1
|
Tzekaki E, Bekiari C, Pantazaki A, Tsantarliotou M, Tsolaki M, Lavrentiadou SN. A new protocol for the development of organoids based on molecular mechanisms in the developing newborn rat brain: Prospective applications in the study of Alzheimer's disease. J Neurosci Methods 2025; 417:110404. [PMID: 39978482 DOI: 10.1016/j.jneumeth.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Brain organoids have emerged as powerful models for studying brain development and neurological disorders COMPARISON WITH EXISTING METHODS: Current models rely on stem cell isolation and differentiation using different growth factors. Thus, their composition varies according to the protocol followed. NEW METHOD We developed a simple protocol to generate organoids from newborn rat whole brain. It is a one-step procedure that yields organoids of consistent composition. The whole brains from 3-day old pups were digested enzymatically. All isolated cells were seeded in culture plates using a basement membrane extract (BME) matrix as a scaffold and cultured in the presence of the appropriate medium. RESULTS Hematoxylin-eosin staining of 28-day-old cultured domes revealed their structural integrity, while immunohistochemistry confirmed the presence of neurons, astrocytes, microglia, and progenitor stem cells in the structures. To assess whether these organoids can serve as a model to study brain physiopathology, and in particular neurodegenerative diseases such as Alzheimer's disease (AD), we determined how these organoids respond upon their exposure to lipopolysaccharides (LPS), a potent neuroinflammatory factor. LPS-induced amyloid precursor protein (APP), tau protein and glial fibrillary acidic protein (GFAP) expression. Moreover, the intracellular levels of IL-1β and the extracellular levels of amyloid-beta (Aβ) were also elevated. CONCLUSIONS Therefore, this simple protocol results in the generation of functional brain organoids with a consistent structure, that requires no use of varying factors that may affect the structure and function of the produced organoids, thus providing a valuable tool for the study of the physiopathology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Eleni Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Chryssa Bekiari
- Laboratory of Anatomy and Histology School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Maria Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| | - Magda Tsolaki
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Sophia N Lavrentiadou
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece; Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
2
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Morito T, Watamura N, Sasaguri H, Tomita T, Higuchi M, Okano H, Sasaki E, Saido TC. Experimental basis for generating nonhuman primate models of frontotemporal dementia and Alzheimer's disease. J Alzheimers Dis 2025; 104:955-962. [PMID: 40025729 DOI: 10.1177/13872877251321116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
To our knowledge, no reports have described nonhuman primate (NHP) models of frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) that do not depend on an overexpression paradigm. Based on our recent success in generating single human MAPT knock-in mouse models of FTDP-17, we describe the experimental basis for generating knock-in marmoset models of FTDP-17. In addition, successful generation of mutant PSEN1 knock-in marmoset models lacking exon 9 (PSEN1-Δ9) of Alzheimer's disease (AD) indicates that we will be able to reconstitute two major pathological features of AD, i.e., amyloid plaques and neurofibrillary tangles, in an accelerated manner by combining these models.
Collapse
Affiliation(s)
| | - Naoto Watamura
- RIKEN Center for Brain Science, Wako, Japan
- UK Dementia Research Institute, University College London, London, UK
| | | | - Taisuke Tomita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Higuchi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hideyuki Okano
- RIKEN Center for Brain Science, Wako, Japan
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Erika Sasaki
- Central Institute for Experimental Medicine and Life Science, Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
4
|
Yamagami K, Samata B, Doi D, Tsuchimochi R, Kikuchi T, Amimoto N, Ikeda M, Yoshimoto K, Takahashi J. Progranulin enhances the engraftment of transplanted human iPS cell-derived cerebral neurons. Stem Cells Transl Med 2024; 13:1113-1128. [PMID: 39340829 PMCID: PMC11555480 DOI: 10.1093/stcltm/szae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cerebral organoids (COs) in cell replacement therapy offer a viable approach to reconstructing neural circuits for individuals suffering from stroke or traumatic brain injuries. Successful transplantation relies on effective engraftment and neurite extension from the grafts. Earlier research has validated the effectiveness of delaying the transplantation procedure by 1 week. Here, we hypothesized that brain tissues 1 week following a traumatic brain injury possess a more favorable environment for cell transplantation when compared to immediately after injury. We performed a transcriptomic comparison to differentiate gene expression between these 2 temporal states. In controlled in vitro conditions, recombinant human progranulin (rhPGRN) bolstered the survival rate of dissociated neurons sourced from human induced pluripotent stem cell-derived COs (hiPSC-COs) under conditions of enhanced oxidative stress. This increase in viability was attributable to a reduction in apoptosis via Akt phosphorylation. In addition, rhPGRN pretreatment before in vivo transplantation experiments augmented the engraftment efficiency of hiPSC-COs considerably and facilitated neurite elongation along the host brain's corticospinal tracts. Subsequent histological assessments at 3 months post-transplantation revealed an elevated presence of graft-derived subcerebral projection neurons-crucial elements for reconstituting neural circuits-in the rhPGRN-treated group. These outcomes highlight the potential of PGRN as a neurotrophic factor suitable for incorporation into hiPSC-CO-based cell therapies.
Collapse
Affiliation(s)
- Keitaro Yamagami
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Bumpei Samata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ryosuke Tsuchimochi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Naoya Amimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumi Ikeda
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Nishimura K, Osaki H, Tezuka K, Nakashima D, Numata S, Masamizu Y. Recent advances and applications of human brain models. Front Neural Circuits 2024; 18:1453958. [PMID: 39161368 PMCID: PMC11330844 DOI: 10.3389/fncir.2024.1453958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Recent advances in human pluripotent stem cell (hPSC) technologies have prompted the emergence of new research fields and applications for human neurons and brain organoids. Brain organoids have gained attention as an in vitro model system that recapitulates the higher structure, cellular diversity and function of the brain to explore brain development, disease modeling, drug screening, and regenerative medicine. This progress has been accelerated by abundant interactions of brain organoid technology with various research fields. A cross-disciplinary approach with human brain organoid technology offers a higher-ordered advance for more accurately understanding the human brain. In this review, we summarize the status of neural induction in two- and three-dimensional culture systems from hPSCs and the modeling of neurodegenerative diseases using brain organoids. We also highlight the latest bioengineered technologies for the assembly of spatially higher-ordered neural tissues and prospects of brain organoid technology toward the understanding of the potential and abilities of the human brain.
Collapse
Affiliation(s)
- Kaneyasu Nishimura
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Chen B, Du C, Wang M, Guo J, Liu X. Organoids as preclinical models of human disease: progress and applications. MEDICAL REVIEW (2021) 2024; 4:129-153. [PMID: 38680680 PMCID: PMC11046574 DOI: 10.1515/mr-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
In the field of biomedical research, organoids represent a remarkable advancement that has the potential to revolutionize our approach to studying human diseases even before clinical trials. Organoids are essentially miniature 3D models of specific organs or tissues, enabling scientists to investigate the causes of diseases, test new drugs, and explore personalized medicine within a controlled laboratory setting. Over the past decade, organoid technology has made substantial progress, allowing researchers to create highly detailed environments that closely mimic the human body. These organoids can be generated from various sources, including pluripotent stem cells, specialized tissue cells, and tumor tissue cells. This versatility enables scientists to replicate a wide range of diseases affecting different organ systems, effectively creating disease replicas in a laboratory dish. This exciting capability has provided us with unprecedented insights into the progression of diseases and how we can develop improved treatments. In this paper, we will provide an overview of the progress made in utilizing organoids as preclinical models, aiding our understanding and providing a more effective approach to addressing various human diseases.
Collapse
Affiliation(s)
- Baodan Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cijie Du
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Guo
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
7
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
8
|
Supakul S, Murakami R, Oyama C, Shindo T, Hatakeyama Y, Itsuno M, Bannai H, Shibata S, Maeda S, Okano H. Mutual interaction of neurons and astrocytes derived from iPSCs with APP V717L mutation developed the astrocytic phenotypes of Alzheimer's disease. Inflamm Regen 2024; 44:8. [PMID: 38419091 PMCID: PMC10900748 DOI: 10.1186/s41232-023-00310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/22/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The development of induced pluripotent stem cells (iPSCs) technology has enabled human cellular disease modeling for inaccessible cell types, such as neural cells in the brain. However, many of the iPSC-derived disease models established to date typically involve only a single cell type. These monoculture models are inadequate for accurately simulating the brain environment, where multiple cell types interact. The limited cell type diversity in monoculture models hinders the accurate recapitulation of disease phenotypes resulting from interactions between different cell types. Therefore, our goal was to create cell models that include multiple interacting cell types to better recapitulate disease phenotypes. METHODS To establish a co-culture model of neurons and astrocytes, we individually induced neurons and astrocytes from the same iPSCs using our novel differentiation methods, and then co-cultured them. We evaluated the effects of co-culture on neurons and astrocytes using immunocytochemistry, immuno-electron microscopy, and Ca2+ imaging. We also developed a co-culture model using iPSCs from a patient with familial Alzheimer's disease (AD) patient (APP V717L mutation) to investigate whether this model would manifest disease phenotypes not seen in the monoculture models. RESULTS The co-culture of the neurons and astrocytes increased the branching of astrocyte processes, the number of GFAP-positive cells, neuronal activities, the number of synapses, and the density of presynaptic vesicles. In addition, immuno-electron microscopy confirmed the formation of a tripartite synaptic structure in the co-culture model, and inhibition of glutamate transporters increased neuronal activity. Compared to the co-culture model of the control iPSCs, the co-culture model of familial AD developed astrogliosis-like phenotype, which was not observed in the monoculture model of astrocytes. CONCLUSIONS Co-culture of iPSC-derived neurons and astrocytes enhanced the morphological changes mimicking the in vivo condition of both cell types. The formation of the functional tripartite synaptic structures in the co-culture model suggested the mutual interaction between the cells. Furthermore, the co-culture model with the APP V717L mutation expressed in neurons exhibited an astrocytic phenotype reminiscent of AD brain pathology. These results suggest that our co-culture model is a valuable tool for disease modeling of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Chisato Oyama
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuki Hatakeyama
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Maika Itsuno
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroko Bannai
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Sumihiro Maeda
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
9
|
Cerneckis J, Shi Y. Myelin organoids for the study of Alzheimer's disease. Front Neurosci 2023; 17:1283742. [PMID: 37942133 PMCID: PMC10628225 DOI: 10.3389/fnins.2023.1283742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
10
|
Hu J, Sha W, Yuan S, Wu J, Huang Y. Aggregation, Transmission, and Toxicity of the Microtubule-Associated Protein Tau: A Complex Comprehension. Int J Mol Sci 2023; 24:15023. [PMID: 37834471 PMCID: PMC10573976 DOI: 10.3390/ijms241915023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
Collapse
Affiliation(s)
- Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Wenchi Sha
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Shuangshuang Yuan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
11
|
Pomeshchik Y, Velasquez E, Gil J, Klementieva O, Gidlöf R, Sydoff M, Bagnoli S, Nacmias B, Sorbi S, Westergren-Thorsson G, Gouras GK, Rezeli M, Roybon L. Proteomic analysis across patient iPSC-based models and human post-mortem hippocampal tissue reveals early cellular dysfunction and progression of Alzheimer's disease pathogenesis. Acta Neuropathol Commun 2023; 11:150. [PMID: 37715247 PMCID: PMC10504768 DOI: 10.1186/s40478-023-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
The hippocampus is a primary region affected in Alzheimer's disease (AD). Because AD postmortem brain tissue is not available prior to symptomatic stage, we lack understanding of early cellular pathogenic mechanisms. To address this issue, we examined the cellular origin and progression of AD pathogenesis by comparing patient-based model systems including iPSC-derived brain cells transplanted into the mouse brain hippocampus. Proteomic analysis of the graft enabled the identification of pathways and network dysfunction in AD patient brain cells, associated with increased levels of Aβ-42 and β-sheet structures. Interestingly, the host cells surrounding the AD graft also presented alterations in cellular biological pathways. Furthermore, proteomic analysis across human iPSC-based models and human post-mortem hippocampal tissue projected coherent longitudinal cellular changes indicative of early to end stage AD cellular pathogenesis. Our data showcase patient-based models to study the cell autonomous origin and progression of AD pathogenesis.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden.
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden.
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden.
| | - Erika Velasquez
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, BMC D13, Lund University, 22184, Lund, Sweden
| | - Oxana Klementieva
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Medical Micro-Spectroscopy, Department of Experimental Medical Science, BMC B10, Lund University, 22184, Lund, Sweden
| | - Ritha Gidlöf
- Lund University BioImaging Centre, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Marie Sydoff
- Lund University BioImaging Centre, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Silvia Bagnoli
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sandro Sorbi
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Gunilla Westergren-Thorsson
- Department of Experimental Medical Science, BMC C12, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Gunnar K Gouras
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, 22184, Lund, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, BMC D13, Lund University, 22184, Lund, Sweden
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, 22184, Lund, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden.
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden.
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden.
- Department of Neurodegenerative Science, The MiND Program, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
12
|
Waheed Z, Choudhary J, Jatala FH, Fatimah, Noor A, Zerr I, Zafar S. The Role of Tau Proteoforms in Health and Disease. Mol Neurobiol 2023; 60:5155-5166. [PMID: 37266762 DOI: 10.1007/s12035-023-03387-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Tau is a microtubule-associated binding protein in the nervous system that is known for its role in stabilizing microtubules throughout the nerve cell. It accumulates as β-sheet-rich aggregates and neurofibrillary tangles, leading to an array of different pathologies. Six splice variants of this protein, generated from the microtubule-associated protein tau (MAPT) gene, are expressed in the brain. Amongst these variants, 0N3R, is prominent during fetal development, while the rest, 0N4R, 1N3R, 1N4R, 2N3R, and 2N4R, are expressed in postnatal stages. Tau isoforms play their role separately or in combination with others to contribute to one or multiple neurodegenerative disorders and clinical syndromes. For instance, in Alzheimer's disease and a subset of frontotemporal lobar degeneration (FTLD)-MAPT (i.e., R406W and V337M), both 3R and 4R isoforms are involved; therefore, they are called 3R/4R mix tauopathies. On the other hand, 4R isoforms are aggregated in progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and a majority of FTLD-MAPT and these diseases are called 4R tauopathies. Similarly, Pick's disease has an association with 3R tau isoforms and is thereby referred to as 3R tauopathy. Unlike 3R isoforms, the 4R variants have a faster rate of aggregation that accelerates the associated neurodegenerative mechanisms. Moreover, post-translational modifications of each isoform occur at a different rate and dictate their physiological and pathological attributes. The smallest tau isoform (0N3R) is highly phosphorylated in the fetal brain but does not lead to the generation of aggregates. On the other hand, proteoforms in the adult human brain undergo aggregation upon their phosphorylation and glycation. Expanding on this knowledge, this article aims to review the physiological and pathological roles of tau isoforms and their underlying mechanisms that result in neurological deficits. Physiological and pathological relevance of microtubule-associated protein tau (MAPT): Tau exists as six splice variants in the brain, each differing with respect to expression, post-translational modifications (PTMs), and aggregation kinetics. Physiologically, they are involved in the stabilization of microtubules that form the molecular highways for axonal transport. However, an imbalance in their expression and the associated PTMs leads to a disruption in their physiological function through the formation of neurofibrillary tangles that accumulate in various regions of the brain and contribute to several types of tauopathies.
Collapse
Affiliation(s)
- Zuha Waheed
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Jawaria Choudhary
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Faria Hasan Jatala
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Fatimah
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Aneeqa Noor
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan.
| | - Inga Zerr
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Saima Zafar
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
13
|
Rayman JB. Focusing on oligomeric tau as a therapeutic target in Alzheimer's disease and other tauopathies. Expert Opin Ther Targets 2023:1-11. [PMID: 37140480 DOI: 10.1080/14728222.2023.2206561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Tau has commanded much attention as a potential therapeutic target in neurodegenerative diseases. Tau pathology is a hallmark of primary tauopathies, such as progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and subtypes of frontotemporal dementia (FTD), as well as secondary tauopathies, such as Alzheimer's disease (AD). The development of tau therapeutics must reconcile with the structural complexity of the tau proteome, as well as an incomplete understanding of the role of tau in both physiology and disease. AREAS COVERED This review offers a current perspective on tau biology, discusses key barriers to the development of effective tau-based therapeutics, and promotes the idea that pathogenic (as opposed to merely pathological) tau should be at the center of drug development efforts. EXPERT OPINION An efficacious tau therapeutic will exhibit several primary features: 1) selectivity for pathogenic tau versus other tau species; 2) blood-brain barrier and cell membrane permeability, enabling access to intracellular tau in disease-relevant brain regions; and 3) minimal toxicity. Oligomeric tau is proposed as a major pathogenic form of tau and a compelling drug target in tauopathies.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Medicine, Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|