1
|
Reeve C, Smith KA, Morin A, Bzonek PA, Cooke SJ, Brownscombe JW. Using heart rate and acceleration biologgers to estimate winter activity costs in free-swimming largemouth bass. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111708. [PMID: 39059617 DOI: 10.1016/j.cbpa.2024.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Winter is a critical period for largemouth bass (Micropterus nigricans) with winter severity and duration limiting their population growth at northern latitudes. Unfortunately, we have an incomplete understanding of their winter behaviour and energy use in the wild. More winter-focused research is needed to better understand their annual energy budget, improve bioenergetics models, and establish baselines to assess the impacts of climate warming; however, winter research is challenging due to ice cover. Implantable tags show promise for winter-focused research as they can be deployed prior to ice formation. Here, using swim tunnel respirometry, we calibrated heart rate and acceleration biologgers to enable estimations of metabolic rate (ṀO2) and swimming speed in free-swimming largemouth bass across a range of winter-relevant temperatures. In addition, we assessed their aerobic and swim performance. Calculated group thermal sensitivities of most performance metrics indicated the passive physicochemical effects of temperature, suggesting little compensation in the cold; however, resting metabolic rate and critical swimming speed showed partial compensation. We found strong relationships between acceleration and swimming speed, as well as between ṀO2 and heart rate, acceleration, or swimming speed. Jackknife validations indicated that these modeled relationships accurately estimate swimming speed and ṀO2 from biologger recordings. However, there were relatively few reliable heart rate recordings to model the ṀO2 relationship. Recordings of heart rate were high-quality during holding but dropped during experimentation, potentially due to interference from aerobic muscles during swimming. The models informed by acceleration or swimming speed appear to be best suited for field applications.
Collapse
Affiliation(s)
- Connor Reeve
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada.
| | - Kurtis A Smith
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Andre Morin
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada; School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, Victoria, 3216, Australia
| | - Paul A Bzonek
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Steven J Cooke
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada; Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Jacob W Brownscombe
- Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada; Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| |
Collapse
|
2
|
Gilbert MJH, Hardison EA, Farrell AP, Eliason EJ, Anttila K. Measuring maximum heart rate to study cardiac thermal performance and heat tolerance in fishes. J Exp Biol 2024; 227:jeb247928. [PMID: 39450710 DOI: 10.1242/jeb.247928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The thermal sensitivity of heart rate (fH) in fishes has fascinated comparative physiologists for well over a century. We now know that elevating fH is the primary mechanism through which fishes increase convective oxygen delivery during warming to meet the concomitant rise in tissue oxygen consumption. Thus, limits on fH can constrain whole-animal aerobic metabolism. In this Review, we discuss an increasingly popular methodology to study these limits, the measurement of pharmacologically induced maximum fH (fH,max) during acute warming of an anaesthetized fish. During acute warming, fH,max increases exponentially over moderate temperatures (Q10∼2-3), but this response is blunted with further warming (Q10∼1-2), with fH,max ultimately reaching a peak (Q10≤1) and the heartbeat becoming arrhythmic. Because the temperatures at which these transitions occur commonly align with whole-animal optimum and critical temperatures (e.g. aerobic scope and the critical thermal maximum), they can be valuable indicators of thermal performance. The method can be performed simultaneously on multiple individuals over a few hours and across a broad size range (<1 to >6000 g) with compact equipment. This simplicity and high throughput make it tractable in lab and field settings and enable large experimental designs that would otherwise be impractical. As with all reductionist approaches, the method does have limitations. Namely, it requires anaesthesia and pharmacological removal of extrinsic cardiac regulation. Nonetheless, the method has proven particularly effective in the study of patterns and limits of thermal plasticity and holds promise for helping to predict and mitigate outcomes of environmental change.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Emily A Hardison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katja Anttila
- University of Turku, Department of Biology, 20014 Turku, Finland
| |
Collapse
|
3
|
Kraskura K, Hardison EA, Eliason EJ. Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Sci Rep 2023; 13:17900. [PMID: 37857749 PMCID: PMC10587238 DOI: 10.1038/s41598-023-44574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Environmental warming is associated with reductions in ectotherm body sizes, suggesting that larger individuals may be more vulnerable to climate change. The mechanisms driving size-specific vulnerability to temperature are unknown but are required to finetune predictions of fisheries productivity and size-structure community responses to climate change. We explored the potential metabolic and cardiac mechanisms underlying these body size vulnerability trends in a eurythermal fish, barred surfperch. We acutely exposed surfperch across a large size range (5-700 g) to four ecologically relevant temperatures (16 °C, 12 °C, 20 °C, and 22 °C) and subsequently, measured their metabolic capacity (absolute and factorial aerobic scopes, maximum and resting metabolic rates; AAS, FAS, MMR, RMR). Additionally, we estimated the fish's cardiac thermal tolerance by measuring their maximum heart rates (fHmax) across acutely increasing temperatures. Barred surfperch had parallel hypoallometric scaling of MMR and RMR (exponent 0.81) and a weaker hypoallometric scaling of fHmax (exponent - 0.05) across all test temperatures. In contrast to our predictions, the fish's aerobic capacity was maintained across sizes and acute temperatures, and larger fish had greater cardiac thermal tolerance than smaller fish. These results demonstrate that thermal performance may be limited by different physiological constraints depending on the size of the animal and species of interest.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
4
|
Dressler TL, Han Lee V, Klose K, Eliason EJ. Thermal tolerance and vulnerability to warming differ between populations of wild Oncorhynchus mykiss near the species' southern range limit. Sci Rep 2023; 13:14538. [PMID: 37666931 PMCID: PMC10477306 DOI: 10.1038/s41598-023-41173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Fish habitat temperatures are increasing due to human impacts including climate change. For broadly distributed species, thermal tolerance can vary at the population level, making it challenging to predict which populations are most vulnerable to warming. Populations inhabiting warm range boundaries may be more resilient to these changes due to adaptation or acclimatization to warmer temperatures, or they may be more vulnerable as temperatures may already approach their physiological limits. We tested functional and critical thermal tolerance of two populations of wild Oncorhynchus mykiss near the species' southern range limit and, as predicted, found population-specific responses to temperature. Specifically, the population inhabiting the warmer stream, Piru Creek, had higher critical thermal maxima and higher functional thermal tolerance compared to the population from the cooler stream, Arroyo Seco. Arroyo Seco O. mykiss are more likely to experience a limitation of aerobic scope with warming. Piru Creek O. mykiss, however, had higher resting metabolic rates and prolonged exercise recovery, meaning that they could be more vulnerable to warming if prey or dissolved oxygen become limited. Temperature varies widely between streams near the O. mykiss southern range limit and populations will likely have unique responses to warming based on their thermal tolerances and metabolic requirements.
Collapse
Affiliation(s)
- T L Dressler
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - V Han Lee
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - K Klose
- U.S. Forest Service, Los Padres National Forest, 1980 Old Mission Drive, Solvang, CA, 93463, USA
| | - E J Eliason
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
5
|
Hardison EA, Schwieterman GD, Eliason EJ. Diet changes thermal acclimation capacity, but not acclimation rate, in a marine ectotherm ( Girella nigricans) during warming. Proc Biol Sci 2023; 290:20222505. [PMID: 36987639 PMCID: PMC10050929 DOI: 10.1098/rspb.2022.2505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Global climate change is increasing thermal variability in coastal marine environments and the frequency, intensity and duration of marine heatwaves. At the same time, food availability and quality are being altered by anthropogenic environmental changes. Marine ectotherms often cope with changes in temperature through physiological acclimation, which can take several weeks and is a nutritionally demanding process. Here, we tested the hypothesis that different ecologically relevant diets (omnivorous, herbivorous, carnivorous) impact thermal acclimation rate and capacity, using a temperate omnivorous fish as a model (opaleye, Girella nigricans). We measured acute thermal performance curves for maximum heart rate because cardiac function has been observed to set upper thermal limits in ectotherms. Opaleye acclimated rapidly after raising water temperatures, but their thermal limits and acclimation rate were not affected by their diet. However, the fish's acclimation capacity for maximum heart rate was sensitive to diet, with fish in the herbivorous treatment displaying the smallest change in heart rate throughout acclimation. Mechanistically, ventricle fatty acid composition differed with diet treatment and was related to cardiac performance in ways consistent with homoviscous adaptation. Our results suggest that diet is an important, but often overlooked, determinant of thermal performance in ectotherms on environmentally relevant time scales.
Collapse
Affiliation(s)
| | - Gail D. Schwieterman
- University of California, Santa Barbara, CA 93106, USA
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | | |
Collapse
|
6
|
Gilbert MJH, Middleton EK, Kanayok K, Harris LN, Moore JS, Farrell AP, Speers-Roesch B. Rapid cardiac thermal acclimation in wild anadromous Arctic char (Salvelinus alpinus). J Exp Biol 2022; 225:276421. [PMID: 36000268 DOI: 10.1242/jeb.244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022]
Abstract
Migratory fishes commonly encounter large and rapid thermal variation, which has the potential to disrupt essential physiological functions. Thus, we acclimated wild, migratory Arctic char to 13°C (∼7°C above a summer average) for an ecologically relevant period (3 days) and measured maximum heart rate (ƒHmax) during acute warming to determine their ability to rapidly improve cardiac function at high temperatures. Arctic char exhibited rapid compensatory cardiac plasticity similar to past observations following prolonged warm acclimation: They reduced ƒHmax over intermediate temperatures (-8%), improved their ability to increase ƒHmax during warming (+10%), and increased (+1.3°C) the temperature at the onset of an arrhythmic heartbeat, a sign of cardiac failure. Consequently, this rapid cardiac plasticity may help migrating fishes like Arctic char mitigate short-term thermal challenges. Furthermore, by using mobile Arctic research infrastructure in a remote field location, the present study illustrates the potential for field-based, experimental physiology in such locations.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Department of Biological Sciences, University of New Brunswick - Saint John, 100 Tucker Park Rd., Saint John, NB, E2L 4L5, Canada
| | - Ella K Middleton
- Department of Biological Sciences, University of New Brunswick - Saint John, 100 Tucker Park Rd., Saint John, NB, E2L 4L5, Canada
| | - Kevin Kanayok
- Ekaluktutiak Hunters & Trappers Organization, Box 1270, Ekaluktutiak, NU, X0B 0C0, Canada
| | - Les N Harris
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Jean-Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes and Département de Biologie, Université Laval, 1030 Avenue de la Médecine, Quebec City, QC, Québec G1V 0A6, Canada
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick - Saint John, 100 Tucker Park Rd., Saint John, NB, E2L 4L5, Canada
| |
Collapse
|
7
|
Pettinau L, Lancien F, Zhang Y, Mauduit F, Ollivier H, Farrell AP, Claireaux G, Anttila K. Warm, but not hypoxic acclimation, prolongs ventricular diastole and decreases the protein level of Na +/Ca 2+ exchanger to enhance cardiac thermal tolerance in European sea bass. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111266. [PMID: 35772648 DOI: 10.1016/j.cbpa.2022.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
One of the physiological mechanisms that can limit the fish's ability to face hypoxia or elevated temperature, is maximal cardiac performance. Yet, few studies have measured how cardiac electrical activity and associated calcium cycling proteins change with acclimation to those environmental stressors. To examine this, we acclimated European sea bass for 6 weeks to three experimental conditions: a seasonal average temperature in normoxia (16 °C; 100% air sat.), an elevated temperature in normoxia (25 °C; 100% air sat.) and a seasonal average temperature in hypoxia (16 °C; 50% air sat.). Following each acclimation, the electrocardiogram was measured to assess how acclimation affected the different phases of cardiac cycle, the maximal heart rate (fHmax) and cardiac thermal performance during an acute increase of temperature. Whereas warm acclimation prolonged especially the diastolic phase of the ventricular contraction, reduced the fHmax and increased the cardiac arrhythmia temperature (TARR), hypoxic acclimation was without effect on these functional indices. We measured the level of two key proteins involved with cellular relaxation of cardiomyocytes, i.e. sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). Warm acclimation reduced protein level of both NCX and SERCA and hypoxic acclimation reduced SERCA protein levels without affecting NCX. The changes in ventricular NCX level correlated with the observed changes in diastole duration and fHmax as well as TARR. Our results shed new light on mechanisms of cardiac plasticity to environmental stressors and suggest that NCX might be involved with the observed functional changes, yet future studies should also measure its electrophysiological activity.
Collapse
Affiliation(s)
- Luca Pettinau
- Department of Biology, University of Turku, 20014 Turku, Finland.
| | - Frédéric Lancien
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Yangfan Zhang
- Department of Zoology, Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada. https://twitter.com/theYangfanZHANG
| | - Florian Mauduit
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Hélène Ollivier
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Anthony P Farrell
- Department of Zoology, Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Katja Anttila
- Department of Biology, University of Turku, 20014 Turku, Finland. https://twitter.com/anttilaLab
| |
Collapse
|