1
|
Li HY, Makatsoris C, Forbes B. Particulate bioaerogels for respiratory drug delivery. J Control Release 2024; 370:195-209. [PMID: 38641021 PMCID: PMC11847494 DOI: 10.1016/j.jconrel.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The bioaerogel microparticles have been recently developed for respiratory drug delivery and attract fast increasing interests. These highly porous microparticles have ultralow density and hence possess much reduced aerodynamic diameter, which favour them with greatly enhanced dispersibility and improved aerosolisation behaviour. The adjustable particle geometric dimensions by varying preparation methods and controlling operation parameters make it possible to fabricate bioaerogel microparticles with accurate sizes for efficient delivery to the targeted regions of respiratory tract (i.e. intranasal and pulmonary). Additionally, the technical process can provide bioaerogel microparticles with the opportunities of accommodating polar, weak polar and non-polar drugs at sufficient amount to satisfy clinical needs, and the adsorbed drugs are primarily in the amorphous form that potentially can facilitate drug dissolution and improve bioavailability. Finally, the nature of biopolymers can further offer additional advantageous characteristics of improved mucoadhesion, sustained drug release and subsequently elongated time for continuous treatment on-site. These fascinating features strongly support bioaerogel microparticles to become a novel platform for effective delivery of a wide range of drugs to the targeted respiratory regions, with increased drug residence time on-site, sustained drug release, constant treatment for local and systemic diseases and anticipated better-quality of therapeutic effects.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural & Mathematical Sciences, King's College London, WC2R 2LS, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
2
|
Kang MS, Lee GH, Kwon IH, Yang MJ, Heo MB, Choi JW, Lee TG, Yoon CH, Baek B, Sung MC, Kim DW, Park EJ. Uptake and toxicity of cerium dioxide nanoparticles with different aspect ratio. Toxicol Lett 2022; 373:196-209. [PMID: 36464203 DOI: 10.1016/j.toxlet.2022.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Cerium dioxide nanoparticles (CeONPs) have been extensively applied in research for future energy development due to two common oxidation states on their surface. Considering that shape (aspect ratio) is a key determinant of NPs-induced toxicity, we compared the toxicity of hexagonal (H)- and rod-shaped (R)-CeONPs in mice. At 24 h after pharyngeal aspiration, both types of CeONPs recruited surrounding immune cells (monocytes and neutrophils) into the lung, and R-CeONPs induced a more severe pulmonary inflammatory response compared with H-CeONPs. To identify an indicator to predict pulmonary inflammatory responses at the cellular level, we also investigated their responses in alveolar macrophage cells. At 24 h after treatment, both types of CeONPs were mainly located within the vacuoles (partially, in the lysosome) in the cytoplasm. Mitochondrial damage, intracellular calcium accumulation, and increased NO production were observed in cells exposed to both types of CeONPs, ultimately resulting in a decrease in cell viability. More interestingly, both types of CeONPs formed multinucleated giant cells. Meanwhile, contrary to when suspended in deionized water, R-CeONPs were strongly aggregated with a negative charge in cell culture media, whereas H-CeONPs were relatively well-dispersed with a positive charge. R-CeONPs-induced lysosomal extension was also recovered by premix with negatively charged DNA, and even NPs suspended in cell culture media without cells were detected under the FACS system, suggesting interference by protein corona. Therefore, we suggest that shape (aspect ratio) is an important factor determining inhaled NPs-induced pathology and that the effect of the surface charge and protein corona should be carefully considered in interpreting results derived from in vitro tests. Furthermore, we propose that the relationship between the formation of multinucleated giant cells and the inflammatory response of inhaled CeONPs should be further studied.
Collapse
Affiliation(s)
- Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea; Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Ik Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Min Beom Heo
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Jae-Won Choi
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea; Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Cheol-Ho Yoon
- Environmental Analysis Team, Korea Basic Science Institute, Seoul 28119, Republic of Korea
| | - Bosung Baek
- Toxicity Evaluation Center, Keyprime Research Company, 28161, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myeong-Chang Sung
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea.
| | - Eun-Jung Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea.
| |
Collapse
|
3
|
Kang MS, Lee GH, Yang MJ, Sung MC, Han HY, Lee BS, Baek B, Kim DW, Park EJ. Comparison of toxicity and cellular responses following pulmonary exposure to different types of nanofibers. Nanotoxicology 2022; 16:935-954. [PMID: 36803397 DOI: 10.1080/17435390.2023.2177205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pulmonary effects of inhaled microfibers are an emerging public health concern. In this study, we investigated toxicity following pulmonary exposure to synthetic polyethylene oxide fibroin (PEONF) and silk fibroin (SFNF) nanofibers and the cellular responses. When instilled intratracheally weekly for four weeks, body weight gain was significantly reduced in female mice exposed to the higher dose of SFNF when compared with the control group. The total number of cells in the lungs was more significant in all treated groups than in the control, whereas the relative portion of neutrophils and eosinophils increased significantly only in female mice exposed to SFNF. Both types of nanofibers induced notable pathological changes and increased pulmonary expression of MCP-1α, CXCL1, and TGF-β. More importantly, blood calcium, creatinine kinase, sodium, and chloride concentration were affected significantly, showing sex- and material-dependent differences. The relative portion of eosinophils increased only in SFNF-treated mice. In addition, both types of nanofibers induced necrotic and late apoptotic cell death in alveolar macrophages after 24 h of exposure, with accompanying oxidative stress, increased NO production, cell membrane rupture, intracellular organelle damage, and intracellular calcium accumulation. Additionally, multinucleated giant cells were formed in cells exposed to PEONF or SFNF. Taken together, the findings indicate that inhaled PEONF and SFNF may cause systemic adverse health effects with lung tissue damage, showing differences by sex- and material. Furthermore, PEONF- and SFNF-induced inflammatory response may be partly due to the low clearance of dead (or damaged) pulmonary cells and the excellent durability of PEONF and SFNF.
Collapse
Affiliation(s)
- Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea.,Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, South Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, South Korea
| | - Myeong-Chang Sung
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | | | | | - Bosung Baek
- Graduate School of Medicine, Kyung Hee University, Seoul, South Korea.,Toxicity Evaluation Center, Keyprime Research Company, Cheongju, South Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Eun-Jung Park
- Graduate School of Medicine, Kyung Hee University, Seoul, South Korea.,Human Health and Environmental Toxins Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
4
|
de Luna LAV, Loret T, Fordham A, Arshad A, Drummond M, Dodd A, Lozano N, Kostarelos K, Bussy C. Lung recovery from DNA damage induced by graphene oxide is dependent on size, dose and inflammation profile. Part Fibre Toxicol 2022; 19:62. [PMID: 36131347 PMCID: PMC9490925 DOI: 10.1186/s12989-022-00502-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A key aspect of any new material safety assessment is the evaluation of their in vivo genotoxicity. Graphene oxide (GO) has been studied for many promising applications, but there are remaining concerns about its safety profile, especially after inhalation. Herein we tested whether GO lateral dimension, comparing micrometric (LGO) and nanometric (USGO) GO sheets, has a role in the formation of DNA double strand breaks in mouse lungs. We used spatial resolution and differential cell type analysis to measure DNA damages in both epithelial and immune cells, after either single or repeated exposure. RESULTS GO induced DNA damages were size and dose dependent, in both exposure scenario. After single exposure to a high dose, both USGO and LGO induced significant DNA damage in the lung parenchyma, but only during the acute phase response (p < 0.05 for USGO; p < 0.01 for LGO). This was followed by a fast lung recovery at day 7 and 28 for both GOs. When evaluating the chronic impact of GO after repeated exposure, only a high dose of LGO induced long-term DNA damages in lung alveolar epithelia (at 84 days, p < 0.05). Regardless of size, low dose GO did not induce any significant DNA damage after repeated exposure. A multiparametric correlation analysis of our repeated exposure data revealed that transient or persistent inflammation and oxidative stress were associated to either recovery or persistent DNA damages. For USGO, recovery from DNA damage was correlated to efficient recovery from acute inflammation (i.e., significant secretion of SAA3, p < 0.001; infiltration of neutrophils, p < 0.01). In contrast, the persistence of LGO in lungs was associated to a long-lasting presence of multinucleated macrophages (up to 84 days, p < 0.05), an underlying inflammation (IL-1α secretion up to 28 days, p < 0.05) and the presence of persistent DNA damages at 84 days. CONCLUSIONS Overall these results highlight the importance of the exposure scenario used. We showed that LGO was more genotoxic after repeated exposure than single exposure due to persistent lung inflammation. These findings are important in the context of human health risk assessment and toward establishing recommendations for a safe use of graphene based materials in the workplace.
Collapse
Affiliation(s)
- Luis Augusto Visani de Luna
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Thomas Loret
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Alexander Fordham
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Atta Arshad
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Drummond
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Abbie Dodd
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Kostas Kostarelos
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Cyrill Bussy
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK. .,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK. .,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|