1
|
Sorrentino C, Ciummo SL, Fieni C, Di Carlo E. Nanomedicine for cancer patient-centered care. MedComm (Beijing) 2024; 5:e767. [PMID: 39434967 PMCID: PMC11491554 DOI: 10.1002/mco2.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide, and an increase in incidence is estimated in the next future, due to population aging, which requires the development of highly tolerable and low-toxicity cancer treatment strategies. The use of nanotechnology to tailor treatments according to the genetic and immunophenotypic characteristics of a patient's tumor, and to allow its targeted release, can meet this need, improving the efficacy of treatment and minimizing side effects. Nanomedicine-based approach for the diagnosis and treatment of cancer is a rapidly evolving field. Several nanoformulations are currently in clinical trials, and some have been approved and marketed. However, their large-scale production and use are still hindered by an in-depth debate involving ethics, intellectual property, safety and health concerns, technical issues, and costs. Here, we survey the key approaches, with specific reference to organ-on chip technology, and cutting-edge tools, such as CRISPR/Cas9 genome editing, through which nanosystems can meet the needs for personalized diagnostics and therapy in cancer patients. An update is provided on the nanopharmaceuticals approved and marketed for cancer therapy and those currently undergoing clinical trials. Finally, we discuss the emerging avenues in the field and the challenges to be overcome for the transfer of nano-based precision oncology into clinical daily life.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| |
Collapse
|
2
|
Giordano A, Provenza AC, Reverchon G, Baldino L, Reverchon E. Lipid-Based Nanocarriers: Bridging Diagnosis and Cancer Therapy. Pharmaceutics 2024; 16:1158. [PMID: 39339195 PMCID: PMC11434863 DOI: 10.3390/pharmaceutics16091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Theranostics is a growing field that matches diagnostics and therapeutics. In this approach, drugs and techniques are uniquely coupled to diagnose and treat medical conditions synergically or sequentially. By integrating diagnostic and treatment functions in a single platform, the aim of theranostics is to improve precision medicine by tailoring treatments based on real-time information. In this context, lipid-based nanocarriers have attracted great scientific attention due to their biodegradability, biocompatibility, and targeting capabilities. The present review highlights the latest research advances in the field of lipid-based nanocarriers for cancer theranostics, exploring several ways of improving in vivo performance and addressing associated challenges. These nanocarriers have significant potential to create new perspectives in the field of nanomedicine and offer promise for a significant step towards more personalized and precise medicine, reducing side effects and improving clinical outcomes for patients. This review also presents the actual barriers to and the possible challenges in the use of nanoparticles in the theranostic field, such as regulatory hurdles, high costs, and technological integration. Addressing these issues through a multidisciplinary and collaborative approach among institutions could be essential for advancing lipid nanocarriers in the theranostic field. Such collaborations can leverage diverse expertise and resources, fostering innovation and overcoming the complex challenges associated with clinical translation. This approach will be crucial for realizing the full potential of lipid-based nanocarriers in precision medicine.
Collapse
Affiliation(s)
- Alessandra Giordano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Anna Chiara Provenza
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Giorgio Reverchon
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli, 1, 40136 Bologna, Italy;
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| |
Collapse
|
3
|
Chota A, Abrahamse H, George BP. Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and ZnPcS 4 photosensitizer for enhanced photodynamic therapy effects in MCF-7 breast cancer cells. Photodiagnosis Photodyn Ther 2024; 48:104252. [PMID: 38901719 DOI: 10.1016/j.pdpdt.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Breast cancer remains a formidable challenge in oncology despite significant advancements in treatment modalities. Conventional therapies such as surgery, chemotherapy, radiation therapy, and hormonal therapy have been the mainstay in managing breast cancer for decades. However, a subset of patient's experiences treatment failure, leading to disease recurrence and progression. Therefore, this study investigates the therapeutic potential of green-synthesized silver nanoparticles (AgNPs) using an African medicinal plant (Dicoma anomala methanol root extract) as a reducing agent for combating breast cancer. AgNPs were synthesized using the bottom-up approach and later modified with liposomes (Lip) loaded with photosensitizer (PS) zinc phthalocyanine tetrasulfonate (Lip@ZnPcS4) using thin film hydration method. The successful formation and Lip modification of AgNPs, alongside ZnPcS4, were confirmed through various analytical techniques including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Following a 24 h treatment period, MCF-7 cells were assessed for viability using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT viability assay), cell death analysis using mitochondrial membrane potential (MMP) (ΔΨm), Annexin V-fluorescein isothiocyanate (FITC)-propidium iodide (PI) kit, and caspase- 3, 8 and 9 activities. The experiments were repeated four times (n = 4), and the results were analyzed using SPSS statistical software version 27, with a confidence interval set at 0.95. The synthesized nanoparticles and nanocomplex, including AgNPs, AgNPs-Lip, Lip@ZnPcS4, and AgNPs-Lip@ZnPcS4, exhibited notable cytotoxicity and therapeutic efficacy against MCF-7 breast cancer cells. Notably, the induction of apoptosis, governed by the upregulation of apoptotic proteins i.e., caspase 8 and 9 activities. In addition, caspase 3 was not expressed by MCF-7 cells in both control and experimental groups. Given the challenging prognosis associated with breast cancer, the findings underscore the promise of liposomal nanoformulations in cancer photodynamic therapy (PDT), thus warranting further exploration in clinical settings.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
4
|
Priya L, Mehta S, Gevariya D, Sharma R, Panjwani D, Patel S, Ahlawat P, Dharamsi A, Patel A. Quantum Dot-based Bio-conjugates as an Emerging Bioimaging Tool for Cancer Theranostic- A Review. Curr Drug Targets 2024; 25:241-260. [PMID: 38288834 DOI: 10.2174/0113894501283669240123105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 06/05/2024]
Abstract
Cancer is the most widely studied disorder in humans, but proper treatment has not yet been developed for it. Conventional therapies, like chemotherapy, radiation therapy, and surgery, have been employed. Such therapies target not only cancerous cells but also harm normal cells. Conventional therapy does not result in specific targeting and hence leads to severe side effects. The main objective of this study is to explore the QDs. QDs are used as nanocarriers for diagnosis and treatment at the same time. They are based on the principle of theranostic approach. QDs can be conjugated with antibodies via various methods that result in targeted therapy. This results in their dual function as a diagnostic and therapeutic tool. Nanotechnology involving such nanocarriers can increase the specificity and reduce the side effects, leaving the normal cells unaffected. This review pays attention to different methods for synthesising QDs. QDs can be obtained using either organic method and synthetic methods. It was found that QDs synthesised naturally are more feasible than the synthetic process. Top or bottom-up approaches have also emerged for the synthesis of QDs. QDs can be conjugated with an antibody via non-covalent and covalent binding. Covalent binding is much more feasible than any other method. Zero-length coupling plays an important role as EDC (1-Ethyl-3-Ethyl dimethylaminopropyl)carbodiimide is a strong crosslinker and is widely used for conjugating molecules. Antibodies work as surface ligands that lead to antigen- antibody interaction, resulting in site-specific targeting and leaving behind the normal cells unaffected. Cellular uptake of the molecule is done by either passive targeting or active targeting. QDs are tiny nanocrystals that are inorganic in nature and vary in size and range. Based on different sizes, they emit light of specific wavelengths. They have their own luminescent and optical properties that lead to the monitoring, imaging, and transport of the therapeutic moiety to a variety of targets in the body. The surface of the QDs is modified to boost their functioning. They act as a tool for diagnosis, imaging, and delivery of therapeutic moieties. For improved therapeutic effects, nanotechnology leads the cellular uptake of nanoparticles via passive targeting or active targeting. It is a crucial platform that not only leads to imaging and diagnosis but also helps to deliver therapeutic moieties to specific sites. Therefore, this review concludes that there are numerous drawbacks to the current cancer treatment options, which ultimately result in treatment failure. Therefore, nanotechnology that involves such a nanocarrier will serve as a tool for overcoming all limitations of the traditional therapeutic approach. This approach helps in reducing the dose of anticancer agents for effective treatment and hence improving the therapeutic index. QDs can not only diagnose a disease but also deliver drugs to the cancerous site.
Collapse
Affiliation(s)
- Lipika Priya
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Smit Mehta
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Darshan Gevariya
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Raghav Sharma
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Abhay Dharamsi
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| |
Collapse
|
5
|
Jaiswal A, Kaushik N, Choi EH, Kaushik NK. Functional impact of non-coding RNAs in high-grade breast carcinoma: Moving from resistance to clinical applications: A comprehensive review. Biochim Biophys Acta Rev Cancer 2023; 1878:188915. [PMID: 37196783 DOI: 10.1016/j.bbcan.2023.188915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Despite the recent advances in cancer therapy, triple-negative breast cancers (TNBCs) are the most relapsing cancer sub-type. It is partly due to their propensity to develop resistance against the available therapies. An intricate network of regulatory molecules in cellular mechanisms leads to the development of resistance in tumors. Non-coding RNAs (ncRNAs) have gained widespread attention as critical regulators of cancer hallmarks. Existing research suggests that aberrant expression of ncRNAs modulates the oncogenic or tumor suppressive signaling. This can mitigate the responsiveness of efficacious anti-tumor interventions. This review presents a systematic overview of biogenesis and down streaming molecular mechanism of the subgroups of ncRNAs. Furthermore, it explains ncRNA-based strategies and challenges to target the chemo-, radio-, and immunoresistance in TNBCs from a clinical standpoint.
Collapse
Affiliation(s)
- Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Suwon 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
6
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
7
|
Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022; 14:pharmaceutics14112396. [PMID: 36365214 PMCID: PMC9698658 DOI: 10.3390/pharmaceutics14112396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of therapeutics to specific tissues is critically important for reducing systemic toxicity and optimizing therapeutic efficacy, especially in the case of cytotoxic drugs. Many strategies currently exist for targeting systemically administered drugs, and ultrasound-controlled targeting is a rapidly advancing strategy for externally-stimulated drug delivery. In this non-invasive method, ultrasound waves penetrate through tissue and stimulate gas-filled microbubbles, resulting in bubble rupture and biophysical effects that power delivery of attached cargo to surrounding cells. Drug delivery capabilities from ultrasound-sensitive microbubbles are greatly expanded when nanocarrier particles are attached to the bubble surface, and cargo loading is determined by the physicochemical properties of the nanoparticles. This review serves to highlight and discuss current microbubble–nanoparticle complex component materials and designs for ultrasound-mediated drug delivery. Nanocarriers that have been complexed with microbubbles for drug delivery include lipid-based, polymeric, lipid–polymer hybrid, protein, and inorganic nanoparticles. Several schemes exist for linking nanoparticles to microbubbles for efficient nanoparticle delivery, including biotin–avidin bridging, electrostatic bonding, and covalent linkages. When compared to unstimulated delivery, ultrasound-mediated cargo delivery enables enhanced cell uptake and accumulation of cargo in target organs and can result in improved therapeutic outcomes. These ultrasound-responsive delivery complexes can also be designed to facilitate other methods of targeting, including bioactive targeting ligands and responsivity to light or magnetic fields, and multi-level targeting can enhance therapeutic efficacy. Microbubble–nanoparticle complexes present a versatile platform for controlled drug delivery via ultrasound, allowing for enhanced tissue penetration and minimally invasive therapy. Future perspectives for application of this platform are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Chapla
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | - Katherine T. Huynh
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
8
|
Flores-Contreras EA, González-González RB, González-González E, Parra-Saldívar R, Iqbal HM. Nano-vehicles modulated delivery of therapeutic epigenetic regulators to treat Triple-Negative Breast Cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022; 17:4227-4259. [PMID: 36134205 PMCID: PMC9482956 DOI: 10.2147/ijn.s377149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a natural plant alkaloid from Camptotheca that shows potent antitumor activity by targeting intracellular topoisomerase I. However, factors such as instability of the lactone ring and insolubility in water have limited the clinical application of this drug. In recent years, unprecedented advances in biomedical nanotechnology have facilitated the development of nano drug delivery systems. It has been found that nanomedicine can significantly improve the stability and water solubility of HCPT. NanoMedicines with different diagnostic and therapeutic functions have been developed to significantly improve the anticancer effect of HCPT. In this paper, we collected reports on HCPT nanomedicines against tumors in the past decade. Based on current research advances, we dissected the current status and limitations of HCPT nanomedicines development and looked forward to future research directions.
Collapse
Affiliation(s)
- Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhenzhi Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xiaofan Wang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Mingliang Su
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Fan Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lian Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
10
|
Munir MU. Nanomedicine Penetration to Tumor: Challenges, and Advanced Strategies to Tackle This Issue. Cancers (Basel) 2022; 14:cancers14122904. [PMID: 35740570 PMCID: PMC9221319 DOI: 10.3390/cancers14122904] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Nanomedicine has been under investigation for several years to improve the efficiency of chemotherapeutics, having minimal pharmacological effects clinically. Ineffective tumor penetration is mediated by tumor environments, including limited vascular system, rising cancer cells, higher interstitial pressure, and extra-cellular matrix, among other things. Thus far, numerous methods to increase nanomedicine access to tumors have been described, including the manipulation of tumor micro-environments and the improvement of nanomedicine characteristics; however, such outdated approaches still have shortcomings. Multi-functional convertible nanocarriers have recently been developed as an innovative nanomedicine generation with excellent tumor infiltration abilities, such as tumor-penetrating peptide-mediated transcellular transport. The developments and limitations of nanomedicines, as well as expectations for better outcomes of tumor penetration, are discussed in this review.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
11
|
Lipid Nanoparticles as Platforms for Theranostic Purposes: Recent Advances in the Field. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lipid nanoparticles (LNPs) are the first approved nanomedicines and the most well-studied class of nanocarriers for drug delivery. Currently, they are in the frontline of the pandemic fight as vaccine formulations and therapeutic products. However, even though they are so well-studied, new materials and new modifications arise every day that can improve their properties. Their dynamic nature, especially the liquid crystal state of membranes, is under constant investigation and it is that which many times leads to their complex biological behavior. In addition, newly discovered biomaterials and nanoparticles that possess promising effects and functionalities, but also toxicity and/or poor pharmacokinetics, can be combined with LNPs to ameliorate their properties. As a result, many promising theranostic applications have emerged during the past decade, proving the huge potential of LNPs in the field. In the present review, we summarize some of the most prominent classes of LNPs for nanotheranostic purposes, and present state-of-the-art research examples, with emphasis on the utilized biomaterials and the functionality that they confer to the resultant supramolecular nanosystems, in relation to diagnostic and therapeutic modalities. Although there has been unprecedented progress in theranostics, the translational gap between the bench and the clinic is undeniable. This issue must be addressed by experts in a coordinated way, in order to fully exploit these nanomedicines for the benefit of the society.
Collapse
|