1
|
Guo L, Guo F, Zhang S, Zeng A, Yi K, McClain M, Kuhn CD, Parmely T, Alvarado AS. Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea. Dev Biol 2025; 520:13-20. [PMID: 39732384 DOI: 10.1016/j.ydbio.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively. Besides closed mitosis in fungi and open mitosis in some animals, little is known about the evolution of nuclear envelope remodeling dynamics during oogenesis. Here, we uncovered a novel form of nuclear envelope remodeling as oocytes are formed in the flatworm Schmidtea mediterranea. From zygotene to metaphase II, both nuclear envelope (NE) and peripheral endoplasmic reticulum (ER) expand notably in size, likely involving de novo membrane synthesis. 3-D electron microscopy reconstructions demonstrated that the NE transforms itself into numerous double-membraned vesicles similar in membrane architecture to NE doublets in mammalian oocytes after germinal vesicle breakdown. The vesicles are devoid of nuclear pore complexes and DNA, yet are loaded with nuclear proteins, including a planarian homologue of PIWI, a protein essential for the maintenance of stem cells in this and other organisms. Our data contribute a new model to the canonical view of NE dynamics and suggest important roles of NE remodeling in planarian oogenesis.
Collapse
Affiliation(s)
- Longhua Guo
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Shasha Zhang
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - An Zeng
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Claus-D Kuhn
- Gene Regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95447, Germany
| | - Tari Parmely
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
2
|
Khan UW, Newmark PA. Somatic regulation of female germ cell regeneration and development in planarians. Cell Rep 2022; 38:110525. [PMID: 35294875 PMCID: PMC8994625 DOI: 10.1016/j.celrep.2022.110525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
Female germ cells develop into oocytes, with the capacity for totipotency. In most animals, these remarkable cells are specified during development and cannot be regenerated. By contrast, planarians, known for their regenerative prowess, can regenerate germ cells. To uncover mechanisms required for female germ cell development and regeneration, we generated gonad-specific transcriptomes and identified genes whose expression defines progressive stages of female germ cell development. Strikingly, early female germ cells share molecular signatures with the pluripotent stem cells driving planarian regeneration. We observe spatial heterogeneity within somatic ovarian cells and find that a regionally enriched foxL homolog is required for oocyte differentiation, but not specification, suggestive of functionally distinct somatic compartments. Unexpectedly, a neurotransmitter-biosynthetic enzyme, aromatic L-amino acid decarboxylase (AADC), is also expressed in somatic gonadal cells, and plays opposing roles in female and male germ cell development. Thus, somatic gonadal cells deploy conserved factors to regulate germ cell development and regeneration in planarians.
Collapse
Affiliation(s)
- Umair W Khan
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA; Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Phillip A Newmark
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA; Howard Hughes Medical Institute, Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Lenguas Francavilla M, Negrete L, Colpo KD, Brusa F. Population and reproductive patterns of the Neotropical planarian Girardia capacivasa (Platyhelminthes, Tricladida), and the influence of seasonality on its life history. ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2018.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Gammoudi M, Salvenmoser W, Tekaya S, Egger B. Ultrastructure of the ovary and oogenesis in the flatwormProsthiostomum siphunculus(Polycladida, Cotylea). Cell Biol Int 2016; 40:1174-1186. [DOI: 10.1002/cbin.10657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/13/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Mehrez Gammoudi
- Université de Tunis El manar, Faculté des Sciences de Tunis; UR11ES12 Biologie de la reproduction et du Développement animal; 2092 El Manar Tunis Tunisia
| | - Willi Salvenmoser
- Research Unit Evolutionary Developmental Biology; Institute of Zoology; University of Innsbruck; Technikerstr. 25 6020 Innsbruck Austria
| | - Saïda Tekaya
- Université de Tunis El manar, Faculté des Sciences de Tunis; UR11ES12 Biologie de la reproduction et du Développement animal; 2092 El Manar Tunis Tunisia
| | - Bernhard Egger
- Research Unit Evolutionary Developmental Biology; Institute of Zoology; University of Innsbruck; Technikerstr. 25 6020 Innsbruck Austria
| |
Collapse
|
5
|
Gammoudi M, Ahmed RB, Ahmed M, Sayed SR, Alwasel SH, Tekaya S, Harrath AH. Ultrastructural study of oogenesis in the acotylean Echinoplana celerrima, (Platyhelminthes, Polycladida). ZOOL ANZ 2016. [DOI: 10.1016/j.jcz.2016.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Harrath AH, Semlali A, Mansour L, Ahmed M, Sirotkin AV, Al Omar SY, Arfah M, Al Anazi MS, Alhazza IM, Nyengaard JR, Alwasel S. Infertility in the hyperplasic ovary of freshwater planarians: the role of programmed cell death. Cell Tissue Res 2014; 358:607-20. [PMID: 25107610 DOI: 10.1007/s00441-014-1971-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 07/14/2014] [Indexed: 11/28/2022]
Abstract
Ex-fissiparous planarians produce infertile cocoons or, in very rare cases, cocoons with very low fertility. Here, we describe the features of programmed cell death (PCD) occurring in the hyperplasic ovary of the ex-fissiparous freshwater planarian Dugesia arabica that may explain this infertility. Based on TEM results, we demonstrate a novel extensive co-clustering of cytoplasmic organelles, such as lysosomes and microtubules, and their fusion with autophagosomes during the early stage of oocyte cell death occurring through an autophagic pattern. During a later stage of cell death, the generation of apoptotic vesicles in the cytoplasm can be observed. The immunohistochemical labeling supports the ultrastructural results because it has been shown that the proapoptotic protein bax was more highly expressed in the hyperplasic ovary than in the normal one, whereas the anti-apoptotic protein bcl2 was slightly more highly expressed in the normal ovary compared to the hyperplasic one. TUNEL analysis of the hyperplasic ovary confirmed that the nuclei of the majority of differentiating oocytes were TUNEL-positive, whereas the nuclei of oogonia and young oocytes were TUNEL-negative; in the normal ovary, oocytes are TUNEL-negative. Considering all of these data, we suggest that the cell death mechanism of differentiating oocytes in the hyperplasic ovary of freshwater planarians is one of the most important factors that cause ex-fissiparous planarian infertility. We propose that autophagy precedes apoptosis during oogenesis, whereas apoptotic features can be observed later.
Collapse
Affiliation(s)
- Abdel Halim Harrath
- Zoology Department College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Harrath A, Ahmed M, Sayed S, Saifi M, Alwasel S. An ultrastructural study of oogenesis and cell dynamics during cocoon shell secretion in the subterranean freshwater planarian Dendrocoelum constrictum (Platyhelminthes, Tricladida). Tissue Cell 2013; 45:39-46. [DOI: 10.1016/j.tice.2012.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/17/2012] [Accepted: 09/23/2012] [Indexed: 11/25/2022]
|
8
|
Greani S, Quilichini Y, Foata J, Swiderski Z, Marchand B. Ultrastructural study of vitellogenesis and oogenesis of Metadena depressa (Stossich, 1883) Linton, 1910 (Digenea, Cryptogonimidae), intestinal parasite of Dentex dentex (Pisces, Teleostei). C R Biol 2012. [DOI: 10.1016/j.crvi.2012.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Harrath AH, Alwasel S, Zghal F, Tekaya S. Ultrastructure of spermatogenesis and mature spermatozoon of the freshwater planarian Schmidtea mediterranea (Platyhelminthes, Paludicola). C R Biol 2012; 335:87-95. [DOI: 10.1016/j.crvi.2011.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/16/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
|