1
|
Xu Z, Zhang X, Pal C, Rozners E, Callahan BP. Enzyme fragment complementation driven by nucleic acid hybridization sans self-labeling protein. Bioorg Chem 2025; 154:108039. [PMID: 39705932 DOI: 10.1016/j.bioorg.2024.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
A modified enzyme fragment complementation assay has been designed and validated as a turn-on biosensor for nucleic acid detection in dilute aqueous solution. The assay is target sequence-agonistic and uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified enzymatically at their C-termini to steramers, sterol-linked oligonucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, serves as the self-cleaving enzyme for the NanoBiT-steramer bioconjugations. Unlike current approaches, the final bioconjugate generated by DHhC and used for nucleic acid detection is free of self-labeling passenger protein. In the presence of single stranded (ss) DNA or RNA template with adjacent segments complementary to the Nano-BiT steramer oligonucleotides, the two NanoBiT fragments associate productively, reconstituting NanoBiT's luciferase activity. In samples containing ssDNA or RNA template at low nM concentrations, NanoBiT luminescence exceeded background signal by 30- to 60-fold. The steramer probe sequences used to prepare these sensors are unconstrained in length and composition. In the absence of sequence constraints of the probe element and without the added bulk of a self-labeling protein, these NanoBiT-steramer bioconjugates open new applications in the programmable detection of small fragments of coding and noncoding DNA and RNA.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Chandan Pal
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA.
| |
Collapse
|
2
|
Ahmed WS, Geethakumari AM, Sultana A, Fatima A, Philip AM, Uddin SMN, Biswas KH. A slow but steady nanoLuc: R162A mutation results in a decreased, but stable, nanoLuc activity. Int J Biol Macromol 2024; 269:131864. [PMID: 38692549 DOI: 10.1016/j.ijbiomac.2024.131864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
NanoLuc (NLuc) luciferase has found extensive application in designing a range of biological assays, including gene expression analysis, protein-protein interaction, and protein conformational changes due to its enhanced brightness and small size. However, questions related to its mechanism of interaction with the substrate, furimazine, as well as bioluminescence activity remain elusive. Here, we combined molecular dynamics (MD) simulation and mutational analysis to show that the R162A mutation results in a decreased but stable bioluminescence activity of NLuc in living cells and in vitro. Specifically, we performed multiple, all-atom, explicit solvent MD simulations of the apo and furimazine-docked (holo) NLuc structures revealing differential dynamics of the protein in the absence and presence of the ligand. Further, analysis of trajectories for hydrogen bonds (H-bonds) formed between NLuc and furimazine revealed substantial H-bond interaction between R162 and Q32 residues. Mutation of the two residues in NLuc revealed a decreased but stable activity of the R162A, but not Q32A, mutant NLuc in live cell and in vitro assays performed using lysates prepared from cells expressing the proteins and with the furimazine substrate. In addition to highlighting the role of the R162 residue in NLuc activity, we believe that the mutant NLuc will find wide application in designing in vitro assays requiring extended monitoring of NLuc bioluminescence activity. SIGNIFICANCE: Bioluminescence has been extensively utilized in developing a variety of biological and biomedical assays. In this regard, engineering of brighter bioluminescent proteins, i.e. luciferases, has played a significant role. This is acutely exemplified by the engineering of the NLuc luciferase, which is small in size and displays much enhanced bioluminescence and thermal stability compared to previously available luciferases. While enhanced bioluminescent activity is desirable in a multitude of biological and biomedical assays, it would also be useful to develop variants of the protein that display a prolonged bioluminescence activity. This is specifically relevant in designing assays that require bioluminescence for extended periods, such as in the case of biosensors designed for monitoring slow enzymatic or cellular signaling reactions, without necessitating multiple rounds of luciferase substrate addition or any specialized reagents that result in increased assay costs. In the current manuscript, we report a mutant NLuc that possesses a stable and prolonged bioluminescence activity, albeit lower than the wild-type NLuc, and envisage a wider application of the mutant NLuc in designing biosensors for monitoring slower biological and biomedical events.
Collapse
Affiliation(s)
- Wesam S Ahmed
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Anupriya M Geethakumari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asfia Sultana
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Angelin M Philip
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - S M Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
3
|
Xu Z, Zhang X, Pal C, Rozners E, Callahan BP. Enzyme Fragment Complementation Driven by Nucleic Acid Hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572427. [PMID: 38187717 PMCID: PMC10769296 DOI: 10.1101/2023.12.19.572427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A modified protein fragment complementation assay has been designed and validated as a gain-of-signal biosensor for nucleic acid:nucleic acid interactions. The assay uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified at their C-termini to steramers, sterol-modified oligodeoxynucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, served as a self-cleaving catalyst for these bioconjugations. In the presence of ssDNA or RNA with segments complementary to the steramers and adjacent to one another, the two NanoBiT fragments productively associate, reconstituting NanoBiT enzyme activity. NanoBiT luminescence in samples containing nM ssDNA or RNA template exceeded background by 30-fold and as high as 120-fold depending on assay conditions. A unique feature of this detection system is the absence of a self-labeling domain in the NanoBiT bioconjugates. Eliminating that extraneous bulk broadens the detection range from short oligos to full-length mRNA.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Chandan Pal
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Brian P. Callahan
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| |
Collapse
|
4
|
Sekhon H, Ha JH, Loh SN. Enhancing response of a protein conformational switch by using two disordered ligand binding domains. Front Mol Biosci 2023; 10:1114756. [PMID: 36936990 PMCID: PMC10018487 DOI: 10.3389/fmolb.2023.1114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Protein conformational switches are often constructed by fusing an input domain, which recognizes a target ligand, to an output domain that establishes a biological response. Prior designs have employed binding-induced folding of the input domain to drive a conformational change in the output domain. Adding a second input domain can in principle harvest additional binding energy for performing useful work. It is not obvious, however, how to fuse two binding domains to a single output domain such that folding of both binding domains combine to effect conformational change in the output domain. Methods: Here, we converted the ribonuclease barnase (Bn) to a switchable enzyme by duplicating a C-terminal portion of its sequence and appending it to its N-terminus, thereby establishing a native fold (OFF state) and a circularly permuted fold (ON state) that competed for the shared core in a mutually exclusive fashion. Two copies of FK506 binding protein (FKBP), both made unstable by the V24A mutation and one that had been circularly permuted, were inserted into the engineered barnase at the junctions between the shared and duplicated sequences. Results: Rapamycin-induced folding of FK506 binding protein stretched and unfolded the native fold of barnase via the mutually exclusive folding effect, and rapamycin-induced folding of permuted FK506 binding protein stabilized the permuted fold of barnase by the loop-closure entropy principle. These folding events complemented each other to turn on RNase function. The cytotoxic switching mechanism was validated in yeast and human cells, and in vitro with purified protein. Discussion: Thermodynamic modeling and experimental results revealed that the dual action of loop-closure entropy and mutually exclusive folding is analogous to an engine transmission in which loop-closure entropy acts as the low gear, providing efficient switching at low ligand concentrations, and mutually exclusive folding acts as the high gear to allow the switch to reach its maximum response at high ligand concentrations.
Collapse
|
5
|
Gräwe A, Merkx M. Bioluminescence Goes Dark: Boosting the Performance of Bioluminescent Sensor Proteins Using Complementation Inhibitors. ACS Sens 2022; 7:3800-3808. [PMID: 36450135 PMCID: PMC9791688 DOI: 10.1021/acssensors.2c01726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Bioluminescent sensor proteins have recently gained popularity in both basic research and point-of-care diagnostics. Sensor proteins based on intramolecular complementation of split NanoLuc are particularly attractive because their intrinsic modular design enables for systematic tuning of sensor properties. Here we show how the sensitivity of these sensors can be enhanced by the introduction of catalytically inactive variants of the small SmBiT subunit (DarkBiTs) as intramolecular inhibitors. Starting from previously developed bioluminescent antibody sensor proteins (LUMABS), we developed single component, biomolecular switches with a strongly reduced background signal for the detection of three clinically relevant antibodies, anti-HIV1-p17, cetuximab (CTX), and an RSV neutralizing antibody (101F). These new dark-LUMABS sensors showed 5-13-fold increases in sensitivity which translated into lower limits of detection. The use of DarkBiTs as competitive intramolecular inhibitor domains is not limited to the LUMABS sensor family and might be used to boost the performance of other bioluminescent sensor proteins based on split luciferase complementation.
Collapse
|
6
|
Sekhon H, Ha JH, Loh SN. Engineering protein and DNA tools for creating DNA-dependent protein switches. Methods Enzymol 2022; 675:1-32. [PMID: 36220266 PMCID: PMC10314797 DOI: 10.1016/bs.mie.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Switchable proteins are capable of changing conformations from inactive (OFF) to active (ON) forms in response to inputs such as ligand binding, pH or temperature change, or light absorption. A particularly powerful class of protein switches, exemplified by the Cas nucleases of CRISPR systems, are activated by binding of specific DNA or RNA sequences. The mechanism by which oligonucleotide binding regulates biological activity is complex and highly specialized in the case of Cas enzymes, but recent advancements in protein and DNA engineering have made it possible to introduce this mode of control into other enzymes. This chapter highlights recent examples of protein switches that combine these two fields of engineering for the purpose of creating biosensors that detect pathogen and other genomic sequences. One protein engineering method-alternate frame folding-has the potential to convert many proteins into ligand-activated switches by inserting a binding protein (input domain) into an enzyme (output domain). The steps for doing so are illustrated using GCN4 as a DNA recognition domain and nanoluciferase as a luminescent reporter that changes color as a result of DNA binding. DNA engineering protocols are included for creating DNA tools (de novo designed hairpins and modified aptamers), that enable the biosensor to be activated by arbitrary DNA/RNA sequences and small molecules/proteins, respectively. These methodologies can be applied to other proteins to gain control of their functions by DNA binding.
Collapse
Affiliation(s)
- Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|