1
|
Streif S, Baeumner AJ. Advances in Surrogate Neutralization Tests for High-Throughput Screening and the Point-of-Care. Anal Chem 2025; 97:5407-5423. [PMID: 40035475 PMCID: PMC11923957 DOI: 10.1021/acs.analchem.5c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Affiliation(s)
- Simon Streif
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Deenin W, Khongchareonporn N, Ruxrungtham K, Ketloy C, Hirankarn N, Wangkanont K, Rengpipat S, Yakoh A, Chaiyo S. Overlaid Lateral Flow Immunoassay for the Simultaneous Detection of Two Variant-Specific SARS-CoV-2 Neutralizing Antibodies. Anal Chem 2024; 96:5407-5415. [PMID: 38478766 PMCID: PMC11270523 DOI: 10.1021/acs.analchem.3c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
COVID-19 vaccines have been provided to the general public to build immunity since the 2019 coronavirus pandemic. Once vaccinated, SARS-CoV-2 neutralizing antibodies (NAbs-COVID-19) are needed for excellent protection against COVID-19. However, monitoring NAbs-COVID-19 is complicated and requires hospital visits. Moreover, the resulting NAbs-COVID-19 are effective against different strains of COVID-19 depending on the type of vaccine received. Here, an overlaid lateral flow immunoassay (O-LFIA) was developed for the simultaneous detection of two NAbs-COVID-19 against different virus strains, Delta and Omicron. The O-LFIA was visualized with two T-lines with a single device using competition between the free antigen and the antigen-binding antibody. Angiotensin-converting enzyme 2 (ACE2) immobilized on the T-line binds to the antigen remaining after antibody binding. Under the optimum conditions, the proposed device exhibited 50% inhibition concentrations (IC50 values) of 45.1 and 53.6 ng/mL for the Delta and Omicron variants, respectively. Additionally, the proposed platform was applied to real-world samples of animal and human serum, and the developed immunoassay provided results that were in good agreement with those obtained with the standard method. In conclusion, this developed O-LFIA can be used as an alternative method to detect NAbs-COVID-19 and can be enabled for future advancements toward commercialization.
Collapse
Affiliation(s)
- Wanwisa Deenin
- Program
in Biotechnology, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Institute
of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nanthika Khongchareonporn
- Institute
of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kiat Ruxrungtham
- Center
of Excellence in Vaccine Research and Development (Chula VRC), Faculty
of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Integrated
Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok 10330, Thailand
- Department
of Medicine, and School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chutitorn Ketloy
- Center
of Excellence in Vaccine Research and Development (Chula VRC), Faculty
of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Integrated
Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok 10330, Thailand
- Department
of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattiya Hirankarn
- Department
of Microbiology, Faculty of Medicine, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Kittikhun Wangkanont
- Center
of Excellence for Molecular Biology and Genomics of Shrimp, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Center
of Excellence for Molecular Crop, Department of Biochemistry, Faculty
of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Rengpipat
- Qualified
Diagnostic Development Center (QDD), Chulalongkorn
University, Bangkok 10330, Thailand
| | - Abdulhadee Yakoh
- Institute
of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sudkate Chaiyo
- Institute
of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Schobesberger S, Thumfart H, Selinger F, Spitz S, Gonzalez C, Pei L, Poglitsch M, Ertl P. Application of a Biomimetic Nanoparticle-Based Mock Virus to Determine SARS-CoV-2 Neutralizing Antibody Levels in Blood Samples Using a Lateral Flow Assay. Anal Chem 2024. [PMID: 38334364 PMCID: PMC10882572 DOI: 10.1021/acs.analchem.3c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The presence of neutralizing antibodies against SARS-CoV-2 in blood, acquired through previous infection or vaccination, is known to prevent the (re)occurrence of outbreaks unless the virus mutates. Therefore, the measurement of neutralizing antibodies constitutes an indispensable tool in assessing an individual's and a population's immunity against SARS-CoV-2. For this reason, we have developed an innovative lateral flow assay (LFA) capable of detecting blood-derived neutralizing antibodies using a biomimetic SARS-CoV-2 mock virus system. Here, functionalized gold nanoparticles (AuNPs) featuring the trimeric spike (S) protein at its surface imitate the virus's structure and are applied to monitor the presence and efficacy of neutralizing antibodies in blood samples. The detection principle relies on the interaction between mock virus and the immobilized angiotensin-converting enzyme 2 (ACE2) receptor, which is inhibited when neutralizing antibodies are present. To further enhance the sensitivity of our competitive assay and identify low titers of neutralizing antibodies, an additional mixing pad is embedded into the device to increase the interaction time between mock virus and neutralizing antibodies. The developed LFA is benchmarked against the WHO International Standard (21/338) and demonstrated reliable quantification of neutralizing antibodies that inhibit ACE2 binding events down to a detection limit of an antibody titer of 59 IU/mL. Additional validation using whole blood and plasma samples showed reproducible results and good comparability to a laboratory-based reference test, thus highlighting its applicability for point-of-care testing.
Collapse
Affiliation(s)
| | - Helena Thumfart
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Florian Selinger
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Sarah Spitz
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | | | - Lei Pei
- Covirabio GmbH, Brehmstraße 14a, 1110 Vienna, Austria
| | | | - Peter Ertl
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
4
|
Stoddard M, Yuan L, Sarkar S, Mangalaganesh S, Nolan RP, Bottino D, Hather G, Hochberg NS, White LF, Chakravarty A. Heterogeneity in Vaccinal Immunity to SARS-CoV-2 Can Be Addressed by a Personalized Booster Strategy. Vaccines (Basel) 2023; 11:806. [PMID: 37112718 PMCID: PMC10140995 DOI: 10.3390/vaccines11040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
SARS-CoV-2 vaccinations were initially shown to substantially reduce risk of severe disease and death. However, pharmacokinetic (PK) waning and rapid viral evolution degrade neutralizing antibody (nAb) binding titers, causing loss of vaccinal protection. Additionally, there is inter-individual heterogeneity in the strength and durability of the vaccinal nAb response. Here, we propose a personalized booster strategy as a potential solution to this problem. Our model-based approach incorporates inter-individual heterogeneity in nAb response to primary SARS-CoV-2 vaccination into a pharmacokinetic/pharmacodynamic (PK/PD) model to project population-level heterogeneity in vaccinal protection. We further examine the impact of evolutionary immune evasion on vaccinal protection over time based on variant fold reduction in nAb potency. Our findings suggest viral evolution will decrease the effectiveness of vaccinal protection against severe disease, especially for individuals with a less durable immune response. More frequent boosting may restore vaccinal protection for individuals with a weaker immune response. Our analysis shows that the ECLIA RBD binding assay strongly predicts neutralization of sequence-matched pseudoviruses. This may be a useful tool for rapidly assessing individual immune protection. Our work suggests vaccinal protection against severe disease is not assured and identifies a potential path forward for reducing risk to immunologically vulnerable individuals.
Collapse
Affiliation(s)
| | - Lin Yuan
- Fractal Therapeutics, Lexington, MA 02420, USA
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03755, USA
| | - Shruthi Mangalaganesh
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | | | - Dean Bottino
- Takeda Pharmaceuticals, Cambridge, MA 02139, USA
| | | | - Natasha S. Hochberg
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02215, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
- Boston Medical Center, Boston, MA 02118, USA
| | - Laura F. White
- School of Public Health, Boston University, Boston, MA 02118, USA
| | | |
Collapse
|
5
|
Green EA, Hamaker NK, Lee KH. Comparison of vector elements and process conditions in transient and stable suspension HEK293 platforms using SARS-CoV-2 receptor binding domain as a model protein. BMC Biotechnol 2023; 23:7. [PMID: 36882740 PMCID: PMC9990576 DOI: 10.1186/s12896-023-00777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Mammalian cell lines are frequently used as protein expression hosts because of their ability to correctly fold and assemble complex proteins, produce them at high titers, and confer post-translational modifications (PTMs) critical to proper function. Increasing demand for proteins with human-like PTMs, particularly viral proteins and vectors, have made human embryonic kidney 293 (HEK293) cells an increasingly popular host. The need to engineer more productive HEK293 platforms and the ongoing nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented an opportunity to study strategies to improve viral protein expression in transient and stable HEK293 platforms. RESULTS Initial process development was done at 24 deep well plate (DWP) -scale to screen transient processes and stable clonal cell lines for recombinant SARS-CoV-2 receptor binding domain (rRBD) titer. Nine DNA vectors that drove rRBD production under different promoters and optionally contained Epstein-Barr virus (EBV) elements to promote episomal expression were screened for transient rRBD production at 37 °C or 32 °C. Use of the cytomegalovirus (CMV) promoter to drive expression at 32 °C led to the highest transient protein titers, but inclusion of episomal expression elements did not augment titer. In parallel, four clonal cell lines with titers higher than that of the selected stable pool were identified in a batch screen. Flask-scale transient transfection and stable fed-batch processes were then established that produced rRBD up to 100 mg/L and 140 mg/L, respectively. While a bio-layer interferometry (BLI) assay was crucial for efficiently screening DWP batch titers, an enzyme-linked immunosorbent assay (ELISA) was used to compare titers from the flask-scale batches due to varying matrix effects from different cell culture media compositions. CONCLUSION Comparing yields from the flask-scale batches revealed that stable fed-batch cultures produced up to 2.1x more rRBD than transient processes. The stable cell lines developed in this work are the first reported clonal, HEK293-derived rRBD producers and have titers up to 140 mg/L. As stable production platforms are more economically favorable for long-term protein production at large scales, investigation of strategies to increase the efficiency of high-titer stable cell line generation in Expi293F or other HEK293 hosts is warranted.
Collapse
Affiliation(s)
- Erica A Green
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA
| | - Nathaniel K Hamaker
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA.
| |
Collapse
|
6
|
Streif S, Neckermann P, Spitzenberg C, Weiss K, Hoecherl K, Kulikowski K, Hahner S, Noelting C, Einhauser S, Peterhoff D, Asam C, Wagner R, Baeumner AJ. Liposome-based high-throughput and point-of-care assays toward the quick, simple, and sensitive detection of neutralizing antibodies against SARS-CoV-2 in patient sera. Anal Bioanal Chem 2023; 415:1421-1435. [PMID: 36754874 PMCID: PMC9909147 DOI: 10.1007/s00216-023-04548-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in 2019 caused an increased interest in neutralizing antibody tests to determine the immune status of the population. Standard live-virus-based neutralization assays such as plaque-reduction assays or pseudovirus neutralization tests cannot be adapted to the point-of-care (POC). Accordingly, tests quantifying competitive binding inhibition of the angiotensin-converting enzyme 2 (ACE2) receptor to the receptor-binding domain (RBD) of SARS-CoV-2 by neutralizing antibodies have been developed. Here, we present a new platform using sulforhodamine B encapsulating liposomes decorated with RBD as foundation for the development of both a fluorescent, highly feasible high-throughput (HTS) and a POC-ready neutralizing antibody assay. RBD-conjugated liposomes are incubated with serum and subsequently immobilized in an ACE2-coated plate or mixed with biotinylated ACE2 and used in test strip with streptavidin test line, respectively. Polyclonal neutralizing human antibodies were shown to cause complete binding inhibition, while S309 and CR3022 human monoclonal antibodies only caused partial inhibition, proving the functionality of the assay. Both formats, the HTS and POC assay, were then tested using 20 sera containing varying titers of neutralizing antibodies, and a control panel of sera including prepandemic sera and reconvalescent sera from respiratory infections other than SARS-CoV-2. Both assays correlated well with a standard pseudovirus neutralization test (r = 0.847 for HTS and r = 0.614 for POC format). Furthermore, excellent correlation (r = 0.868) between HTS and POC formats was observed. The flexibility afforded by liposomes as signaling agents using different dyes and sizes can hence be utilized in the future for a broad range of multianalyte neutralizing antibody diagnostics.
Collapse
Affiliation(s)
- Simon Streif
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Clemens Spitzenberg
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Katharina Weiss
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Kilian Hoecherl
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Kacper Kulikowski
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Sonja Hahner
- Mikrogen GmbH, Floriansbogen 2-4, 82061, Neuried, Germany
| | | | - Sebastian Einhauser
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Asam
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany.
| |
Collapse
|