1
|
Rodrigues LC, Godoi ABD, Fais VC, Peterson RT, Maurer-Morelli CV, Costa JL. Zebrafish embryo-larval testing reveals differential toxicity of new psychoactive substances. Toxicol Rep 2025; 14:102018. [PMID: 40235715 PMCID: PMC11999215 DOI: 10.1016/j.toxrep.2025.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/03/2025] [Accepted: 03/29/2025] [Indexed: 04/17/2025] Open
Abstract
New psychoactive substances (NPS) have emerged as a significant public health concern, with synthetic cannabinoid receptor agonists (SCRAs) and ketamine derivatives being among the most frequently detected compounds in the forensic context worldwide. The Fish Embryo Acute Toxicity (FET) and Maximum Tolerated Concentration (MTC) tests are used to evaluate the acute toxicity of chemicals. In this study, we used these assays to evaluate the acute toxicity of three NPS in zebrafish embryos and larvae: the SCRA MDMB-4en-PINACA and the ketamine derivatives deschloroketamine (DCK) and 2-fluorodeschloroketamine (2F-DCK). Our findings demonstrated that MDMB-4en-PINACA induced severe developmental abnormalities, including pericardial edema and yolk edema, along with high embryo mortality (10 µM), characterized by endpoints such as coagulation, lack of heartbeat, and lack of somite formation. In contrast, DCK and 2F-DCK exhibited low embryo mortality even at higher concentrations. In larval stages, MDMB-4en-PINACA presented 8 % larvae mortality (10 µM) at eight days post-fertilization (dpf), whereas ketamine derivatives led to 100 % mortality at 2000 µM in the MTC test at eight dpf. The LC50 was calculated for the FET test with MDMB-4en-PINACA, and MTC test for both DCK and 2F-DCK. Additionally, our results support the absence of N-methyl-D-aspartate (NMDA) receptors in the early life stages of zebrafish described in previous studies and highlight the significance of ketamine derivatives intoxications when the NMDA receptor is expressed. Notably, MDMB-4en-PINACA exhibited significantly higher toxicity, with an LC50 of approximately 26 times lower than that of the ketamine derivatives. These results are particularly relevant given the increasing global prevalence of NPS-related intoxications and fatalities. Using zebrafish as an in vivo model for toxicological research provides an efficient approach for screening the acute effects of emerging compounds such as NPS.
Collapse
Affiliation(s)
- Leonardo Costalonga Rodrigues
- School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-887, Brazil
- Campinas Poison Control Center, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-881, Brazil
- Laboratory of Zebrafish, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-887, Brazil
| | - Alexandre Barcia de Godoi
- School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-887, Brazil
- Campinas Poison Control Center, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-881, Brazil
| | - Viviane Cristina Fais
- School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-887, Brazil
- Laboratory of Zebrafish, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-887, Brazil
| | | | - Claudia Vianna Maurer-Morelli
- School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-887, Brazil
- Laboratory of Zebrafish, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-887, Brazil
| | - Jose Luiz Costa
- Campinas Poison Control Center, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-881, Brazil
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo 13083-871, Brazil
| |
Collapse
|
2
|
Gil-Martins E, Barbosa DJ, Cagide F, Remião F, Borges F, Silva R. Sublethal Concentrations of 2C-I and 25I-NBOMe Designer Drugs Impact Caenorhabditis elegans Development and Reproductive Behavior. Int J Mol Sci 2025; 26:3039. [PMID: 40243676 PMCID: PMC11988394 DOI: 10.3390/ijms26073039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Designer drugs like 2C-I and 25I-NBOMe have emerged as potent psychoactive substances, with several reports linking their consumption to severe poisoning and fatalities. However, there is limited information on their toxicity, particularly in in vivo models. In this manuscript, we evaluate the survival, developmental, and reproductive impact of these designer drugs on the model organism Caenorhabditis elegans (C. elegans). For this purpose, adult worms synchronized at the L1 stage were exposed to growing concentrations of 2C-I and 25I-NBOMe. The animal survival rate and the putative effects of the drugs on C. elegans development and reproductive behavior were assessed after 24 h of exposure. A concentration-dependent decrease in animal survival was observed. 25I-NBOMe was approximately six times more toxic than 2C-I (LC50 values-1.368 mM for 2C-I and 0.236 mM for 25I-NBOMe). Furthermore, sublethal concentrations of both drugs delayed animal development and reduced the total progeny but not its survival. Overall, these findings underscore the developmental and reproductive risks associated with exposure to 2C-I and 25I-NBOMe, even at sublethal concentrations.
Collapse
Affiliation(s)
- Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.G.-M.); (F.R.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Daniel José Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal;
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.G.-M.); (F.R.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.G.-M.); (F.R.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Ribeiro O, Félix L, Ribeiro C, Torres-Ruiz M, Tiritan ME, Gonçalves VMF, Langa I, Carrola JS. Unveil the toxicity induced on early life stages of zebrafish (Danio rerio) exposed to 3,4-methylenedioxymethamphetamine (MDMA) and its enantiomers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176906. [PMID: 39423890 DOI: 10.1016/j.scitotenv.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The increased detection of the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) in aquatic ecosystems, has raised concern worldwide about its possible negative impacts on wildlife. MDMA is produced as racemate but its enantioselective effects on non-target organisms are poorly understood. Therefore, this study aimed to provide a comprehensive study of the toxicity of MDMA and its enantiomers in the early life stages of zebrafish (Danio rerio). Zebrafish embryos (≈3 h post fertilization) were exposed to different concentrations (0.02, 0.2, 2, 20, and 200 μg/L) of (R,S)-MDMA and both pure enantiomers. Both enantiomers induced effects on embryonic development, DNA integrity, and behaviour and enantioselective effects were noted. (S)-MDMA exhibits higher toxic effects on embryonic development level with increased mortality and severity of teratogenic effects, and behavioural abnormalities in acoustic startle-habituation response. (R)-MDMA affected general activity and avoidance behaviour, showing greater inhibitory effects on behavioural activity. Additionally, (R,S)-MDMA induced higher genotoxic effects than the two isolated enantiomers. These results are of concern at populational levels since effects on mortality, development, and behaviour were observed even at environmentally relevant concentrations, which can cause a reduction of larval viability and in the number of individuals in each generation, and an increase in the risk of predation of the organisms. Yet, the bioaccumulation studies showed that MDMA is not accumulated in zebrafish. Therefore, this work demonstrated for the first time the occurrence of MDMA enantiotoxicity in the early life stages of zebrafish, which should be considered in further environmental risk assessments involving fish species or other non-target aquatic organisms.
Collapse
Affiliation(s)
- Ondina Ribeiro
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Centre for Functional Ecology, Department of Life Sciences, 3000-456 Coimbra, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal
| | - Cláudia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - Monica Torres-Ruiz
- Toxicology Department, National Centre for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Maria Elizabeth Tiritan
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Virgínia M F Gonçalves
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - Ivan Langa
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - João Soares Carrola
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal.
| |
Collapse
|
4
|
Mukherjee S, Mohanty AK, Chinnadurai RK, Barman DD, Poddar A. Zebrafish: A Cost-Effective Model for Enhanced Forensic Toxicology Capabilities in Low- and Middle-Income Countries. Cureus 2024; 16:e76223. [PMID: 39845220 PMCID: PMC11751116 DOI: 10.7759/cureus.76223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
Low- and middle-income countries (LMICs) are increasingly challenged by the rising burden of medicolegal cases. Traditional forensic infrastructure and in vivo rodent models often have significant limitations due to high costs and ethical concerns. As a result, zebrafish (Danio rerio) are gaining popularity as an attractive alternative model for LMICs because of their cost-effectiveness and practical advantages. Zebrafish have a lower acquisition cost, require less demanding husbandry, and have rapid development cycles, all of which facilitate faster and more economical toxicological studies, even in limited laboratory space. Additionally, the optical transparency of zebrafish embryos and larvae allows for non-invasive in vivo observations, reducing the need for extra resources. Research has shown that zebrafish can effectively investigate the behavioral, developmental, and cardiotoxic effects of various novel psychoactive substances (NPSs), including synthetic opioids, cathinones, and hallucinogens. They also excel in metabolic profiling, producing a broader range of metabolites than other models, with significant overlap in human metabolism. The presence of mammalian-like metabolic enzymes further positions zebrafish as a valuable tool for understanding human NPS metabolism and predicting potential effects. Notably, they can identify metabolites that traditional models may not detect, underscoring their potential for novel metabolite discovery. Despite these advantages, standardizing data collection protocols and addressing interlaboratory variability are crucial challenges that must be overcome for the widespread adoption of the zebrafish model. However, ongoing global efforts are paving the way to address these limitations and ensure the successful integration of zebrafish models into the field of forensic toxicology. This review highlights the potential of zebrafish as a cost-effective and versatile model for LMICs, emphasizing their growing application in NPS research and forecasting broader adoption in forensic toxicology.
Collapse
Affiliation(s)
- Sourik Mukherjee
- Zebrafish Research Unit, Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND
| | - Aman K Mohanty
- Zebrafish Research Unit, Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND
| | - Raj Kumar Chinnadurai
- Zebrafish Research Unit, Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND
| | - Dipayan Deb Barman
- Forensic Medicine and Toxicology, Shri Sathya Sai Medical College and Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND
| | - Abhijit Poddar
- Zebrafish Research Unit, Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND
| |
Collapse
|
5
|
Morais Costa NE, Dos Santos PHC, Silva Medeiros VG, Guimarães AS, Caldas Santos JC, Lins Freire NM, da Silva JCS, de Aquino TM, Modolo LV, Alberto EE, de Fátima Â. Synthesis and anti-ureolitic activity of Biginelli adducts derived from formylphenyl boronic acids. Bioorg Chem 2024; 152:107735. [PMID: 39213798 DOI: 10.1016/j.bioorg.2024.107735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Urease is a metalloenzyme that contains two Ni(II) ions in its active site and catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The development of effective urease inhibitors is crucial not only for mitigating nitrogen losses in agriculture but also for offering an alternative treatment against infections caused by resistant pathogens that utilize urease as a virulence factor. This study focuses on synthesizing and investigating the urease inhibition potential of Biginelli Adducts bearing a boric acid group. An unsubstituted or hydroxy-substituted boronic group in the Biginelli adducts structure enhances the urease inhibitory activity. Biophysical and kinetics studies revealed that the best Biginelli adduct (4e; IC50 = 132 ± 12 µmol/L) is a mixed inhibitor with higher affinity to the urease active site over an allosteric one. Docking studies confirm the interactions of 4e with residues essential for urease activity and demonstrate its potential to coordinate with the nickel atoms through the oxygen atoms of carbonyl or boronic acid groups. Overall, the Biginelli adduct 4e shows great potential as an additive for developing enhanced efficiency fertilizers and/or for medical applications.
Collapse
Affiliation(s)
- Nathália Evelyn Morais Costa
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Pedro Henrique Costa Dos Santos
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Victorya Gabryelle Silva Medeiros
- Laboratório de Instrumentação e Desenvolvimento em Química Analítica, LINQA, Instituto de Químico e Biotecnologia, 57072-900 Maceió, AL, Brazil
| | - Ari Souza Guimarães
- Laboratório de Instrumentação e Desenvolvimento em Química Analítica, LINQA, Instituto de Químico e Biotecnologia, 57072-900 Maceió, AL, Brazil
| | - Josué Carinhanha Caldas Santos
- Laboratório de Instrumentação e Desenvolvimento em Química Analítica, LINQA, Instituto de Químico e Biotecnologia, 57072-900 Maceió, AL, Brazil
| | - Nathalia Monteiro Lins Freire
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Luzia V Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo E Alberto
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
de Azevedo Teotônio Cavalcanti M, Da Silva Menezes KJ, De Oliveira Viana J, de Oliveira Rios É, Corrêa de Farias AG, Weber KC, Nogueira F, Dos Santos Nascimento IJ, de Moura RO. Current trends to design antimalarial drugs targeting N-myristoyltransferase. Future Microbiol 2024; 19:1601-1618. [PMID: 39440556 DOI: 10.1080/17460913.2024.2412397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Malaria is a disease caused by Plasmodium spp., of which Plasmodium falciparum and Plasmodium vivax are the most prevalent. Unfortunately, traditional and some current treatment regimens face growing protozoan resistance. Thus, searching for and exploring new drugs and targets is necessary. One of these is N-myristoyltransferase (NMT). This enzyme is responsible for the myristoylation of several protein substrates in eukaryotic cells, including Plasmodium spp., thus enabling the assembly of protein complexes and stabilization of protein-membrane interactions. Given the importance of this target in developing new antiparasitic drugs, this review aims to explore the recent advances in the design of antimalarial drugs to target Plasmodium NMT.
Collapse
Affiliation(s)
- Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
| | - Karla Joane Da Silva Menezes
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Postgraduate Program of Drug Development & Technology Innovation, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Jéssika De Oliveira Viana
- Postgraduate Program of Chemistry, Department of Chemistry, Federal University of Paraíba, João Pessoa, 58051-970, Brazil
| | | | - Arthur Gabriel Corrêa de Farias
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
| | - Karen Cacilda Weber
- Postgraduate Program of Chemistry, Department of Chemistry, Federal University of Paraíba, João Pessoa, 58051-970, Brazil
| | - Fatima Nogueira
- Universidade NOVA de Lisboa, UNL, Global Health & Tropical Medicine, GHTM, Associate Laboratory in Translation & Innovation Towards Global Health, LAREAL, Instituto de Higiene e Medicina Tropical, IHMT, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
- LAQV-REQUIMTE, MolSyn, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Igor José Dos Santos Nascimento
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Cesmac University Center, Pharmacy Department, Maceió, 57051-180, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Postgraduate Program of Drug Development & Technology Innovation, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| |
Collapse
|
7
|
Xiang J, Wen D, Zhai W, Zhao J, Xiang P, Ma C, Shi Y. Metabolic characterization of 25X-NBOH and 25X-NBOMe phenethylamines based on UHPLC-Q-Exactive Orbitrap MS in human liver microsomes. J Pharm Biomed Anal 2024; 242:116020. [PMID: 38359493 DOI: 10.1016/j.jpba.2024.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The types and quantities of new psychoactive substances synthesized based on structural modifications have increased rapidly in recent years and pose a great challenge to clinical and forensic laboratories. N-benzyl derivatives of phenethylamines, 25B-NBOH, 25E-NBOH, 25H-NBOH, and 25iP-NBOMe have begun to flow into the black market and have caused several poisoning cases and even fatal cases. The aim of this study was to avoid false negative results by detecting the parent drug and its metabolites to extend the detection window in biological matrices and provide basic data for the simultaneous determination of illegal drugs and metabolites in forensic and emergency cases. To facilitate the comparison of metabolic characteristics, we divided the four compounds into two groups of types, 25X-NBOH and 25X-NBOMe. The in vitro phase I and phase II metabolism of these four compounds was investigated by incubating 10 mg mL-1 pooled human liver microsomes with co-substrates for 180 min at 37 ℃, and then analyzing the reaction mixture using ultrahigh-performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry. In total, 70 metabolites were obtained for the four compounds. The major biotransformations were O-demethylation, hydroxylation, dehydrogenation, N-dehydroxybenzyl, N-demethoxybenzyl, oxidate transformation to ketone and carboxylate, glucuronidation, and their combination reactions. We recommended the major metabolites with high peak area ratio as biomarkers, B2-1 (56.61%), B2-2 (17.43%) and B6 (17.78%) for 25B-NBOH, E2-1 (42.81%), E2-2 (34.90%) and E8-2 (10.18%) for 25E-NBOH, H5 (49.28%), H2-1 (21.54%), and H1 (18.37%) for 25H-NBOH, P3-1 (10.94%), P3-2 (33.18%), P3-3 (14.85%) and P12-2 (23.00%) for 25iP-NBOMe. This is a study to evaluate their metabolic characteristics in detail. Comparative analysis of the N-benzyl derivatives of phenethylamines provided basic data for elucidating their pharmacology and toxicity. Timely analysis of the metabolic profiles of compounds with abuse potential will facilitate the early development of regulatory measures.
Collapse
Affiliation(s)
- Jiahong Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai 200063, PR China; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei Province, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei Province, PR China
| | - Wenya Zhai
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai 200063, PR China
| | - Junbo Zhao
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai 200063, PR China
| | - Ping Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai 200063, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei Province, PR China
| | - Yan Shi
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai 200063, PR China.
| |
Collapse
|
8
|
Melo LM, de Barros WA, de Fátima Â, Giusti FCV, Giusti-Paiva A. Exposure to the psychedelic substance 25 H-NBOMe disrupts maternal care in lactating rats and subsequently impairs the social play behavior of the offspring. Behav Brain Res 2024; 465:114924. [PMID: 38423256 DOI: 10.1016/j.bbr.2024.114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Given the critical role of maternal care in the neurodevelopment of offspring, this study aimed to investigate the effects of the psychedelic substance 25 H-NBOMe on maternal behavior in lactating rats and its subsequent impact on the social and neurodevelopmental behavior of the offspring. We administered two different dosages of 25 H-NBOMe (0.3 mg/kg and 1.0 mg/kg; i,p,) to lactating rats and observed changes in maternal behaviors, such as nest-building and pup retrieval, and in offspring behaviors, including social play. Behavioral assessments were complemented by physiological measurements to rule out general health or nutritional decline. 25 H-NBOMe significantly disrupted maternal behaviors, including nest-building and pup retrieval, without affecting the weight of dams or offspring. Offspring of exposed dams exhibited reduced social play behavior. Higher doses led to more pronounced disruptions, while lower doses, despite not visibly affecting maternal behavior, still impacted offspring behavior, suggesting potential direct effects of 25 H-NBOMe. The study highlights the potential risks associated with the use of 25 H-NBOMe during lactation, emphasizing its detrimental impact on maternal care and offspring development. These findings contribute to understanding the neurobiological effects of psychedelic substances during critical developmental periods and underscore the importance of avoiding their use.
Collapse
Affiliation(s)
- Lidia M Melo
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Wellington A de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
9
|
Viana LPS, Naves GM, Medeiros IG, Guimarães AS, Sousa ES, Santos JCC, Freire NML, de Aquino TM, Modolo LV, de Fátima Â, da Silva CM. Synergizing structure and function: Cinnamoyl hydroxamic acids as potent urease inhibitors. Bioorg Chem 2024; 146:107247. [PMID: 38493635 DOI: 10.1016/j.bioorg.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
The current investigation encompasses the structural planning, synthesis, and evaluation of the urease inhibitory activity of a series of molecular hybrids of hydroxamic acids and Michael acceptors, delineated from the structure of cinnamic acids. The synthesized compounds exhibited potent urease inhibitory effects, with IC50 values ranging from 3.8 to 12.8 µM. Kinetic experiments unveiled that the majority of the synthesized hybrids display characteristics of mixed inhibitors. Generally, derivatives containing electron-withdrawing groups on the aromatic ring demonstrate heightened activity, indicating that the increased electrophilicity of the beta carbon in the Michael Acceptor moiety positively influences the antiureolytic properties of this compounds class. Biophysical and theoretical investigations further corroborated the findings obtained from kinetic assays. These studies suggest that the hydroxamic acid core interacts with the urease active site, while the Michael acceptor moiety binds to one or more allosteric sites adjacent to the active site.
Collapse
Affiliation(s)
- Luciana P S Viana
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanna M Naves
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isabela G Medeiros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ari S Guimarães
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Emilly S Sousa
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Josué C C Santos
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Nathália M L Freire
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Thiago M de Aquino
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Luzia V Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cleiton M da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Falfushynska H, Rychter P, Boshtova A, Faidiuk Y, Kasianchuk N, Rzymski P. Illicit Drugs in Surface Waters: How to Get Fish off the Addictive Hook. Pharmaceuticals (Basel) 2024; 17:537. [PMID: 38675497 PMCID: PMC11054822 DOI: 10.3390/ph17040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The United Nations World Drug Report published in 2022 alarmed that the global market of illicit drugs is steadily expanding in space and scale. Substances of abuse are usually perceived in the light of threats to human health and public security, while the environmental aspects of their use and subsequent emissions usually remain less explored. However, as with other human activities, drug production, trade, and consumption of drugs may leave their environmental mark. Therefore, this paper aims to review the occurrence of illicit drugs in surface waters and their bioaccumulation and toxicity in fish. Illicit drugs of different groups, i.e., psychostimulants (methamphetamines/amphetamines, cocaine, and its metabolite benzoylecgonine) and depressants (opioids: morphine, heroin, methadone, fentanyl), can reach the aquatic environment through wastewater discharge as they are often not entirely removed during wastewater treatment processes, resulting in their subsequent circulation in nanomolar concentrations, potentially affecting aquatic biota, including fish. Exposure to such xenobiotics can induce oxidative stress and dysfunction to mitochondrial and lysosomal function, distort locomotion activity by regulating the dopaminergic and glutamatergic systems, increase the predation risk, instigate neurological disorders, disbalance neurotransmission, and produce histopathological alterations in the brain and liver tissues, similar to those described in mammals. Hence, this drugs-related multidimensional harm to fish should be thoroughly investigated in line with environmental protection policies before it is too late. At the same time, selected fish species (e.g., Danio rerio, zebrafish) can be employed as models to study toxic and binge-like effects of psychoactive, illicit compounds.
Collapse
Affiliation(s)
- Halina Falfushynska
- Faculty of Economics, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Piotr Rychter
- Faculty of Science & Technology, Jan Dlugosz University in Częstochowa, Armii Krajowej 13/15, 42200 Czestochowa, Poland;
| | | | - Yuliia Faidiuk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53114 Wrocław, Poland;
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2 Prospekt Hlushkov, 03022 Kyiv, Ukraine
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny Str., 03143 Kyiv, Ukraine
| | - Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University, 61712 Poznań, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60806 Poznań, Poland;
| |
Collapse
|
11
|
Ferri BG, de Novais CO, Bonani RS, de Barros WA, de Fátima Â, Vilela FC, Giusti-Paiva A. Psychoactive substances 25H-NBOMe and 25H-NBOH induce antidepressant-like behavior in male rats. Eur J Pharmacol 2023; 955:175926. [PMID: 37479015 DOI: 10.1016/j.ejphar.2023.175926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Ring-substituted phenethylamines are believed to induce psychedelic effects primarily by interacting with 5-hydroxytryptamine 2 (5-HT2A) receptors in the brain. We assessed the effect of the psychedelic substances 25H-NBOMe and 25H-NBOH on the depressive-like behavior of male adult rats. Naive Wistar rats were divided into groups to assess the effects of different doses (0.1 mg/kg, 1 mg/kg, and 3 mg/kg) of 25H-NBOMe and 25H-NBOH. The substances were administered intraperitoneally and the hallucinogenic properties were evaluated using the head twitch response test (HTR). Additionally, we assessed their locomotor activity in the open field test (OFT) and depressive-like behavior in the forced swimming test (FST). Our data demonstrated that all doses of synthetic psychedelic substances evaluated exhibited hallucinogenic effects. Interestingly, we observed that both 25H-NBOMe and 25H-NBOH produced a significantly greater motivation to escape in the FST, compared to the control group. Furthermore, we found no significant differences in locomotor activity during the OFT, except for the dose of 3 mg/kg, which induced a reduction in locomotion. This study provides new insights into a potential psychedelic substance, specifically by demonstrating the previously unknown antidepressant properties of a single dose of both 25H-NBOMe and 25H-NBOH. These findings contribute to the ongoing progress of experimental psychiatry toward developing safe and effective clinical practices in the field of psychedelics research.
Collapse
Affiliation(s)
- Barbara G Ferri
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Cintia O de Novais
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Raquel S Bonani
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Wellington A de Barros
- Instituto de Química da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Instituto de Química da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fabiana C Vilela
- Programa de Pós-Graduação Em Biociências (PPGB), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Alexandre Giusti-Paiva
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil; Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas da Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Cassiano LMG, Oliveira MDS, de Barros WA, de Fátima Â, Coimbra RS. Neurotoxic effects of hallucinogenic drugs 25H-NBOMe and 25H-NBOH in organotypic hippocampal cultures. Heliyon 2023; 9:e17720. [PMID: 37449113 PMCID: PMC10336585 DOI: 10.1016/j.heliyon.2023.e17720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction NBOMes and NBOHs are psychoactive drugs derived from phenethylamines and have hallucinogenic effects due to their strong agonism to serotonin 5-HT2A receptors. Although cases of toxicity associated with the recreational use of substituted phenethylamines are frequently reported, there is a lack of information on the possible neurotoxic effects of NBOMe and NBOH in the brain hippocampus, a major neurogenesis region. Objectives This study aimed at assessing the phenotypic and molecular effects of prolonged exposure of the hippocampus to the drugs 25H-NBOMe and 25H-NBOH. Methods The ex vivo organotypic culture model of hippocampal slices (OHC) was used to investigate, by immunofluorescence and confocal microscopy, and transcriptome analyses, the mechanisms associated with the neurotoxicity of 25H-NBOMe and 25H-NBOH. Results Reduction in the density of mature neurons in the OHCs occurred after two and seven days of exposure to 25H-NBOMe and 25H-NBOH, respectively. After the withdrawal of 25H-NBOMe, the density of mature neurons in the OHCs stabilized. In contrast, up to seven days after 25H-NBOH removal from the culture medium, progressive neuron loss was still observed in the OHCs. Interestingly, the exposure to 25H-NBOH induced progenitor cell differentiation, increasing the density of post-mitotic neurons in the OHCs. Corroborating these findings, the functional enrichment analysis of differentially expressed genes in the OHCs exposed to 25H-NBOH revealed the activation of WNT/Beta-catenin pathway components associated with neurogenesis. During and after the exposure to 25H-NBOMe or 25H-NBOH, gene expression patterns related to the activation of synaptic transmission and excitability of neurons were identified. Furthermore, activation of signaling pathways and biological processes related to addiction and oxidative stress and inhibition of the inflammatory response were observed after the period of drug exposure. Conclusion 25H-NBOMe and 25H-NBOH disrupt the balance between neurogenesis and neuronal death in the hippocampus and, although chemically similar, have distinct neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Larissa Marcely Gomes Cassiano
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
- Programa de Pós-Graduação em Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marina da Silva Oliveira
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| | - Wellington Alves de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Roney Santos Coimbra
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| |
Collapse
|
13
|
Lesne E, Muñoz-Bartual M, Esteve-Turrillas FA. Determination of synthetic hallucinogens in oral fluids by microextraction by packed sorbent and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2023:10.1007/s00216-023-04751-2. [PMID: 37219582 DOI: 10.1007/s00216-023-04751-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
A fast and simple procedure based on microextraction by packed sorbent (MEPS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the simultaneous quantification of 28 synthetic hallucinogens in oral fluids, including lysergic acid diethylamide and substances from NBOMe, NBOH, NBF, 2C, and substituted amphetamine categories. Extraction conditions such as type of sorbent, sample pH, number of charge/discharge cycles, and elution volume were studied. Hallucinogenic compounds were extracted from oral fluid samples using C18 MEPS, loading with 100 μL sample (adjusted to pH 7) in 3 cycles, washing with 100 μL deionized water, and eluting with 50 μL methanol in 1 cycle, giving quantitative recoveries and no significant matrix effects. Limits of detection from 0.09 to 1.22 μg L-1; recoveries from 80 to 129% performed in spiked oral fluid samples at 20, 50, and 100 μg L-1; and high precision with relative standard deviations lower than 9% were obtained. The proposed methodology was demonstrated to be appropriate for the simple and sensitive determination of NBOMe derivates and other synthetic hallucinogenic substances in oral fluid samples.
Collapse
Affiliation(s)
- Evan Lesne
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner St., 46100, Burjassot, Spain
| | - Miguel Muñoz-Bartual
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner St., 46100, Burjassot, Spain
| | | |
Collapse
|
14
|
Herian M, Świt P. 25X-NBOMe compounds - chemistry, pharmacology and toxicology. A comprehensive review. Crit Rev Toxicol 2023; 53:15-33. [PMID: 37115704 DOI: 10.1080/10408444.2023.2194907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Recently, a growing number of reports have indicated a positive effect of hallucinogenic-based therapies in different neuropsychiatric disorders. However, hallucinogens belonging to the group of new psychoactive substances (NPS) may produce high toxicity. NPS, due to their multi-receptors affinity, are extremely dangerous for the human body and mental health. An example of hallucinogens that have been lately responsible for many severe intoxications and deaths are 25X-NBOMes - N-(2-methoxybenzyl)-2,5-dimethoxy-4-substituted phenethylamines, synthetic compounds with strong hallucinogenic properties. 25X-NBOMes exhibit a high binding affinity to serotonin receptors but also to dopamine, adrenergic and histamine receptors. Apart from their influence on perception, many case reports point out systemic and neurological poisoning with these compounds. In humans, the most frequent side effects are tachycardia, anxiety, hypertension and seizures. Moreover, preclinical studies confirm that 25X-NBOMes cause developmental impairments, cytotoxicity, cardiovascular toxicity and changes in behavior of animals. Metabolism of NBOMes seems to be very complex and involves many metabolic pathways. This fact may explain the observed high toxicity. In addition, many analytical methods have been applied in order to identify these compounds and their metabolites. The presented review summarized the current knowledge about 25X-NBOMes, especially in the context of toxicity.
Collapse
Affiliation(s)
- Monika Herian
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Paweł Świt
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Katowice, Poland
| |
Collapse
|
15
|
Ribeiro O, Ribeiro C, Félix L, Gaivão I, Carrola JS. Effects of acute metaphedrone exposure on the development, behaviour, and DNA integrity of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49567-49576. [PMID: 36781667 PMCID: PMC10104909 DOI: 10.1007/s11356-023-25233-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
The presence of new psychoactive substances (NPS), like metaphedrone (3-MMC), in aquatic environments raises concern about the potential negative effects on ichthyofauna. Therefore, the aim of this study was to evaluate the potential effects of 3-MMC on zebrafish embryonic development, behaviour, and DNA integrity. For that, embryos were exposed during 96 h post-fertilization to 3-MMC (0.1, 1, 10, and 100 µg/L). Overall, an increase in the eye area of zebrafish larvae was observed for the concentrations of 1 μg/L (increase of 24%) and 100 μg/L (increase of 25%) in comparison with the control group. Genetic damage was noted at the highest concentration (100 µg/L) with an increase of DNA damage (increase of 48%) and hyperactivity and disorganised swimming pattern characterised by an increase in speed (increase of 49%), total distance moved (increase of 53%), and absolute turn angle (increase of 48%) of zebrafish larvae. These findings pointed that, at environmental low levels, 3-MMC harmful effects are not expected to occur during critical development life stages of fish.
Collapse
Affiliation(s)
- Ondina Ribeiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cláudia Ribeiro
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4585-116, Gandra, CRL, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício Do Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/N, 4050-208, Matosinhos, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Vila Real, Portugal
| | - Isabel Gaivão
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - João Soares Carrola
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Vila Real, Portugal.
- Department of Biology and Environment (DeBA/ECVA), University of Trás-os-Montes and Alto Douro, CITAB, Vila Real, Portugal.
| |
Collapse
|
16
|
Jo C, Joo H, Youn DH, Kim JM, Hong YK, Lim NY, Kim KS, Park SJ, Choi SO. Rewarding and Reinforcing Effects of 25H-NBOMe in Rodents. Brain Sci 2022; 12:1490. [PMID: 36358416 PMCID: PMC9688077 DOI: 10.3390/brainsci12111490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2023] Open
Abstract
The drug 25H-NBOMe is a new psychoactive substance (NPS). The use of these substances is likely to pose a threat to public health because they elicit effects similar to those of known psychoactive substances with similar chemical structures. However, data regarding the abuse potential of 25H-NBOMe are lacking. Here, we evaluated the abuse liability of 25H-NBOMe in rodents. The rewarding and reinforcing effects were evaluated through conditioned place preference (CPP) and self-administration (SA) tests after administration of 25H-NBOMe. To investigate the effects of 25H-NBOMe on the central nervous system, we determined the changes in dopamine levels by in vivo microdialysis. In the locomotor activity test, 25H-NBOme significantly increased locomotor activity in mice. In the place conditioning test, the 25H-NBOMe (0.1 and 0.5 mg/kg) groups showed a significantly increase in CPP in mice. In the SA test, the 25H-NBOMe (0.01 mg/kg) administered group showed a significant increased number of infusions and active lever presses. In microdialysis, the 25H-NBOMe (10 mg/kg) administered group was significantly increased in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sun Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Korea
| |
Collapse
|