1
|
Kalidass B, Nazeer AA, Mahalingam M, Raja RK, Lakshmanan DK. Exploring the pharmacokinetic, toxicity and anti-arthritic activity of bioactive polyphenols to mitigate the HIF-regulated angiogenic-pannus growth in rheumatoid arthritis. Int Immunopharmacol 2025; 158:114851. [PMID: 40373592 DOI: 10.1016/j.intimp.2025.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/22/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Current therapies for rheumatoid arthritis, including anti-inflammatory agents and immunomodulators, primarily target common inflammatory mechanisms. However, the efficacy of most bioactive compounds claimed to possess anti-arthritic properties remains mechanistically unproven, particularly against progressive conditions like pannus development. This study investigates the pharmacokinetics, toxicity, and impact of reported anti-arthritic polyphenols on HIF-regulated pannus development in rheumatoid arthritis through in silico and in vitro approaches. Eighty bioactive compounds with documented anti-arthritic properties were selected from the literature and subjected to sequential evaluation of pharmacodynamic and pharmacokinetic activity. The study identified five promising candidates qualified to perform in vivo toxicity and in vitro biochemical assays. Toxicity testing using Galleria mellonella larvae indicated dose-dependent effects on the midgut, with no mortality observed at doses up to 2000 mg/kg body weight. In vitro assays, including antioxidant and anti-inflammatory evaluations, further validated the therapeutic potential of these compounds. Compounds that satisfied all predictive criteria were subjected to molecular interaction analysis against hub-gene targets implicated in HIF-regulated angiogenesis in rheumatoid arthritis. RA-associated proteins were identified from NCBI-GEO and DisGeNET (GWAS) databases. Functional annotation and protein-protein interaction analysis identified IL-6, IL-1β, HIF-1α, PPARG, and TIMP1 as key hub targets. Molecular docking using PyRx revealed the binding affinities of the selected bioactive compounds against these targets. These findings suggest that the screened bioactive polyphenols exhibit low toxicity and hold potential as regulators of HIF-mediated angiogenesis in rheumatoid arthritis, offering a novel therapeutic approach for progressive disease management.
Collapse
Affiliation(s)
- Bharathi Kalidass
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu 638401, India
| | - Abdul Azeez Nazeer
- Laboratory of Pharmaceutical Sciences, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Malathi Mahalingam
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu 638401, India
| | - Ramalingam Karthik Raja
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India
| | - Dinesh Kumar Lakshmanan
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu 638401, India; Department of Pharmaceutical Engineering, Center for Research and Development, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamil Nadu 636308, India.
| |
Collapse
|
2
|
Singh AV, Ansari MHD, Dey AK, Laux P, Samal SK, Malgaretti P, Mohapatra SR, Busse M, Suar M, Tisato V, Gemmati D. Bioinspired Soft Machines: Engineering Nature's Grace into Future Innovations. J Funct Biomater 2025; 16:158. [PMID: 40422823 DOI: 10.3390/jfb16050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025] Open
Abstract
This article explores the transformative advances in soft machines, where biology, materials science, and engineering have converged. We discuss the remarkable adaptability and versatility of soft machines, whose designs draw inspiration from nature's elegant solutions. From the intricate movements of octopus tentacles to the resilience of an elephant's trunk, nature provides a wealth of inspiration for designing robots capable of navigating complex environments with grace and efficiency. Central to this advancement is the ongoing research into bioinspired materials, which serve as the building blocks for creating soft machines with lifelike behaviors and adaptive capabilities. By fostering collaboration and innovation, we can unlock new possibilities in soft machines, shaping a future where robots seamlessly integrate into and interact with the natural world, offering solutions to humanity's most pressing challenges.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Mohammad Hasan Dad Ansari
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56025 Pontedera, Italy
| | | | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institute, 17177 Stockholm, Sweden
- Centre for Applied Research in Data Science, Indian Institute of Technology-Ropar, Ropar 14001, India
| | - Paolo Malgaretti
- Helmholtz-Institut Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstr.1, 91058 Erlangen, Germany
| | | | - Madleen Busse
- Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Gayakvad B, Chauhan K, Bhatt V, Pandya DJ, Chauhan S, Khunt D, Vegad UG. In-silico screening, molecular dynamics simulation and ADME evaluation of Onosma bracteata Wall. for antiviral activity against Chandipura virus. In Silico Pharmacol 2025; 13:71. [PMID: 40291444 PMCID: PMC12031677 DOI: 10.1007/s40203-025-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Chandipura Virus (CHPV) poses a significant public health challenge in India, specifically impacting children who are at a higher risk of developing Acute Encephalitis Syndrome (AES). There is a substantial lack of effective antiviral treatments for CHPV. This study delves into the potential antiviral properties of Onosma bracteata Wall., a traditional medicinal plant. Utilizing in-silico techniques, such as molecular docking with AutoDock Vina, and molecular dynamics simulations using GROMACS and SWISS-MODEL repository, we evaluated the interactions between the phytochemicals of O. bracteata and the N protein of CHPV. Our evaluation has uncovered several important compounds: Pulmonarioside C, Eritrichin, and P-Coumarinic Acid Ester of Trigonotin A. Phytochemicals including Pulmonarioside C, Eritrichin, and P-Coumarinic Acid Ester of Trigonotin A exhibited significant binding affinities of -8.7, -7.5, and -7.4 kcal/mol, respectively, with the N protein of CHPV. The binding energies exceed those of conventional antiviral medications, including Remdesivir (-7.4 kcal/mol) and Nevirapine (-6.0 kcal/mol). Nonetheless, the computational methods exhibit limitations, including insufficient accuracy in solvation effects and dependence on modeled proteins. Although the in-silico findings are encouraging, it is crucial to conduct experimental validation via in vitro and in vivo studies to verify their efficacy, as the experiments are conducted on a modelled protein. This study emphasizes the potential of integrating traditional medicine with computational tools to develop innovative antiviral therapies, despite existing limitations. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00358-w.
Collapse
Affiliation(s)
- Bhavinkumar Gayakvad
- School of Pharmacy, Gujarat Technological University, Gandhinagar Campus, E-4, Electronics GIDC, Sector 26, Gandhinagar, Gujarat 382028 India
| | - Kshipra Chauhan
- School of Applied Sciences and Technology, Gujarat Technological University-Chandkheda, Ahmedabad, 382424 India
| | - Vaibhav Bhatt
- School of Applied Sciences and Technology, Gujarat Technological University-Chandkheda, Ahmedabad, 382424 India
| | - Devang J. Pandya
- Intervein Research Labs, Sarkhej - Gandhinagar Hwy, Ahmedabad, Gujarat 380015 India
| | - Sanjay Chauhan
- School of Pharmacy, Gujarat Technological University, Gandhinagar Campus, E-4, Electronics GIDC, Sector 26, Gandhinagar, Gujarat 382028 India
| | - Dignesh Khunt
- School of Pharmacy, Gujarat Technological University, Gandhinagar Campus, E-4, Electronics GIDC, Sector 26, Gandhinagar, Gujarat 382028 India
| | - Udaykumar G. Vegad
- School of Pharmacy, Gujarat Technological University, Gandhinagar Campus, E-4, Electronics GIDC, Sector 26, Gandhinagar, Gujarat 382028 India
| |
Collapse
|
4
|
Zhou J, Li C, Yue Y, Kim YK, Park S. Multitarget Natural Compounds for Ischemic Stroke Treatment: Integration of Deep Learning Prediction and Experimental Validation. J Chem Inf Model 2025; 65:3309-3323. [PMID: 40084909 DOI: 10.1021/acs.jcim.5c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Ischemic stroke's complex pathophysiology demands therapeutic approaches targeting multiple pathways simultaneously, yet current treatments remain limited. We developed an innovative drug discovery pipeline combining a deep learning approach with experimental validation to identify natural compounds with comprehensive neuroprotective properties. Our computational framework integrated SELFormer, a transformer-based deep learning model, and multiple deep learning algorithms to predict NC bioactivity against seven crucial stroke-related targets (ACE, GLA, MMP9, NPFFR2, PDE4D, and eNOS). The pipeline encompassed IC50 predictions, clustering analysis, quantitative structure-activity relationship (QSAR) modeling, and uniform manifold approximation and projection (UMAP)-based bioactivity profiling followed by molecular docking studies and experimental validation. Analysis revealed six distinct NC clusters with unique molecular signatures. UMAP projection identified 11 medium-activity (6 < pIC50 ≤ 7) and 57 high-activity (pIC50 > 7) compounds, with molecular docking confirming strong correlations between binding energies and predicted pIC50 values. In vitro studies using NGF-differentiated PC12 cells under oxygen-glucose deprivation demonstrated significant neuroprotective effects of four high-activity compounds: feruloyl glucose, l-hydroxy-l-tryptophan, mulberrin, and ellagic acid. These compounds enhanced cell viability, reduced acetylcholinesterase activity and lipid peroxidation, suppressed TNF-α expression, and upregulated BDNF mRNA levels. Notably, mulberrin and ellagic acid showed superior efficacy in modulating oxidative stress, inflammation, and neurotrophic signaling. This study establishes a robust deep learning-driven framework for identifying multitarget natural therapeutics for ischemic stroke. The validated compounds, particularly mulberrin and ellagic acid, are promising for stroke treatment development. Our findings demonstrate the effectiveness of integrating computational prediction with experimental validation in accelerating drug discovery for complex neurological disorders.
Collapse
Affiliation(s)
- Junyu Zhou
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
- Department of Bioconvergence, Hoseo University, Asan 31499, South Korea
| | - Chen Li
- Department of Bioconvergence, Hoseo University, Asan 31499, South Korea
| | - Yu Yue
- Department of Bioconvergence, Hoseo University, Asan 31499, South Korea
| | - Yong Kwan Kim
- Department of Information and Communication Engineering, Hoseo University, Asan 31499, South Korea
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, South Korea
- Dept. of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
| |
Collapse
|
5
|
Mujeeb S, Singh K, Al-Zrkani MK, Al-Fahad D, Hasan SM, Shouber MA, Ahmad F, Hameed HN, Iqbal D, Kamal M. Chroman-Schiff base derivatives as potential Anti-Tubercular Agents: In silico studies, Synthesis, and Biological evaluation. Bioorg Chem 2025; 157:108249. [PMID: 39965447 DOI: 10.1016/j.bioorg.2025.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Tuberculosis (TB) continues to pose a significant public health challenge worldwide. Hydrazide-containing compounds have demonstrated considerable potential as anti- tubercular agents. In this study, we designed, synthesized, and evaluated a series of chroman- Schiff base derivatives, integrating a chroman scaffold with substituted phenyl moieties, as potential therapeutic candidates against TB. In silico studies were conducted to assess the binding interactions of the synthesized derivatives, specifically their R- and S-isomers, with the tuberculosis target protein InhA (PDB ID: 1ZID). Molecular docking revealed that two R-isomer derivatives, SM-5A and SM-6A, exhibited superior binding affinities (-10.6 kcal/mol) compared to the reference ligand INH-NADH (-10.3 kcal/mol) and the natural substrate NADH (-7.5 kcal/mol). Molecular dynamics simulations confirmed the long-term stability of these compound-protein complexes over a 100 ns trajectory, further substantiating their potential as stable inhibitors. The structures of the synthesized derivatives were validated using spectroscopic techniques, including FTIR, 13C NMR, 1H NMR, and HR-MS. Biological evaluation via in vitro anti-tubercular assays against Mycobacterium tuberculosis H37Rv (using the Microplate Alamar Blue Assay) demonstrated that several RRR-isomers displayed notable activity. Among them, SM-2 and SM-5 showed the most potent effects, with minimum inhibitory concentrations (MIC) of 32 µg/mL, comparable to standard anti-tubercular drugs such as isoniazid, ethambutol, and rifampicin. These findings highlight the chroman-schiff base scaffold as a promising foundation for the development of novel anti-tubercular agents. The integration of computational and experimental approaches in this study underscores the potential of these derivatives for further optimization and development into effective anti-tubercular therapeutics.
Collapse
Affiliation(s)
- Samar Mujeeb
- Department of Pharmaceutical Chemistry, Hygia Institute of Pharmaceutical Education &Research, Lucknow, Uttar Pradesh 226020, India.
| | - Kuldeep Singh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Martha K Al-Zrkani
- Department of Animal Production, College of Agriculture, Wasit University, Wasit 52001, Iraq
| | - Dhurgham Al-Fahad
- Department of Pathological analysis, college of Science, University of Thi-Qar, Thi-Qar 64001, Iraq
| | - Syed Misbahul Hasan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Marwah Al Shouber
- Department of Pharmacy, Kut University College, Kut, Wasit, 52001, Iraq
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713 Saudi Arabia
| | - Husian Njem Hameed
- Department of Animal Production, College of Agriculture, Wasit University, Wasit 52001, Iraq
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
6
|
Wahyuningsih N, Fatchiyah F, Turhadi T, Widodo N, Rahayu S, Rifa'i M. Virtual screening of polyherbal compounds for AKT1 and HSPB1 inhibition in breast cancer apoptosis pathway. Comput Biol Chem 2025; 115:108374. [PMID: 39929029 DOI: 10.1016/j.compbiolchem.2025.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/12/2025]
Abstract
Breast cancer is still a worldwide health issue, demanding the development of tailored, low-toxicity medicines. This study looks at the ability of a polyherbal formulation containing Ziziphus mauritiana, Nigella sativa, Phyllanthus niruri, Curcuma longa, and Annona muricata to inhibit the AKT1 and HSPB1 proteins that are involved in cancer growth. Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) found 23 bioactive chemicals, including 4-Coumaric acid, isovanillic acid, and confertin, exhibiting drug-like properties, membrane permeability, and anticancer bioactivity. Molecular docking demonstrated that these drugs have stable interactions with AKT1, whereas HSPB1 has modest stability. Based on molecular dynamics simulations, the most attractive possibilities were 4-coumaric acid and isovanillic acid, which had consistent binding stability and good energy profiles. Confertin has a lower interaction stability than the other compounds. These findings show that polyherbal substances successfully target essential apoptosis pathways in breast cancer. This work uses a combination of drug-likeness, bioactivity predictions, and computational analytics to identify new bioactive chemicals that might serve as the foundation for alternative breast cancer therapy. Future studies should confirm these findings by doing in vitro and in vivo trials to assess clinical applications. This novel approach emphasizes the potential of natural products in overcoming the limits of traditional cancer therapies, presenting a possible route for generating low-toxicity therapeutic alternatives.
Collapse
Affiliation(s)
- Nadia Wahyuningsih
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, East Java 65145, Indonesia
| | - Fatchiyah Fatchiyah
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, East Java 65145, Indonesia; Research Center of Smart Molecules of Natural Genetic Resources, Universitas Brawijaya, Malang, East Java 65145, Indonesia
| | - Turhadi Turhadi
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, East Java 65145, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, East Java 65145, Indonesia
| | - Sri Rahayu
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, East Java 65145, Indonesia
| | - Muhaimin Rifa'i
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, East Java 65145, Indonesia.
| |
Collapse
|
7
|
Seukep AJ, Mbuntcha HG, Matieta VY, Kuete V, Guo MQ. HPLC-ESI-QTOF-MS profiling of antibacterial bioactive solvent fractions of Senna alata (L.) roxb (Fabaceae) leaves, and in silico prediction of pharmacokinetic, drug-likeness, and toxicity of major phyto-components. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119492. [PMID: 39952420 DOI: 10.1016/j.jep.2025.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are a rich source of new antibacterial leads. One such plant is Senna alata (L.) Roxb (Fabaceae), a valuable medicinal tree known in folk medicine for its effectiveness in treating various ailments such as ringworms, wounds, diabetes, skin diseases, hypertension, malaria, mycosis, and bacterial diseases. AIM OF THE STUDY This study assesses the antibacterial and antibiotic-resistance reversal properties of S. alata leaf extracts against 32 multi-drug resistant (MDR) clinically relevant bacterial strains and clinical isolates. MATERIALS AND METHODS The hydromethanol extract (70%) was obtained through ultrasound-assisted extraction, followed by partitioning with solvents of increasing polarity, specifically petroleum ether (PE), ethyl acetate (EA), n-butanol (n-BuOH), and water, to isolate different fractions. Antibacterial and combination tests were conducted using the broth microdilution method. Subsequently, high-resolution HPLC-ESI-QTOF-MS analysis was performed to profile the bioactive secondary metabolites in the most active fractions. In addition, the pharmacokinetic (PK) properties, drug-likeness, and medicinal chemistry of the key phytoconstituents were predicted in silico using SwissADME. Moreover, we utilized the ProTox-II web server to predict the toxicity profile of the potential drug candidates. RESULTS The herbal fractions, except for the water fraction, showed remarkable antibacterial activity, with MICs ranging from 16 to 1024 μg/mL. The ethyl acetate (SA-EA) and n-butanol (SA-n-BuOH) fractions were the most potent, with the overall most significant effects recorded with SA-EA (with MIC <100 μg/mL on 31 out of the 32 MDR studied strains). Additionally, SA-EA enhanced the efficacy of antibiotics, leading to up to a 64-fold reduction in MICs (of chloramphenicol, imipenem, ciprofloxacin, cefepime, and doxycycline) in combination. A total of 27 and 36 compounds were tentatively identified from SA-EA and SA-n-BuOH, respectively, with the majority being phenolic compounds known for their antibacterial properties. Furthermore, 17 phytochemicals were reported for the first time in S. alata fractions. Seven metabolites, including phloretin, 7,4'-dihydroxyflavone, isorhamnetin, apigenin, genistein, naringenin, and lactarorufin B, emerged as potential drug candidates that satisfy most of the drug candidacy criteria and PK profile amongst which apigenin, genistein, and naringenin depicted the best safety profile. CONCLUSION The positive outcomes observed in the antibacterial activity assays, coupled with the presence of bioactive metabolites and emerging drug leads in these fractions, underscore the importance of selecting S. alata for the discovery and development of new antibacterial agents targeting MDR phenotypes.
Collapse
Affiliation(s)
- Armel Jackson Seukep
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, P.O Box 63, Buea, Cameroon; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, PR China.
| | - Helene Gueaba Mbuntcha
- Department of Biochemistry, Faculty of Science, University of Dschang, P.O Box 67, Dschang, Cameroon.
| | - Valaire Yemene Matieta
- Department of Biochemistry, Faculty of Science, University of Dschang, P.O Box 67, Dschang, Cameroon.
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, P.O Box 67, Dschang, Cameroon.
| | - Ming-Quan Guo
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, PR China.
| |
Collapse
|
8
|
Parmar G, Chudasama JM, Shah A, Aundhia C, Kardani S. Targeting cell cycle arrest in breast cancer by phytochemicals from Caryto urens L. fruit ethyl acetate fraction: in silico and in vitro validation. J Ayurveda Integr Med 2025; 16:101095. [PMID: 40081286 PMCID: PMC11932863 DOI: 10.1016/j.jaim.2024.101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Caryota urens, also known as Shivjata, has been documented in ancient Indian texts for its therapeutic benefits, addressing conditions from seminal weakness to gastric ulcers. This study aims to investigate its contemporary medicinal potential in treating breast cancer. OBJECTIVES The study focuses on exploring the therapeutic potential of Caryota urens fruit against breast cancer, specifically targeting cell cycle genes CDK1, CDC25A, and PLK1 through bioinformatics, network pharmacology, and in vitro validation. MATERIALS AND METHODS Using mass spectrometry and nuclear magnetic resonance (NMR), 60 key phytoconstituents from Caryota urens fruit were identified. Bioinformatics analysis, integrating Gene Cards and GEO databases, 15,474 breast cancer-associated genes focusing on the HR+/HER2-subtype were identified. Molecular docking and qPCR validated the interactions of key phytoconstituents, particularly Episesamin, with CDK1, CDC25A, and PLK1. In vitro studies were conducted on the MCF7 cell line, supplemented by ROC and survival analyses to evaluate diagnostic and therapeutic potential. RESULTS The bioinformatics analysis identified CDK1, CDC25A, and PLK1 as pivotal genes regulating cell cycle progression and breast cancer tumorigenesis. Network pharmacology and in vitro studies indicated that phytoconstituents, especially Episesamin, downregulated these genes in breast cancer cells. Molecular docking and qPCR confirmed these interactions, and ROC and survival analyses underscored their diagnostic and therapeutic significance. CONCLUSIONS This study suggests that Caryota urens fruit extract, particularly Episesamin, may inhibit breast cancer metastasis by downregulating CDK1, CDC25A, and PLK1, offering promising new strategies for targeting the cell cycle in breast cancer and emphasizing the value of integrating bioinformatics with experimental methods in cancer research.
Collapse
Affiliation(s)
- Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India.
| | - Jay Mukesh Chudasama
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Ashish Shah
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Sunil Kardani
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
9
|
Atalay-Sahar E, Yildiz-Ozturk E, Ozgur S, Aral A, Dayanc E, Goksel T, Meuwissen R, Yesil-Celiktas O, Goksel O. Novel Approach Methodologies in Modeling Complex Bioaerosol Exposure in Asthma and Allergic Rhinitis Under Climate Change. Expert Rev Mol Med 2025; 27:e13. [PMID: 40070355 PMCID: PMC11964095 DOI: 10.1017/erm.2025.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/28/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
The undeniable impact of climate change and air pollution on respiratory health has led to increasing cases of asthma, allergic rhinitis and other chronic non-communicable immune-mediated upper and lower airway diseases. Natural bioaerosols, such as pollen and fungi, are essential atmospheric components undergoing significant structural and functional changes due to industrial pollution and atmospheric warming. Pollutants like particulate matter(PMx), polycyclic aromatic hydrocarbons(PAHs), nitrogen dioxide(NO2), sulfur dioxide(SO2) and carbon monoxide(CO) modify the surface and biological properties of atmospheric bioaerosols such as pollen and fungi, enhancing their allergenic potentials. As a result, sensitized individuals face heightened risks of asthma exacerbation, and these alterations likely contribute to the rise in frequency and severity of allergic diseases. NAMs, such as precision-cut lung slices(PCLS), air-liquid interface(ALI) cultures and lung-on-a-chip models, along with the integration of data from these innovative models with computational models, provide better insights into how environmental factors influence asthma and allergic diseases compared to traditional models. These systems simulate the interaction between pollutants and the respiratory system with higher precision, helping to better understand the health implications of bioaerosol exposure. Additionally, NAMs improve preclinical study outcomes by offering higher throughput, reduced costs and greater reproducibility, enhancing the translation of data into clinical applications. This review critically evaluates the potential of NAMs in researching airway diseases, with a focus on allergy and asthma. It highlights their advantages in studying the increasingly complex structures of bioaerosols under conditions of environmental pollution and climate change, while also addressing the existing gaps, challenges and limitations of these models.
Collapse
Affiliation(s)
- Esra Atalay-Sahar
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
| | - Ece Yildiz-Ozturk
- Department of Food Processing, Food Technology Programme, Yasar University, Izmir, Türkiye
| | - Su Ozgur
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
- Regional Hub for Cancer Registration in Northern Africa, Central and Western Asia, WHO/IARC GICR, Izmir, Türkiye
| | - Arzu Aral
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Emre Dayanc
- Basic Medical Sciences, Faculty of Medicine, İzmir University of Economics, Izmir, Türkiye
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Tuncay Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
- Department of Pulmonary Medicine, Division of Immunology and Allergy, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Ralph Meuwissen
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
| | - Ozlem Yesil-Celiktas
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
- ODTÜ MEMS Center[CMT2], Ankara, Türkiye
| | - Ozlem Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
- Department of Pulmonary Medicine, Division of Immunology and Allergy, Faculty of Medicine, Ege University, Izmir, Türkiye
| |
Collapse
|
10
|
Hatami A, Paeizi M, Sadeghi MMM. Phytochemical Profiling and Anti-VanA Activity of Pulegone Extracted from Ziziphora tenuior Flower Against Vancomycin-Resistant Enterococci: An In Silico Approach. Chem Biodivers 2025; 22:e202401536. [PMID: 39497422 DOI: 10.1002/cbdv.202401536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/25/2024] [Indexed: 04/02/2025]
Abstract
Ziziphora tenuior is a herb known for its potent pharmaceutical activities. However, the specific compounds of the flowers of this herb have not been fully studied yet. This study used GC-MS to conduct a chemical analysis of the methanol and dichloromethane extracts of Z. tenuior flowers. Additionally, it sought to assess the potential antibacterial activity of the extracts against vancomycin-resistant enterococci (VRE) bacteria by predicting the interactions between one of the most prevalent compounds in the extracts and the D-alanyl-D-lactate ligase (VanA) protein, which is responsible for enterococci resistant to vancomycin. The results revealed a total of 15 compounds in the methanolic extract and 12 compounds in the dichloromethane extract. Among these, 5-methyl-2-(1-methylethylidene)-cyclohexanone, also known as pulegone, constituting 52.6 % of the methanolic extract and 34.6 % of the dichloromethane extract, was the most abundant compound in the extracts. Furthermore, the in-silico analysis demonstrated that pulegone exhibited significant interactions with VanA, as indicated by docking energy values of -7 kcal/mol and the formation of one hydrogen bond. The study suggests that pulegone shows promise as an antibacterial agent against VRE by potentially interacting with VanA protein and serving as a key inhibitor in fighting vancomycin resistance.
Collapse
Affiliation(s)
- Asma Hatami
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Marzieh Paeizi
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
11
|
Mardiana L, Milanda T, Hadisaputri YE, Chaerunisaa AY. Phytosome-Enhanced Secondary Metabolites for Improved Anticancer Efficacy: Mechanisms and Bioavailability Review. Drug Des Devel Ther 2025; 19:201-218. [PMID: 39816849 PMCID: PMC11734513 DOI: 10.2147/dddt.s483404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/24/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds. Patients and Methods This comprehensive review is based on an analysis of recent literature retrieved from PubMed, Scopus, and ScienceDirect databases. It focuses on findings from preclinical and in vitro studies that examine the pharmacokinetic enhancements provided by phytosome technology when applied to secondary metabolites. Results Phytosome-encapsulated secondary metabolites exhibit significantly improved solubility, absorption, distribution, and cellular uptake compared to non-encapsulated forms. This enhanced bioavailability facilitates more effective inhibition of cancer pathways, including NF-κB and PI3K/AKT, leading to increased anticancer efficacy in preclinical models. Conclusion Phytosome technology has demonstrated its potential to overcome bioavailability challenges, resulting in safer and more effective therapeutic options for cancer treatment. This review highlights the potential of phytosome-based formulations as a novel approach to anticancer therapy, supporting further development in preclinical, in vitro, and potential clinical applications.
Collapse
Affiliation(s)
- Lia Mardiana
- Doctoral Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Islam Kalimantan Muhammad Arsyad Al-Banjari, Banjarmasin, 70123, Indonesia
| | - Tiana Milanda
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Yuni Elsa Hadisaputri
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
12
|
Hachouf M, Aouacheri O, Saka S, Marzocchi A, Carlo Tenore G. Phenolic Profiling, In Vitro Antiglycation, Antioxidant Activities, and Antidiabetic Effect of Algerian Trigonella Foenum-Graecum L. in Rats Administered a β-Cell Toxicant. Chem Biodivers 2025; 22:e202401183. [PMID: 39269990 DOI: 10.1002/cbdv.202401183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
This study sought to quantitatively assess individual and total polyphenols, mineral composition, antioxidant and antiglycation activities of Algerian fenugreek seeds (AFS) as well as the antidiabetic effect of its supplementation on streptozotocin-induced diabetic rats. Forty rats were divided into four groups (i) non diabetic rats, (ii) non diabetic rats +10 % AFS, (iii) diabetic rats, (iv) diabetic rats +10 % AFS. Flame-SAA analysis revealed a rich content in micro-elements, HPLC DAD-FLD analysis revealed twenty components with rutin and ferulic acid being the major compounds in AFS hydro-methanolic extract while spectrophotometric assays scrutinized moderate contents in total phenolics and flavonoids. The extract was potent in scavenging ABTS⋅+ and DPPH+ (42.06±2.14 and 55.84±4.14 mg TE/g), reducing Fe3+ and Mo6+ (35.12±2.45 and 29.89±3.12 mg TE/g) and inhibiting AGEs (IC50=1.03±0.02 mg/ml). In vivo, 10 %AFS- supplemented diet (w/w) was found to elicit a significant reduction in glycemia (66.74 %), TNF α (9.4 %), IL-6 (23.74 %), CRP (31.10 %), liver enzymes, lipid peroxidation (MDA) (47.24 %;30 %), protein carbonyl (PCO) (28.35 %; 27.15 %), improvement in insulin level (79.74 %), reduced glutathione amount (GSH) (41.01 %; 16.55 %), glutathione peroxidase (GPx) (45.80 %; 56.37 %), catalase (CAT) (24.44 %; 35.42 %) and glutathione-S-transferase (GST) (22.78 %; 22.90 %) activities, in liver and pancreas respectively, along with a rejuvenation of hepatic and pancreatic histological features. These outcomes disclosed that AFS is endowed with biologically effective components which could be decent applicant to attain the objective of mitigating glycation, oxidative stress and diabetes-related complications.
Collapse
Affiliation(s)
- Maram Hachouf
- Applied Biochemistry and Microbiology Laboratory, Department of biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, Sidi Amar, 23000 Annaba, Algeria
| | - Ouassila Aouacheri
- Animal Ecophysiology Laboratory, Department of biology, Faculty of Sciences, Badji Mokhtar University, BP 12, Sidi Amar, 23000 Annaba, Algeria
| | - Saad Saka
- Animal Ecophysiology Laboratory, Department of biology, Faculty of Sciences, Badji Mokhtar University, BP 12, Sidi Amar, 23000 Annaba, Algeria
| | - Adua Marzocchi
- ChimNutra labs, Department of Pharmacy, University of Naples "Federico II", 80131 Napoli, Italy
| | - Gian Carlo Tenore
- ChimNutra labs, Department of Pharmacy, University of Naples "Federico II", 80131 Napoli, Italy
| |
Collapse
|
13
|
Waheed M, Hussain MB, Saeed F, Afzaal M, Ahmed A, Irfan R, Akram N, Ahmed F, Hailu GG. Phytochemical Profiling and Therapeutic Potential of Thyme ( Thymus spp.): A Medicinal Herb. Food Sci Nutr 2024; 12:9893-9912. [PMID: 39723027 PMCID: PMC11666979 DOI: 10.1002/fsn3.4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 12/28/2024] Open
Abstract
Thymol is a phenol monoterpene that is naturally derived from cymene and is an isomer of carvacrol. It constitutes a significant portion (10%-64%) of the essential oils found in thyme (Thymus vulgaris L., Lamiaceae), a medicinal plant renowned for its therapeutic properties. Wild thyme is native to the Mediterranean region and has been used in cooking and medicine for a long time. In contemporary contexts, both thymol and thyme offer diverse functional applications in the pharmaceutical, food, and cosmetic industries. Thymol has attracted scientific interest for its potential therapeutic applications in pharmaceuticals and nutraceuticals. Studies have explored its efficacy in treating respiratory, nervous, and cardiovascular disorders, highlighting its promising role in diverse therapeutic interventions. Additionally, this compound demonstrates antimicrobial, antioxidant, anticarcinogenic, anti-inflammatory, and antispasmodic properties. It also shows potential as a growth enhancer and has immunomodulatory properties as well. Other discussed aspects include thymol toxicity, bioavailability, metabolism, and distribution in animals and humans. This review summarizes the most significant data regarding the beneficial effects of thyme bioactive compounds and their applications as a food preservative while taking into account the thyme plant extract and its essential oil.
Collapse
Affiliation(s)
- Marwa Waheed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | | | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Rushba Irfan
- Institute of Home Sciences, Faculty of Food, Nutrition & Home SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | |
Collapse
|
14
|
Singh AV, Bhardwaj P, Laux P, Pradeep P, Busse M, Luch A, Hirose A, Osgood CJ, Stacey MW. AI and ML-based risk assessment of chemicals: predicting carcinogenic risk from chemical-induced genomic instability. FRONTIERS IN TOXICOLOGY 2024; 6:1461587. [PMID: 39659701 PMCID: PMC11628524 DOI: 10.3389/ftox.2024.1461587] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical risk assessment plays a pivotal role in safeguarding public health and environmental safety by evaluating the potential hazards and risks associated with chemical exposures. In recent years, the convergence of artificial intelligence (AI), machine learning (ML), and omics technologies has revolutionized the field of chemical risk assessment, offering new insights into toxicity mechanisms, predictive modeling, and risk management strategies. This perspective review explores the synergistic potential of AI/ML and omics in deciphering clastogen-induced genomic instability for carcinogenic risk prediction. We provide an overview of key findings, challenges, and opportunities in integrating AI/ML and omics technologies for chemical risk assessment, highlighting successful applications and case studies across diverse sectors. From predicting genotoxicity and mutagenicity to elucidating molecular pathways underlying carcinogenesis, integrative approaches offer a comprehensive framework for understanding chemical exposures and mitigating associated health risks. Future perspectives for advancing chemical risk assessment and cancer prevention through data integration, advanced machine learning techniques, translational research, and policy implementation are discussed. By implementing the predictive capabilities of AI/ML and omics technologies, researchers and policymakers can enhance public health protection, inform regulatory decisions, and promote sustainable development for a healthier future.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Preeti Bhardwaj
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Prachi Pradeep
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Madleen Busse
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Akihiko Hirose
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Christopher J. Osgood
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Michael W. Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
15
|
Gholam GM, Mahendra FR, Irsal RAP, Dwicesaria MA, Ariefin M, Kristiadi M, Rizki AFM, Azmi WA, Artika IM, Siregar JE. Computational exploration of compounds in Xylocarpus granatum as a potential inhibitor of Plasmodium berghei using docking, molecular dynamics, and DFT studies. Biochem Biophys Res Commun 2024; 733:150684. [PMID: 39293331 DOI: 10.1016/j.bbrc.2024.150684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Malaria remains a global health concern, with the emergence of resistance to the antimalarial drug atovaquone through cytochrome b (cyt b) being well-documented. This study was prompted by the presence of this mutation in cyt b to enable new drug candidates capable of overcoming drug resistance. Our objective was to identify potential drug candidates from compounds of Xylocarpus granatum by computationally assessing their interactions with Plasmodium berghei cyt b. Using computational methods, we modeled cyt b (GenBank: AF146076.1), identified the binding cavity, and analyzed the Ramachandran plot against cyt b. Additionally, we conducted drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, along with density functional theory (DFT) analysis of the compounds. Molecular docking and molecular dynamics simulation (MDS) were used to evaluate the binding energy and stability of the cyt b-ligand complex. Notably, our investigation highlighted kaempferol as a promising compound due to its high binding energy of 7.67 kcal/mol among all X. granatum compounds, coupled with favorable pharmacological properties (ADMET) and antiprotozoal properties at Pa 0.345 > Pi 0.009 (PASS value). DFT analysis showed that kaempferol has an energy gap of 4.514 eV. MDS indicated that all tested ligands caused changes in bonding and affected the structural conformation of cyt b, as observed before MDS (0 ns) and after MDS (100 ns). The most notable differences were observed in the types of hydrogen bonds between 0 and 100 ns. Nevertheles, MDS results from a 100 ns simulation revealed consistent behavior for kaempferol across various parameters including root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), molecular mechanics-Poisson Boltzmann surface area (MM-PBSA), and hydrogen bonds. The cyt b-kaempferol complex demonstrated favorable energy stability, as supported by the internal energy distribution values observed in principal component analysis (PCA), which closely resembled those of the atovaquone control. Additionally, trajectory stability analysis indicated structural stability, with a cumulative eigenvalue of 24.7 %. Dynamic cross-correlation matrix (DCCM) analysis revealed a positive correlation among catalytic cytochrome residues within the amino acid residues range 119-268. The results of our research indicate that the structure of kaempferol holds promise as a potential candidate against Plasmodium.
Collapse
Affiliation(s)
- Gusnia Meilin Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Fachrur Rizal Mahendra
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Riyan Alifbi Putera Irsal
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Maheswari Alfira Dwicesaria
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia.
| | - Mokhamat Ariefin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Indonesia.
| | - Mikael Kristiadi
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| | - Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia.
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
16
|
Singh AV, Chandrasekar V, Prabhu VM, Bhadra J, Laux P, Bhardwaj P, Al-Ansari AA, Aboumarzouk OM, Luch A, Dakua SP. Sustainable bioinspired materials for regenerative medicine: balancing toxicology, environmental impact, and ethical considerations. Biomed Mater 2024; 19:060501. [PMID: 39389102 DOI: 10.1088/1748-605x/ad85bb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
The pursuit of sustainable bioinspired materials for regenerative medicine demands a nuanced balance between scientific advancement, ethical considerations, and environmental consciousness. This abstract encapsulates a comprehensive perspective paper exploring the intricate dynamics of toxicology, environmental impact, and ethical concerns within the realm of bioinspired materials. As the landscape of regenerative medicine evolves, ensuring the biocompatibility and safety of these materials emerges as a pivotal challenge. Our paper delves into the multidimensional aspects of toxicity assessment, encompassing cytotoxicity, genotoxicity, and immunotoxicity analyses. Additionally, we shed light on the complexities of evaluating the environmental impact of bioinspired materials, discussing methodologies such as life cycle assessment, biodegradability testing, and sustainable design approaches. Amid these scientific endeavors, we emphasize the paramount importance of ethical considerations in bioinspired material development, navigating the intricate web of international regulations and ethical frameworks guiding medical materials. Furthermore, our abstract underscores the envisioned future directions and challenges in toxicology techniques, computational modeling, and holistic evaluation, aiming for a comprehensive understanding of the synergistic interplay between sustainable bioinspired materials, toxicity assessment, environmental stewardship, and ethical deliberation.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Varsha M Prabhu
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
| | - Jolly Bhadra
- Qatar University Young Research centre (QUYRC) Qatar University 2053, Doha, Qatar
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Preeti Bhardwaj
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Omar M Aboumarzouk
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Clinical Advancement Department, Hamad Medicial Corporation, Doha 3050, Qatar
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sarada Prasad Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Clinical Advancement Department, Hamad Medicial Corporation, Doha 3050, Qatar
| |
Collapse
|
17
|
Ziętal K, Mirowska-Guzel D, Nowaczyk A, Blecharz-Klin K. Cnicus benedictus: Folk Medicinal Uses, Biological Activities, and In Silico Screening of Main Phytochemical Constituents. PLANTA MEDICA 2024; 90:976-991. [PMID: 39265629 DOI: 10.1055/a-2401-6049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Traditional medicine has long recognized the therapeutic potential of Cnicus benedictus, and recent scientific research has shed light on the pharmacological properties of this plant. The bioactive compounds that can be extracted from it, such as the sesquiterpene lactones arctigenin, arctiin, and cnicin, are very interesting to researchers.In this article, based on available data from pre-clinical in vitro and in vivo studies, we delve into the pharmacology of the active constituents of this plant to explore its potential therapeutic applications and underlying mechanisms of action. In addition, we present a computer analysis designed to reveal the pharmacokinetic and toxicological properties of the main phytochemicals that are active in C. benedictus through new in silico techniques and predictive tools such as SwissADME and PubChem.The data from the in silico study presented here support the traditional use of C. benedictus, as well as its promise as a source of new therapeutic chemical compounds.
Collapse
Affiliation(s)
- Katarzyna Ziętal
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Warszawa, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Warszawa, Poland
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
18
|
Zhang X, Wu Y, Gong H, Xiong Y, Chen Y, Li L, Zhi B, Lv S, Peng T, Zhang H. A Multifunctional Herb-Derived Glycopeptide Hydrogel for Chronic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400516. [PMID: 38686688 DOI: 10.1002/smll.202400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Chronic wounds constitute an increasingly prevalent global healthcare issue, characterized by recurring bacterial infections, pronounced oxidative stress, compromised functionality of immune cells, unrelenting inflammatory reactions, and deficits in angiogenesis. In response to these multifaceted challenges, the study introduced a stimulus-responsive glycopeptide hydrogel constructed by oxidized Bletilla striata polysaccharide (OBSP), gallic acid-grafted ε-Polylysine (PLY-GA), and paeoniflorin-loaded micelles (MIC@Pae), called OBPG&MP. The hydrogel emulates the structure of glycoprotein fibers of the extracellular matrix (ECM), exhibiting exceptional injectability, self-healing, and biocompatibility. It adapts responsively to the inflammatory microenvironment of chronic wounds, sequentially releasing therapeutic agents to eradicate bacterial infection, neutralize reactive oxygen species (ROS), modulate macrophage polarization, suppress inflammation, and encourage vascular regeneration and ECM remodeling, playing a critical role across the inflammatory, proliferative, and remodeling phases of wound healing. Both in vitro and in vivo studies confirmed the efficacy of OBPG&MP hydrogel in regulating the wound microenvironment and enhancing the regeneration and remodeling of chronic wound skin tissue. This research supports the vast potential for herb-derived multifunctional hydrogels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan Xiong
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Yu Chen
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Lin Li
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Biao Zhi
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Saiqun Lv
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Tao Peng
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
19
|
Noor MAA, Haq MM, Chowdhury MAR, Tayara H, Shim H, Chong KT. In Silico Exploration of Novel EGFR Kinase Mutant-Selective Inhibitors Using a Hybrid Computational Approach. Pharmaceuticals (Basel) 2024; 17:1107. [PMID: 39338272 PMCID: PMC11434943 DOI: 10.3390/ph17091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Targeting epidermal growth factor receptor (EGFR) mutants is a promising strategy for treating non-small cell lung cancer (NSCLC). This study focused on the computational identification and characterization of potential EGFR mutant-selective inhibitors using pharmacophore design and validation by deep learning, virtual screening, ADMET (Absorption, distribution, metabolism, excretion and toxicity), and molecular docking-dynamics simulations. A pharmacophore model was generated using Pharmit based on the potent inhibitor JBJ-125, which targets the mutant EGFR (PDB 5D41) and is used for the virtual screening of the Zinc database. In total, 16 hits were retrieved from 13,127,550 molecules and 122,276,899 conformers. The pharmacophore model was validated via DeepCoy, generating 100 inactive decoy structures for each active molecule and ADMET tests were conducted using SWISS ADME and PROTOX 3.0. Filtered compounds underwent molecular docking studies using Glide, revealing promising interactions with the EGFR allosteric site along with better docking scores. Molecular dynamics (MD) simulations confirmed the stability of the docked conformations. These results bring out five novel compounds that can be evaluated as single agents or in combination with existing therapies, holding promise for treating the EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Md Ali Asif Noor
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Md Mazedul Haq
- Research Center of Bioactive Materials, Department of Bioactive Material Sciences, Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.M.H.); (M.A.R.C.)
| | - Md Arifur Rahman Chowdhury
- Research Center of Bioactive Materials, Department of Bioactive Material Sciences, Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.M.H.); (M.A.R.C.)
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - HyunJoo Shim
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
20
|
Truzzi F, Frassineti E, Tibaldi C, D’Amen E, Dinelli G. Wound Healing Potential of a Novel Sedum Species: S. album Murales. Life (Basel) 2024; 14:958. [PMID: 39202700 PMCID: PMC11355524 DOI: 10.3390/life14080958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Natural wound healing products are in increased demand. The potential for unexplored Sedum species in wound healing was discovered based on benefits of the genus reported in traditional medicine. The objectives were to screen ten Sedum species for wound healing, to ascertain the optimal harvest period using the five best, and finally to investigate effects of extraction protocols on wound healing using the most promising species. Different protocols were used to extract leaf polyphenol and mucilage content. Wound healing was assessed from L929 fibroblast migration. April was the optimal harvest month for wound healing efficacy, whereas the highest polyphenol content and antioxidant activity were evident in September and November. S. album Murales (ALBU), the best candidate, was then compared with S. telephium (TELE), which is well recognized in skin care. The mucilage-containing aqueous extract of ALBU was shown for the first time to induce the highest fibroblast migration after 24 h, not evident in TELE. Moreover, functional constituents contained within the absolute acetone- and isopropanol-containing polyphenol pools from ALBU induced significantly higher migration compared to TELE. A prototype cream, containing the water- and solvent-extracted bioactive compounds was effective at inducing fibroblast migration at 24 h in ALBU. The potential of ALBU in wound healing was evidenced and warrants further investigation.
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44, 40127 Bologna, Italy; (E.F.); (C.T.); (E.D.); (G.D.)
| | | | | | | | | |
Collapse
|
21
|
Vittoria Togo M, Mastrolorito F, Orfino A, Graps EA, Tondo AR, Altomare CD, Ciriaco F, Trisciuzzi D, Nicolotti O, Amoroso N. Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives. Expert Opin Drug Metab Toxicol 2024; 20:561-577. [PMID: 38141160 DOI: 10.1080/17425255.2023.2298827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION The application of Artificial Intelligence (AI) to predictive toxicology is rapidly increasing, particularly aiming to develop non-testing methods that effectively address ethical concerns and reduce economic costs. In this context, Developmental Toxicity (Dev Tox) stands as a key human health endpoint, especially significant for safeguarding maternal and child well-being. AREAS COVERED This review outlines the existing methods employed in Dev Tox predictions and underscores the benefits of utilizing New Approach Methodologies (NAMs), specifically focusing on eXplainable Artificial Intelligence (XAI), which proves highly efficient in constructing reliable and transparent models aligned with recommendations from international regulatory bodies. EXPERT OPINION The limited availability of high-quality data and the absence of dependable Dev Tox methodologies render XAI an appealing avenue for systematically developing interpretable and transparent models, which hold immense potential for both scientific evaluations and regulatory decision-making.
Collapse
Affiliation(s)
- Maria Vittoria Togo
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Mastrolorito
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Angelica Orfino
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per laSalute ed il Sociale, Presidenza della Regione Puglia", Bari, Italy
| | - Anna Rita Tondo
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Fulvio Ciriaco
- Department of Chemistry, Universitá degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Daniela Trisciuzzi
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Nicola Amoroso
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
22
|
Singh AV, Shelar A, Rai M, Laux P, Thakur M, Dosnkyi I, Santomauro G, Singh AK, Luch A, Patil R, Bill J. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2835-2852. [PMID: 38315814 DOI: 10.1021/acs.jafc.3c06466] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This comprehensive review explores the emerging landscape of Nano-QSAR (quantitative structure-activity relationship) for assessing the risk and potency of nanomaterials in agricultural settings. The paper begins with an introduction to Nano-QSAR, providing background and rationale, and explicitly states the hypotheses guiding the review. The study navigates through various dimensions of nanomaterial applications in agriculture, encompassing their diverse properties, types, and associated challenges. Delving into the principles of QSAR in nanotoxicology, this article elucidates its application in evaluating the safety of nanomaterials, while addressing the unique limitations posed by these materials. The narrative then transitions to the progression of Nano-QSAR in the context of agricultural nanomaterials, exemplified by insightful case studies that highlight both the strengths and the limitations inherent in this methodology. Emerging prospects and hurdles tied to Nano-QSAR in agriculture are rigorously examined, casting light on important pathways forward, existing constraints, and avenues for research enhancement. Culminating in a synthesis of key insights, the review underscores the significance of Nano-QSAR in shaping the future of nanoenabled agriculture. It provides strategic guidance to steer forthcoming research endeavors in this dynamic field.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Mansi Rai
- Department of Microbiology, Central University of Rajasthan NH-8, Bandar Sindri, Dist-Ajmer-305817, Rajasthan, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Manali Thakur
- Uniklinik Köln, Kerpener Strasse 62, 50937 Köln Germany
| | - Ievgen Dosnkyi
- Institute of Chemistry and Biochemistry Department of Organic ChemistryFreie Universität Berlin Takustr. 3 14195 Berlin, Germany
| | - Giulia Santomauro
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| | - Alok Kumar Singh
- Department of Plant Molecular Biology & Genetic Engineering, ANDUA&T, Ayodhya 224229, Uttar Pradesh, India
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Joachim Bill
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
23
|
Wang X, Jiang J, Yuan C, Gu L, Zhang X, Yao Y, Shao L. 3D bioprinting of GelMA with enhanced extrusion printability through coupling sacrificial carrageenan. Biomater Sci 2024; 12:738-747. [PMID: 38105707 DOI: 10.1039/d3bm01489d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The potential of 3D bioprinting in tissue engineering and regenerative medicine is enormous, but its implementation is hindered by the reliance on high-strength materials, which restricts the use of low-viscosity, biocompatible materials. Therefore, a major challenge for incorporating 3D bioprinting into tissue engineering is to develop a novel bioprinting platform that can reversibly provide high biological activity materials with a structural support. This study presents a room temperature printing system based on GelMA combined with carrageenan to address this challenge. By leveraging the wide temperature stability range and lubricating properties of carrageenan the room temperature stability of GelMA could be enhanced, as well as creating a solid ink to improve the performance of solid GelMA. Additionally, by utilizing the solubility of carrageenan at 37 °C, it becomes possible to prepare a porous GelMA structure while mimicking the unique extracellular matrix properties of osteocytes through residual carrageenan content and amplifying BMSCs' osteogenesis potential to some extent. Overall, this study provides an innovative technical platform for incorporating a low-viscosity ink into 3D bioprinting and resolves the long-standing contradiction between material printing performance and biocompatibility in bioprinting technology.
Collapse
Affiliation(s)
- Xueping Wang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jinhong Jiang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Chenhui Yuan
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lin Gu
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - XinYu Zhang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yudong Yao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
24
|
Abou Hajal A, Al Meslamani AZ. Insights into artificial intelligence utilisation in drug discovery. J Med Econ 2024; 27:304-308. [PMID: 38385328 DOI: 10.1080/13696998.2024.2315864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Abdallah Abou Hajal
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ahmad Z Al Meslamani
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Skariyachan S, Kalavathi Murugan K, Parikesit AA. Editorial: Computational drug discovery for emerging viral infections. Front Microbiol 2023; 14:1326731. [PMID: 38053555 PMCID: PMC10694435 DOI: 10.3389/fmicb.2023.1326731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St. Pius X College Rajapuram, Kasaragod, Kerala, India
| | | | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| |
Collapse
|
26
|
Kmail A, Said O, Saad B. How Thymoquinone from Nigella sativa Accelerates Wound Healing through Multiple Mechanisms and Targets. Curr Issues Mol Biol 2023; 45:9039-9059. [PMID: 37998744 PMCID: PMC10670084 DOI: 10.3390/cimb45110567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Wound healing is a multifaceted process necessitating the collaboration of numerous elements to mend damaged tissue. Plant and animal-derived natural compounds have been utilized for wound treatment over the centuries, with many scientific investigations examining these compounds. Those with antioxidant, anti-inflammatory, and antibacterial properties are particularly noteworthy, as they target various wound-healing stages to expedite recovery. Thymoquinone, derived from Nigella sativa (N. sativa)-a medicinal herb with a long history of use in traditional medicine systems such as Unani, Ayurveda, Chinese, and Greco-Arabic and Islamic medicine-has demonstrated a range of therapeutic properties. Thymoquinone exhibits antimicrobial, anti-inflammatory, and antineoplastic activities, positioning it as a potential remedy for skin pathologies. This review examines recent research on how thymoquinone accelerates wound healing and the mechanisms behind its effectiveness. We carried out a comprehensive review of literature and electronic databases, including Google Scholar, PubMed, Science Direct, and MedlinePlus. Our aim was to gather relevant papers published between 2015 and August 2023. The main criteria for inclusion were that the articles had to be peer reviewed, original, written in English, and discuss the wound-healing parameters of thymoquinone in wound repair. Our review focused on the effects of thymoquinone on the cellular and molecular mechanisms involved in wound healing. We also examined the role of cytokines, signal transduction cascades, and clinical trials. We found sufficient evidence to support the effectiveness of thymoquinone in promoting wound healing. However, there is no consensus on the most effective concentrations of these substances. It is therefore essential to determine the optimal treatment doses and the best route of administration. Further research is also needed to investigate potential side effects and the performance of thymoquinone in clinical trials.
Collapse
Affiliation(s)
- Abdalsalam Kmail
- Faculty of Sciences, Arab American University, Jenin P.O. Box 240, Palestine
| | - Omar Said
- Beleaf Pharma, Kfar Kana 16930, Israel;
| | - Bashar Saad
- Qasemi Research Center, Al-Qasemi Academic College, Baqa Algharbiya 30100, Israel
- Department of Biochemistry, Faculty of Medicine, Arab American University, Jenin P.O. Box 240, Palestine
| |
Collapse
|
27
|
Rajendran D, Chandrasekaran N. Journey of micronanoplastics with blood components. RSC Adv 2023; 13:31435-31459. [PMID: 37901269 PMCID: PMC10603568 DOI: 10.1039/d3ra05620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
The entry of micro- and nanoplastics (MNPs) into the human body is inevitable. They enter blood circulation through ingestion, inhalation, and dermal contact by crossing the gut-lung-skin barrier (the epithelium of the digestive tract, the respiratory tract, and the cutaneous layer). There are many reports on their toxicities to organs and tissues. This paper presents the first thorough assessment of MNP-driven bloodstream toxicity and the mechanism of toxicity from the viewpoint of both MNP and environmental co-pollutant complexes. Toxic impacts include plasma protein denaturation, hemolysis, reduced immunity, thrombosis, blood coagulation, and vascular endothelial damage, among others, which can lead to life-threatening diseases. Protein corona formation, oxidative stress, cytokine alterations, inflammation, and cyto- and genotoxicity are the key mechanisms involved in toxicity. MNPs change the secondary structure of plasma proteins, thereby preventing their transport functions (for nutrients, drugs, oxygen, etc.). MNPs inhibit erythropoiesis by influencing hematopoietic stem cell proliferation and differentiation. They cause red blood cell and platelet aggregation, as well as increased adherence to endothelial cells, which can lead to thrombosis and cardiovascular disease. White blood cells and immune cells phagocytose MNPs, provoking inflammation. However, research gaps still exist, including gaps regarding the combined toxicity of MNPs and co-pollutants, toxicological studies in human models, advanced methodologies for toxicity analysis, bioaccumulation studies, inflammation and immunological responses, dose-response relationships of MNPs, and the effect of different physiochemical characteristics of MNPs. Furthermore, most studies have analyzed toxicity using prepared MNPs; hence, studies must be undertaken using true-to-life MNPs to determine the real-world scenario. Additionally, nanoplastics may further degrade into monomers, whose toxic effects have not yet been explored. The research gaps highlighted in this review will inspire future studies on the toxicity of MNPs in the vascular/circulatory systems utilizing in vivo models to enable more reliable health risk assessment.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|