1
|
Pandey H, Tang DWT, Wong SH, Lal D. Helminths in alternative therapeutics of inflammatory bowel disease. Intest Res 2025; 23:8-22. [PMID: 39916482 PMCID: PMC11834367 DOI: 10.5217/ir.2023.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a nonspecific chronic inflammation of the gastrointestinal tract. Despite recent advances in therapeutics and newer management strategies, IBD largely remains untreatable. Helminth therapy is a promising alternative therapeutic for IBD that has gained some attention in the last two decades. Helminths have immunomodulatory effects and can alter the gut microbiota. The immunomodulatory effects include a strong Th2 immune response, T-regulatory cell response, and the production of regulatory cytokines. Although concrete evidence regarding the efficacy of helminth therapy in IBD is lacking, clinical studies and studies done in animal models have shown some promise. Most clinical studies have shown that helminth therapy is safe and easily tolerable. Extensive work has been done on the whipworm Trichuris, but other helminths, including Schistosoma, Trichinella, Heligmosomoides, and Ancylostoma, have also been explored for pre-clinical and animal studies. This review article summarizes the potential of helminth therapy as an alternative therapeutic or an adjuvant to the existing therapeutic procedures for IBD treatment.
Collapse
Affiliation(s)
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Chapuis MP, Benoit L, Galan M. Evaluation of 96-well high-throughput DNA extraction methods for 16S rRNA gene metabarcoding. Mol Ecol Resour 2023; 23:1509-1525. [PMID: 37254809 DOI: 10.1111/1755-0998.13812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Gaining meaningful insights into bacterial communities associated with animal hosts requires the provision of high-quality nucleic acids. Although many studies have compared DNA extraction methods for samples with low bacterial biomass (e.g. water) or specific PCR inhibitors (e.g. plants), DNA extraction bias in samples without inherent technical constraint (e.g. animal samples) has received little attention. Furthermore, there is an urgent need to identify a DNA extraction methods in a high-throughput format that decreases the cost and time for processing large numbers of samples. We here evaluated five DNA extraction protocols, using silica membrane-based spin columns and a 96-well microplate format and based on either mechanical or enzymatic lysis or a combination of both, using three bacterial mock communities and Illumina sequencing of the V4 region of the 16SrRNA gene. Our results showed that none of the DNA extraction methods fully eliminated bias associated with unequal lysis efficiencies. However, we identified a DNA extraction method with a lower bias for each mock community standard. Of these methods, those including an enzymatic lysis showed biases specific to some bacteria. Altogether, these results again demonstrate the importance of DNA extraction standardization to be able to compare the microbiome results of different samples. In this attempt, we advise for the use of the 96-well DNeasy Blood and Tissue kit (Qiagen) with a zirconia bead-beating procedure, which optimizes altogether the cost, handling time and bacteria-specific effects associated with enzymatic lysis.
Collapse
Affiliation(s)
- Marie-Pierre Chapuis
- CBGP, CIRAD, Montpellier SupAgro, INRAE, IRD, University of Montpellier, Montpellier, France
- CIRAD, CBGP, Montpellier, France
| | - Laure Benoit
- CBGP, CIRAD, Montpellier SupAgro, INRAE, IRD, University of Montpellier, Montpellier, France
- CIRAD, CBGP, Montpellier, France
| | - Maxime Galan
- CBGP, INRAE, Montpellier SupAgro, INRAE, IRD, University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Fulham M, Power M, Gray R. Gut microbiota of endangered Australian sea lion pups is unchanged by topical ivermectin treatment for endemic hookworm infection. Front Microbiol 2022; 13:1048013. [PMID: 36601397 PMCID: PMC9806137 DOI: 10.3389/fmicb.2022.1048013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The gut microbiota is essential for the development and maintenance of the hosts' immune system. Disturbances to the gut microbiota in early life stages can result in long-lasting impacts on host health. This study aimed to determine if topical ivermectin treatment for endemic hookworm (Uncinaria sanguinis) infection in endangered Australian sea lion (Neophoca cinerea) pups resulted in gut microbial changes. The gut microbiota was characterised for untreated (control) (n = 23) and treated (n = 23) Australian sea lion pups sampled during the 2019 and 2020/21 breeding seasons at Seal Bay, Kangaroo Island. Samples were collected pre- and post-treatment on up to four occasions over a four-to-five-month period. The gut microbiota of untreated (control) and treated pups in both seasons was dominated by five bacterial phyla, Fusobacteria, Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. A significant difference in alpha diversity between treatment groups was seen in pups sampled during the 2020/21 breeding season (p = 0.008), with higher richness and diversity in treated pups. Modelling the impact of individual pup identification (ID), capture, pup weight (kg), standard length (cm), age and sex on beta diversity revealed that pup ID accounted for most of the variation (35% in 2019 and 42% in 2020/21), with pup ID, capture, and age being the only significant contributors to microbial variation (p < 0.05). There were no statistically significant differences in the composition of the microbiota between treatment groups in both the 2019 and 2020/21 breeding seasons, indicating that topical ivermectin treatment did not alter the composition of the gut microbiota. To our knowledge, this is the first study to characterise the gut microbiota of free-ranging Australian pinniped pups, compare the composition across multiple time points, and to consider the impact of parasitic treatment on overall diversity and microbial composition of the gut microbiota. Importantly, the lack of compositional changes in the gut microbiota with treatment support the utility of topical ivermectin as a safe and minimally invasive management strategy to enhance pup survival in this endangered species.
Collapse
Affiliation(s)
- Mariel Fulham
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Michelle Power
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia,*Correspondence: Rachael Gray,
| |
Collapse
|
4
|
Mason B, Petrzelkova KJ, Kreisinger J, Bohm T, Cervena B, Fairet E, Fuh T, Gomez A, Knauf S, Maloueki U, Modry D, Shirley MH, Tagg N, Wangue N, Pafco B. Gastrointestinal symbiont diversity in wild gorilla: a comparison of bacterial and strongylid communities across multiple localities. Mol Ecol 2022; 31:4127-4145. [PMID: 35661299 DOI: 10.1111/mec.16558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Western lowland gorillas (Gorilla gorilla gorilla) are Critically Endangered and show continued population decline. Consequently, pressure mounts to better understand their conservation threats and ecology. Gastrointestinal symbionts, such as bacterial and eukaryotic communities, are believed to play vital roles in the physiological landscape of the host. Gorillas host a broad spectrum of eucaryotes, so called parasites, with strongylid nematodes being particularly prevalent. While these communities are partially consistent, they are also shaped by various ecological factors, such as diet or habitat type. To investigate gastrointestinal symbionts of wild western lowland gorillas, we analysed 215 faecal samples from individuals in five distinct localities across the Congo Basin, using high-throughput sequencing techniques. We describe the gut bacterial microbiome and genetic diversity of strongylid communities, including strain-level identification of amplicon sequence variants (ASVs). We identified strongylid ASVs from eight genera and bacterial ASVs from twenty phyla. We compared these communities across localities, with reference to varying environmental factors among populations, finding differences in alpha diversity and community compositions of both gastrointestinal components. Moreover, we also investigated covariation between strongylid nematodes and the bacterial microbiome, finding correlations between strongylid taxa and Prevotellaceae and Rikenellaceae ASVs that were consistent across multiple localities. Our research highlights complexity of the bacterial microbiome and strongylid communities in several gorilla populations and emphasizes potential interactions between these two symbiont communities. This study provides a framework for ongoing research into strongylid nematode diversity, and their interactions with the bacterial microbiome, amongst great apes.
Collapse
Affiliation(s)
- Bethan Mason
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences
| | - Klara J Petrzelkova
- Institute of Vertebrate Biology, Czech Academy of Sciences.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences.,Liberec Zoo, Liberec, Czech Republic
| | | | - Torsten Bohm
- African Parks, Odzala-Kokoua National Park, Republic of, Congo
| | | | - Emilie Fairet
- SFM Safari Gabon, Loango National Park, Gabon.,Wildlife Conservation Society, New York, NY, USA
| | | | - Andres Gomez
- Department of Animal Science, University of Minnesota Twin Cities, St. Paul, Minnesota
| | - Sascha Knauf
- Institute of International Animal Health / One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Ulrich Maloueki
- African Parks, Odzala-Kokoua National Park, Republic of, Congo
| | - David Modry
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences Prague
| | - Matthew H Shirley
- SFM Safari Gabon, Loango National Park, Gabon.,Institute of Environment, Florida International University, North Miami, FL, USA
| | - Nikki Tagg
- Project Grands Singes, , Centre for Research and Conservation, Royal Zoological Society of Antwerp
| | | | - Barbora Pafco
- Institute of Vertebrate Biology, Czech Academy of Sciences
| |
Collapse
|