.
Collapse
Affiliation(s)
- Amare Eshetu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|