1
|
Vanderlip CR, Jutras ML, Asch PA, Zhu SY, Lerma MN, Buffalo EA, Glavis-Bloom C. Parallel patterns of age-related working memory impairment in marmosets and macaques. Aging (Albany NY) 2025; 17:778-797. [PMID: 40131878 PMCID: PMC11984434 DOI: 10.18632/aging.206225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
As humans age, some experience cognitive impairment while others do not. When impairment does occur, it is not expressed uniformly across cognitive domains and varies in severity across individuals. Translationally relevant model systems are critical for understanding the neurobiological drivers of this variability, which is essential to uncovering the mechanisms underlying the brain's susceptibility to the effects of aging. As such, non-human primates (NHPs) are particularly important due to shared behavioral, neuroanatomical, and age-related neuropathological features with humans. For many decades, macaque monkeys have served as the primary NHP model for studying the neurobiology of cognitive aging. More recently, the common marmoset has emerged as an advantageous model for this work due to its short lifespan that facilitates longitudinal studies. Despite their growing popularity as a model, whether marmosets exhibit patterns of age-related cognitive impairment comparable to those observed in macaques and humans remains unexplored. To address this major limitation for the development and evaluation of the marmoset as a model of cognitive aging, we directly compared working memory ability as a function of age in macaques and marmosets on the identical task. We also implemented varying delays to further tax working memory capacity. Our findings demonstrate that marmosets and macaques exhibit remarkably similar age-related working memory deficits, with macaques performing better than marmosets on longer delays. These results highlight the similarities and differences between the two most commonly used NHP models and support the value of the marmoset as a model for cognitive aging research within the neuroscience community.
Collapse
Affiliation(s)
- Casey R. Vanderlip
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Megan L. Jutras
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Payton A. Asch
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Stephanie Y. Zhu
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Monica N. Lerma
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth A. Buffalo
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Javitt DC. Xanomeline-Trospium Treatment of Cognitive Impairments of Schizophrenia: Hope for Some, or Hope for All? Am J Psychiatry 2025; 182:237-239. [PMID: 40022530 DOI: 10.1176/appi.ajp.20241187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, and Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| |
Collapse
|
3
|
Dean B. IUPHAR Review on muscarinic M1 and M4 receptors as drug treatment targets relevant to the molecular pathology of schizophrenia. Pharmacol Res 2024; 210:107510. [PMID: 39566671 DOI: 10.1016/j.phrs.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cobenfy, a co-formulation of xanomeline and trospium, is the first drug not acting on the dopaminergic system of the CNS approved for the treatment of schizophrenia by the FDA. Xanomeline is a muscarinic M1 and M4 receptor (CHRM1 and CHRM4) agonist whilst trospium is a peripherally active CHRM antagonist that reduces the unwanted peripheral side-effects of xanomeline. Relevant to this exciting development, this review details the human CNS cholinergic systems and how those systems are affected by the molecular pathology of schizophrenia in a way suggesting activating the CHRM1 and 4 would be beneficial in treating the disorder. The CNS distribution of CHRMs is presented along with findings using CHRM knockout mice and mice treated with drugs that activate the CHRM1 and / or M4, these data explain why these CHRMs could be involved in the genesis of the symptoms of schizophrenia. Next, the process leading to the formulation of Cobenfy and the preclinical data on xanomeline are reviewed showing why Cobenfy was expected to be useful in treating schizophrenia. The pipeline of drugs targeting CHRM1 and /or M4 receptors to treat schizophrenia are discussed. Finally, the molecular pathology of two sub-groups within schizophrenia, separated based on the presence or absence of a deficit of cortical CHRM1, are reviewed to show how such approaches could identify new drug targets. In conclusion, the history of the development of Cobenfy highlights how a growing understanding the pathophysiology of schizophrenia will suggest new treatment targets for the disorder and that pharmacologists can synthesise drugs to target these sites.
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Moyano P, Guzmán G, Flores A, García J, Guerra-Menéndez L, Sanjuan J, Plaza JC, Abascal L, Mateo O, Del Pino J. Thyroid Hormone Neuroprotection Against Perfluorooctane Sulfonic Acid Cholinergic and Glutamatergic Disruption and Neurodegeneration Induction. Biomedicines 2024; 12:2441. [PMID: 39595009 PMCID: PMC11591898 DOI: 10.3390/biomedicines12112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Perfluorooctane sulfonic acid (PFOS), a widely used industrial chemical, was reported to induce memory and learning process dysfunction. Some studies tried to reveal the mechanisms that mediate these effects, but how they are produced is still unknown. Basal forebrain cholinergic neurons (BFCN) maintain cognitive function and their selective neurodegeneration induces cognitive decline, as observed in Alzheimer's disease. PFOS was reported to disrupt cholinergic and glutamatergic transmissions and thyroid hormone action, which regulate cognitive processes and maintain BFCN viability. Objective/Methods: To evaluate PFOS neurodegenerative effects on BFCN and the mechanisms that mediate them, SN56 cells (a neuroblastoma cholinergic cell line from the basal forebrain) were treated with PFOS (0.1 µM to 40 µM) with or without thyroxine (T3; 15 nM), MK-801 (20 µM) or acetylcholine (ACh; 10 µM). Results: In the present study, we found that PFOS treatment (1 or 14 days) decreased thyroid receptor α (TRα) activity by decreasing its protein levels and increased T3 metabolism through increased deiodinase 3 (D3) levels. Further, we observed that PFOS treatment disrupted cholinergic transmission by decreasing ACh content through decreased choline acetyltransferase (ChAT) activity and protein levels and through decreasing muscarinic receptor 1 (M1R) binding and protein levels. PFOS also disrupted glutamatergic transmission by decreasing glutamate content through increased glutaminase activity and protein levels and through decreasing N-methyl-D-aspartate receptor subunit 1 (NMDAR1); effects mediated through M1R disruption. All these effects were mediated through decreased T3 activity and T3 supplementation partially restored to the normal state. Conclusions: These findings may assist in understanding how PFOS induces neurodegeneration, and the mechanisms involved, especially in BFCN, to explain the process that could lead to cognitive dysfunction and provide new therapeutic tools to treat and prevent its neurotoxic effects.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gabriela Guzmán
- Departamento de Ciencias Meìdicas Baìsicas, Facultad de Medicina, Universidad San Pablo-CEU, Urbanizacioìn Montepriìncipe, 28660 Boadilla del Monte, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Departamento de Ciencias Meìdicas Baìsicas, Facultad de Medicina, Universidad San Pablo-CEU, Urbanizacioìn Montepriìncipe, 28660 Boadilla del Monte, Spain
| | - Javier Sanjuan
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Carlos Plaza
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Luisa Abascal
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Olga Mateo
- Department of Surgery, Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Dean B. Muscarinic M1 and M4 receptor agonists for schizophrenia: promising candidates for the therapeutic arsenal. Expert Opin Investig Drugs 2023; 32:1113-1121. [PMID: 37994870 DOI: 10.1080/13543784.2023.2288074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION Successful phase 3 trials of KarXT in people with schizophrenia herald a new era of treating the disorder with drugs that do not target the dopamine D2 receptor. The active component of KarXT is xanomeline, a muscarinic (CHRM) M1 and M4 agonist, making muscarinic receptors a viable target for treating schizophrenia. AREAS COVERED This review covers the process of taking drugs that activate the muscarinic M1 and M4 receptors from conceptualization to the clinic and details the mechanisms by which activating the CHRM1 and 4 can affect the broad spectrum of symptoms experienced by people with schizophrenia. EXPERT OPINION Schizophrenia is a syndrome which means drugs that activate muscarinic M1 and M4 receptors, as was the case for antipsychotic drugs acting on the dopamine D2 receptor, will not give optimal outcomes in everyone within the syndrome. Thus, it would be ideal to identify people who are responsive to drugs activating the CHRM1 and 4. Given knowledge of the actions of these receptors, it is possible treatment non-response could be restricted to sub-groups within the syndrome who have deficits in cortical CHRM1 or those with one of the cognitive endophenotypes that may be identifiable by changes in the blood transcriptome.
Collapse
Affiliation(s)
- Brian Dean
- The Synaptic Biology and Cognition Laboratory, The Florey, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Dean B, Bakker G, Ueda HR, Tobin AB, Brown A, Kanaan RAA. A growing understanding of the role of muscarinic receptors in the molecular pathology and treatment of schizophrenia. Front Cell Neurosci 2023; 17:1124333. [PMID: 36909280 PMCID: PMC9992992 DOI: 10.3389/fncel.2023.1124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Pre-clinical models, postmortem and neuroimaging studies all support a role for muscarinic receptors in the molecular pathology of schizophrenia. From these data it was proposed that activation of the muscarinic M1 and/or M4 receptor would reduce the severity of the symptoms of schizophrenia. This hypothesis is now supported by results from two clinical trials which indicate that activating central muscarinic M1 and M4 receptors can reduce the severity of positive, negative and cognitive symptoms of the disorder. This review will provide an update on a growing body of evidence that argues the muscarinic M1 and M4 receptors have critical roles in CNS functions that are dysregulated by the pathophysiology of schizophrenia. This realization has been made possible, in part, by the growing ability to visualize and quantify muscarinic M1 and M4 receptors in the human CNS using molecular neuroimaging. We will discuss how these advances have provided evidence to support the notion that there is a sub-group of patients within the syndrome of schizophrenia that have a unique molecular pathology driven by a marked loss of muscarinic M1 receptors. This review is timely, as drugs targeting muscarinic receptors approach clinical use for the treatment of schizophrenia and here we outline the background biology that supported development of such drugs to treat the disorder.
Collapse
Affiliation(s)
- Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Andrew B Tobin
- Advanced Research Centre (ARC), School of Molecular Bioscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Richard A A Kanaan
- Department of Psychiatry, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
7
|
Fisher VL, Ortiz LS, Powers AR. A computational lens on menopause-associated psychosis. Front Psychiatry 2022; 13:906796. [PMID: 35990063 PMCID: PMC9381820 DOI: 10.3389/fpsyt.2022.906796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Psychotic episodes are debilitating disease states that can cause extreme distress and impair functioning. There are sex differences that drive the onset of these episodes. One difference is that, in addition to a risk period in adolescence and early adulthood, women approaching the menopause transition experience a second period of risk for new-onset psychosis. One leading hypothesis explaining this menopause-associated psychosis (MAP) is that estrogen decline in menopause removes a protective factor against processes that contribute to psychotic symptoms. However, the neural mechanisms connecting estrogen decline to these symptoms are still not well understood. Using the tools of computational psychiatry, links have been proposed between symptom presentation and potential algorithmic and biological correlates. These models connect changes in signaling with symptom formation by evaluating changes in information processing that are not easily observable (latent states). In this manuscript, we contextualize the observed effects of estrogen (decline) on neural pathways implicated in psychosis. We then propose how estrogen could drive changes in latent states giving rise to cognitive and psychotic symptoms associated with psychosis. Using computational frameworks to inform research in MAP may provide a systematic method for identifying patient-specific pathways driving symptoms and simultaneously refine models describing the pathogenesis of psychosis across all age groups.
Collapse
Affiliation(s)
- Victoria L Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| | - Liara S Ortiz
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|