1
|
Gadour E. Lesson learnt from 60 years of liver transplantation: Advancements, challenges, and future directions. World J Transplant 2025; 15:93253. [PMID: 40104199 PMCID: PMC11612893 DOI: 10.5500/wjt.v15.i1.93253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 11/26/2024] Open
Abstract
Over the past six decades, liver transplantation (LT) has evolved from an experimental procedure into a standardized and life-saving intervention, reshaping the landscape of organ transplantation. Driven by pioneering breakthroughs, technological advancements, and a deepened understanding of immunology, LT has seen remarkable progress. Some of the most notable breakthroughs in the field include advances in immunosuppression, a revised model for end-stage liver disease, and artificial intelligence (AI)-integrated imaging modalities serving diagnostic and therapeutic roles in LT, paired with ever-evolving technological advances. Additionally, the refinement of transplantation procedures, resulting in the introduction of alternative transplantation methods, such as living donor LT, split LT, and the use of marginal grafts, has addressed the challenge of organ shortage. Moreover, precision medicine, guiding personalized immunosuppressive strategies, has significantly improved patient and graft survival rates while addressing emergent issues, such as short-term complications and early allograft dysfunction, leading to a more refined strategy and enhanced post-operative recovery. Looking ahead, ongoing research explores regenerative medicine, diagnostic tools, and AI to optimize organ allocation and post-transplantation car. In summary, the past six decades have marked a transformative journey in LT with a commitment to advancing science, medicine, and patient-centered care, offering hope and extending life to individuals worldwide.
Collapse
Affiliation(s)
- Eyad Gadour
- Department of Gastroenterology and Hepatology, King Abdulaziz National Guard Hospital, Ahsa 36428, Saudi Arabia
- Internal Medicine, Zamzam University College, Khartoum 11113, Sudan
| |
Collapse
|
2
|
Sharma S, Saner FH, Bezinover D. A brief history of liver transplantation and transplant anesthesia. BMC Anesthesiol 2022; 22:363. [PMID: 36435747 PMCID: PMC9701388 DOI: 10.1186/s12871-022-01904-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/13/2022] [Indexed: 11/28/2022] Open
Abstract
In this review, we describe the major milestones in the development of organ transplantation with a specific focus on hepatic transplantation. For many years, the barriers preventing successful organ transplantation in humans seemed insurmountable. Although advances in surgical technique provided the technical ability to perform organ transplantation, limited understanding of immunology prevented successful organ transplantation. The breakthrough to success was the result of several significant discoveries between 1950 and 1980 involving improved surgical techniques, the development of effective preservative solutions, and the suppression of cellular immunity to prevent graft rejection. After that, technical innovations and laboratory and clinical research developed rapidly. However, these advances alone could not have led to improved transplant outcomes without parallel advances in anesthesia and critical care. With increasing organ demand, it proved necessary to expand the donor pool, which has been achieved with the use of living donors, split grafts, extended criteria organs, and organs obtained through donation after cardiac death. Given this increased access to organs and organ resources, the number of transplantations performed every year has increased dramatically. New regulatory organizations and transplant societies provide critical oversight to ensure equitable organ distribution and a high standard of care and also perform outcome analyses. Establishing dedicated transplant anesthesia teams results in improved organ transplantation outcomes and provides a foundation for developing new standards for other subspecialties in anesthesiology, critical care, and medicine overall. Through a century of discovery, the success we enjoy at the present time is the result of the work of well-organized multidisciplinary teams following standardized protocols and thereby saving thousands of lives worldwide each year. With continuing innovation, the future is bright.
Collapse
Affiliation(s)
- Sonal Sharma
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University, Milton S. Hershey Medical Center, 500 University Dr, Hershey, PA, 17033, USA
| | - Fuat H Saner
- Department of General, Visceral, and Transplant Surgery, Medical Center University Essen, Hufeland 55, 45147, Essen, Germany
| | - Dmitri Bezinover
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Mitochondrial respiratory chain and Krebs cycle enzyme function in human donor livers subjected to end-ischaemic hypothermic machine perfusion. PLoS One 2021; 16:e0257783. [PMID: 34710117 PMCID: PMC8553115 DOI: 10.1371/journal.pone.0257783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Marginal human donor livers are highly susceptible to ischaemia reperfusion injury and mitochondrial dysfunction. Oxygenation during hypothermic machine perfusion (HMP) was proposed to protect the mitochondria but the mechanism is unclear. Additionally, the distribution and uptake of perfusate oxygen during HMP are unknown. This study aimed to examine the feasibility of mitochondrial function analysis during end-ischaemic HMP, assess potential mitochondrial viability biomarkers, and record oxygenation kinetics. METHODS This was a randomised pilot study using human livers retrieved for transplant but not utilised. Livers (n = 38) were randomised at stage 1 into static cold storage (n = 6), hepatic artery HMP (n = 7), and non-oxygen supplemented portal vein HMP (n = 7) and at stage 2 into oxygen supplemented and non-oxygen supplemented portal vein HMP (n = 11 and 7, respectively). Mitochondrial parameters were compared between the groups and between low- and high-risk marginal livers based on donor history, organ steatosis and preservation period. The oxygen delivery efficiency was assessed in additional 6 livers using real-time measurements of perfusate and parenchymal oxygen. RESULTS The change in mitochondrial respiratory chain (complex I, II, III, IV) and Krebs cycle enzyme activity (aconitase, citrate synthase) before and after 4-hour preservation was not different between groups in both study stages (p > 0.05). Low-risk livers that could have been used clinically (n = 8) had lower complex II-III activities after 4-hour perfusion, compared with high-risk livers (73 nmol/mg/min vs. 113 nmol/mg/min, p = 0.01). Parenchymal pO2 was consistently lower than perfusate pO2 (p ≤ 0.001), stabilised in 28 minutes compared to 3 minutes in perfusate (p = 0.003), and decreased faster upon oxygen cessation (75 vs. 36 minutes, p = 0.003). CONCLUSIONS Actively oxygenated and air-equilibrated end-ischaemic HMP did not induce oxidative damage of aconitase, and respiratory chain complexes remained intact. Mitochondria likely respond to variable perfusate oxygen levels by adapting their respiratory function during end-ischaemic HMP. Complex II-III activities should be further investigated as viability biomarkers.
Collapse
|
4
|
de Vries RJ, Cronin SEJ, Romfh P, Pendexter CA, Jain R, Wilks BT, Raigani S, van Gulik TM, Chen P, Yeh H, Uygun K, Tessier SN. Non-invasive quantification of the mitochondrial redox state in livers during machine perfusion. PLoS One 2021; 16:e0258833. [PMID: 34705828 PMCID: PMC8550443 DOI: 10.1371/journal.pone.0258833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is a critical problem in liver transplantation that can lead to life-threatening complications and substantially limit the utilization of livers for transplantation. However, because there are no early diagnostics available, fulminant injury may only become evident post-transplant. Mitochondria play a central role in IRI and are an ideal diagnostic target. During ischemia, changes in the mitochondrial redox state form the first link in the chain of events that lead to IRI. In this study we used resonance Raman spectroscopy to provide a rapid, non-invasive, and label-free diagnostic for quantification of the hepatic mitochondrial redox status. We show this diagnostic can be used to significantly distinguish transplantable versus non-transplantable ischemically injured rat livers during oxygenated machine perfusion and demonstrate spatial differences in the response of mitochondrial redox to ischemia reperfusion. This novel diagnostic may be used in the future to predict the viability of human livers for transplantation and as a tool to better understand the mechanisms of hepatic IRI.
Collapse
Affiliation(s)
- Reinier J. de Vries
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
- Department of Surgery, Amsterdam University Medical Centers–Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Stephanie E. J. Cronin
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Padraic Romfh
- Pendar Technologies, Cambridge, MA, United States of America
| | - Casie A. Pendexter
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Rohil Jain
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Benjamin T. Wilks
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Siavash Raigani
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States of America
| | - Thomas M. van Gulik
- Department of Surgery, Amsterdam University Medical Centers–Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peili Chen
- Pendar Technologies, Cambridge, MA, United States of America
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States of America
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| |
Collapse
|
5
|
Ishihara Y, Bochimoto H, Kondoh D, Obara H, Matsuno N. The ultrastructural characteristics of bile canaliculus in porcine liver donated after cardiac death and machine perfusion preservation. PLoS One 2020; 15:e0233917. [PMID: 32470051 PMCID: PMC7259665 DOI: 10.1371/journal.pone.0233917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The effects of each type of machine perfusion preservation (MP) of liver grafts donated after cardiac death on the bile canaliculi of hepatocytes remain unclear. We analyzed the intracellular three-dimensional ultrastructure of the bile canaliculi and hepatocyte endomembrane systems in porcine liver grafts after warm ischemia followed by successive MP with modified University of Wisconsin gluconate solution. Transmission and osmium-maceration scanning electron microscopy revealed that lumen volume of the bile canaliculi decreased after warm ischemia. In liver grafts preserved by hypothermic MP condition, bile canaliculi tended to recover in terms of lumen volume, while their microvilli regressed. In contrast, midthermic MP condition preserved the functional form of the microvilli of the bile canaliculi. Machine perfusion preservation potentially restored the bile canaliculus lumen and alleviated the cessation of cellular endocrine processes due to warm ischemia. In addition, midthermic MP condition prevented the retraction of the microvilli of bile canaliculi, suggesting further mitigation of the damage of the bile canaliculi.
Collapse
Affiliation(s)
- Yo Ishihara
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Bochimoto
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
- Division of Aerospace Medicine, Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Japan
- * E-mail:
| | - Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiromichi Obara
- Department of Mechanical Engineering, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoto Matsuno
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
6
|
Kanazawa H, Obara H, Yoshikawa R, Meng L, Hirano T, Okada Y, Nishikawa Y, Matsuno N. Impact of Machine Perfusion on Sinusoid Microcirculation of Liver Graft Donated After Cardiac Death. J Surg Res 2019; 245:410-419. [PMID: 31437648 DOI: 10.1016/j.jss.2019.07.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The present study examined the impact of oxygenated machine perfusion on preservation of liver grafts donated after cardiac death by measuring sinusoidal endothelial injury and microcirculatory disturbances. MATERIALS AND METHODS Fifteen porcine livers were retrieved 60 min after warm ischemia and allocated into three groups as follows: (1) CS group: static cold storage, (2) HMP group: oxygenated hypothermic perfusion preservation, (3) SNMP group: oxygenated subnormothermic perfusion preservation. The liver grafts donated after cardiac death were preserved for 4 h in different treatment conditions mentioned previously, then subject to ex vivo reperfusion for 2 h using diluted allogeneic blood. The hemodynamic parameters, liver function tests, tissue adenosine triphosphate (ATP) levels, and immunohistochemical findings were investigated. RESULTS The number of sinusoidal epithelial cells and trabecular structures were maintained after 4 h of preservation in the CS, HMP, and SNMP group. Liver tissue ATP levels after 4 h of preservation in the HMP and SNMP groups were significantly higher compared with that in the CS group. The sinusoidal epithelial cells were significantly exfoliated to a more severe extent in the CS group than in the HMP and SNMP groups. Intrasinusoidal platelet aggregation occurred more frequently in the CS group than in the HMP and SNMP groups. CONCLUSIONS The results indicated that oxygenated machine perfusion preservation was important to prevent the depletion of tissue ATP and maintain sinusoidal homeostasis regardless of the perfusate temperature. Our findings suggest oxygenated machine perfusion preservation as an effective alternative to static cold storage.
Collapse
Affiliation(s)
- Hiroyuki Kanazawa
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa city, Hokkaido, Japan.
| | - Hiromichi Obara
- Department of Mechanical Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Ryo Yoshikawa
- Department of Mechanical Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Lingtong Meng
- Department of Pathology, Asahikawa Medical University, Asahikawa city, Hokkaido, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, Tokyo Universiaty of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoko Okada
- Department of Pathology, Asahikawa Medical University, Asahikawa city, Hokkaido, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa city, Hokkaido, Japan
| | - Naoto Matsuno
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa city, Hokkaido, Japan
| |
Collapse
|
7
|
Waack IN, Petersen M, Verhaegh R, Teloh JK. The Liver and Small Intestine Can Partly Compensate Severe Normovolemic Hemodilution in a Rat Model. J Surg Res 2018; 232:605-613. [PMID: 30463780 DOI: 10.1016/j.jss.2018.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/23/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Knowing the individual critical hematocrit for every organ is essential in operative scenarios in which extensive blood losses are expected. In the past, experimental settings were very heterogeneous resulting in the publication of widely differing values even for one organ in the same species. This study aimed to investigate the compensatory capacity of the liver and the small intestine in a rat model of severe normovolemic hemodilution. MATERIALS AND METHODS Male rats were subjected to a stepwise hemodilution with a succinylated gelatin-containing solution to a final hematocrit of 10%, being observed for additional 150 min. During the course of the experiment, blood glucose and L-lactate, as well as D-lactate and intestinal fatty acid-binding protein-2 measurements, were performed eight times in total. The amino acids alanine and glutamine were measured during dilution and at the end of the experiment (four times in total). Hemodilutional effects on the blood and oxygen supply of the liver and the small intestine were measured in a minimally invasive manner. RESULTS In the liver and the small intestine, there were no substantial changes in the blood flow of the microcirculation. Plasma glucose and lactate levels rose transiently, whereas lactate values did not exceed the upper threshold of aerobic metabolism. Plasma levels of the amino acids alanine and glutamine rose significantly and stayed elevated, whereas D-lactate and intestinal fatty acid-binding protein-2 were not significantly increased at any point during the whole experimental time compared to the initial value. CONCLUSIONS Severe hemodilution with a succinylated gelatin-containing solution is tolerated at a profoundly low hematocrit value of 10% during the experimental phase of 150 min.
Collapse
Affiliation(s)
- Indra Naemi Waack
- University of Duisburg-Essen, Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany.
| | - Miriam Petersen
- Ambulatory Healthcare Center Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| | - Rabea Verhaegh
- University of Duisburg-Essen, Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Johanna Katharina Teloh
- University of Duisburg-Essen, Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| |
Collapse
|
8
|
Preconditioning-Like Properties of Short-Term Hypothermia in Isolated Perfused Rat Liver (IPRL) System. Int J Mol Sci 2018; 19:ijms19041023. [PMID: 29596325 PMCID: PMC5979303 DOI: 10.3390/ijms19041023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022] Open
Abstract
Hypothermia may attenuate the progression of ischemia-induced damage in liver. Here, we determined the effects of a brief cycle of hypothermic preconditioning applied before an ischemic/reperfusion (I/R) episode in isolated perfused rat liver (IPRL) on tissue damage and oxidative stress. Rats (male, 200–250 g) were anaesthetised with sodium pentobarbital (60 mg·kg−1 i.p) and underwent laparatomy. The liver was removed and perfused in a temperature-regulated non-recirculating system. Livers were randomly divided into two groups (n = 6 each group). In the hypothermia-preconditioned group, livers were perfused with hypothermic buffer (cycle of 10 min at 22 °C plus 10 min at 37 °C) and the other group was perfused at 37 °C. Both groups were then submitted to 40 min of warm ischemia and 20 min of warm reperfusion. The level of tissue-damage indicators (alanine amino transferase, ALT; lactate dehydrogenase, LDH; and proteins), oxidative stress markers (thiobarbituric acid-reactive substances, TBARS; advanced oxidation protein products, AOPP; and glutathione, GSH) were measured in aliquots of perfusate sampled at different time intervals. Histological determinations and oxidative stress biomarkers in homogenized liver (AOPP; TBARS; nitric oxide derivatives, NOx; GSH and glutathione disulphide, GSSG) were also made in the tissue at the end. Results showed that both damage and oxidant indicators significantly decreased while antioxidant increased in hypothermic preconditioned livers. In addition, homogenized liver determinations and histological observations at the end of the protocol corroborate the results in the perfusate, confirming the utility of the perfusate as a non-invasive method. In conclusion, hypothermic preconditioning attenuates oxidative damage and appears to be a promising strategy to protect the liver against IR injury.
Collapse
|
9
|
Quillin RC, Guarrera JV. Hypothermic machine perfusion in liver transplantation. Liver Transpl 2018; 24:276-281. [PMID: 29278454 DOI: 10.1002/lt.25004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
A finite supply of donor organs has led many transplant centers to accept marginal liver allografts with increasing frequency. These allografts may be at higher risk of primary nonfunction, early allograft dysfunction, and other recipient complications following liver transplantation. Machine perfusion preservation is an emerging technology that limits ischemia/reperfusion injury associated with preservation and may lead to improved outcomes following transplantation. Increased used of machine perfusion in liver preservation may permit an expansion of the donor pool. In this review, we examine the major clinical experience of hypothermic machine perfusion in human liver transplantation.Liver Transplantation 24 276-281 2018 AASLD.
Collapse
Affiliation(s)
- R Cutler Quillin
- From the Center for Liver Disease and Transplantation, Department of Surgery, Columbia University Medical Center, New York, NY
| | - James V Guarrera
- From the Center for Liver Disease and Transplantation, Department of Surgery, Columbia University Medical Center, New York, NY
| |
Collapse
|
10
|
|
11
|
Clavien PA, Dutkowski P. Advances in hypothermic perfusion. Liver Transpl 2017; 23:S52-S55. [PMID: 28815993 DOI: 10.1002/lt.24844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Pierre-Alain Clavien
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
The Use of Continuous Extended Criteria Graft Perfusion Will Lead to an Increase in Transplantable Organs. Transplantation 2017. [DOI: 10.1097/tp.0000000000001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Abstract
The demand of donor livers for transplantation exceeds the supply. In an attempt to maximize the number of potentially usable donor livers, several centers are exploring the role of machine perfusion. This review provides an update on machine perfusion strategies and basic concepts, based on current clinical issues, and discuss challenges, including currently used biomarkers for assessing the quality and viability of perfused organs. The potential benefits of machine perfusion on immunogenicity and the consequences on post-operative immunosuppression management are discussed.
Collapse
|
14
|
Schlegel A, Kron P, Dutkowski P. Hypothermic Oxygenated Liver Perfusion: Basic Mechanisms and Clinical Application. CURRENT TRANSPLANTATION REPORTS 2015; 2:52-62. [PMID: 26097802 PMCID: PMC4469295 DOI: 10.1007/s40472-014-0046-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic preservation strategies such as hypothermic machine perfusion are increasingly discussed to improve liver graft quality before transplantation. This review summarizes current knowledge of this perfusion technique for liver preservation. We discuss optimization of perfusion conditions and current strategies to assess graft quality during cold perfusion. Next, we provide an overview of possible pathways of protection from ischemia-reperfusion injury. Finally, we report on recent clinical applications of human hypothermic machine liver perfusion.
Collapse
Affiliation(s)
- A. Schlegel
- Department of Surgery and Transplantation, University Hospital Zürich, Raemistr. 100, 8091 Zurich, Switzerland
| | - P. Kron
- Department of Surgery and Transplantation, University Hospital Zürich, Raemistr. 100, 8091 Zurich, Switzerland
| | - P. Dutkowski
- Department of Surgery and Transplantation, University Hospital Zürich, Raemistr. 100, 8091 Zurich, Switzerland
| |
Collapse
|
15
|
Graham JA, Guarrera JV. "Resuscitation" of marginal liver allografts for transplantation with machine perfusion technology. J Hepatol 2014; 61:418-31. [PMID: 24768755 DOI: 10.1016/j.jhep.2014.04.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 04/13/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022]
Abstract
As the rate of medically suitable donors remains relatively static worldwide, clinicians have looked to novel methods to meet the ever-growing demand of the liver transplant waiting lists worldwide. Accordingly, the transplant community has explored many strategies to offset this deficit. Advances in technology that target the ex vivo "preservation" period may help increase the donor pool by augmenting the utilization and improving the outcomes of marginal livers. Novel ex vivo techniques such as hypothermic, normothermic, and subnormothermic machine perfusion may be useful to "resuscitate" marginal organs by reducing ischemia/reperfusion injury. Moreover, other preservation techniques such as oxygen persufflation are explored as they may also have a role in improving function of "marginal" liver allografts. Currently, marginal livers are frequently discarded or can relegate the patient to early allograft dysfunction and primary non-function. Bench to bedside advances are rapidly emerging and hold promise for expanding liver transplantation access and improving outcomes.
Collapse
Affiliation(s)
- Jay A Graham
- Center for Liver Disease and Transplantation, Department of Surgery, Columbia University College of Physicians and Surgeons and New York Presbyterian Hospital, New York, NY 10032, USA
| | - James V Guarrera
- Center for Liver Disease and Transplantation, Department of Surgery, Columbia University College of Physicians and Surgeons and New York Presbyterian Hospital, New York, NY 10032, USA.
| |
Collapse
|
16
|
Schlegel A, Dutkowski P. Role of hypothermic machine perfusion in liver transplantation. Transpl Int 2014; 28:677-89. [PMID: 24852621 DOI: 10.1111/tri.12354] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/05/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022]
Abstract
Machine liver perfusion has significantly evolved during the last ten years to optimize extended criteria liver grafts and to address the worldwide organ shortage. This review gives an overview on available ex vivo and in vivo data on hypothermic machine liver perfusion. We discuss also possible protective pathways and show most recent clinical applications of hypothermic machine liver perfusion in human.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Visceral Surgery and Transplantation, Swiss HPB and Transplant Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, Swiss HPB and Transplant Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Dutkowski P, Schlegel A, de Oliveira M, Müllhaupt B, Neff F, Clavien PA. HOPE for human liver grafts obtained from donors after cardiac death. J Hepatol 2014; 60:765-72. [PMID: 24295869 DOI: 10.1016/j.jhep.2013.11.023] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Due to ethical rules in most countries, long ischemia times are unavoidable prior to organ procurement of donors without a heartbeat, which can cause early graft failure after liver transplantation or late biliary strictures. Hypothermic oxygenated machine perfusion, used prior to graft implantation, may rescue these high risk organs. METHODS Eight patients with end stage liver diseases received human livers, obtained after controlled cardiac death (Maastricht category III), with a median donor warm ischemia time of 38 min, followed by a standard cold flush and static storage at 4 °C. Hypothermic oxygenated perfusion (HOPE) was applied for 1-2h prior to implantation through the portal vein. The HOPE-perfusate was cooled at 10 °C and oxygenated (pO2 60 kPa) using an ECOPS device (Organ Assist®). Perfusion pressure was maintained below 3 mmHg. RESULTS Each machine perfused liver graft disclosed excellent early function after transplantation. The release of liver enzymes and kidney function, as well as ICU and hospital stays were comparable or better than in matched liver grafts from brain death donors. No evidence of intrahepatic biliary complications could be documented within a median follow up of 8.5 months. CONCLUSIONS This is the first report on cold machine perfusion of human liver grafts obtained after cardiac arrest and subsequent transplantation. Application of HOPE appears well tolerated, easy-to-use, and protective against early and later injuries.
Collapse
Affiliation(s)
- Philipp Dutkowski
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Michelle de Oliveira
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Beat Müllhaupt
- Department of Hepatology and Gastroenterology, University Hospital Zurich, Switzerland
| | - Fabienne Neff
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland.
| |
Collapse
|
18
|
Pallet N, Bouvier N, Beaune P, Legendre C, Anglicheau D, Thervet E. [Involvement of endoplasmic reticulum stress in solid organ transplantation]. Med Sci (Paris) 2010; 26:397-403. [PMID: 20412745 DOI: 10.1051/medsci/2010264397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a situation caused by the accumulation of unfolded proteins in the endoplasmic reticulum, triggering an evolutionary conserved adaptive response termed the unfolded protein response. When adaptation fails, excessive and prolonged ER stress triggers cell suicide. Important roles for ER-initiated cell death pathways have been recognized for several diseases, including diabetes, hypoxia, ischemia/reperfusion injury, neurodegenerative and heart diseases. The implication of the ER stress is not well recognized in solid organ transplantation, but increasing evidence suggests its implication in mediating allograft injury. The purpose of this review is to summarize the mechanisms of ER stress and to discuss its implication during tissue injury in solid organ transplantation. The possible implications of the ER stress in the modifications of cell functional properties and phenotypic changes are also discussed beyond the scope of adaptation and cell death. Increasing the understanding of the cellular and molecular mechanisms of acute and chronic allograft damages could lead to the development of new biomarkers and to the discovery of new therapeutic strategies to prevent the initiation of graft dysfunction or to promote the tissue regeneration after injury.
Collapse
Affiliation(s)
- Nicolas Pallet
- Inserm U775, Centre universitaire des Saints-Pères, Paris, France.
| | | | | | | | | | | |
Collapse
|
19
|
Lüer B, Koetting M, Efferz P, Minor T. Role of oxygen during hypothermic machine perfusion preservation of the liver. Transpl Int 2010; 23:944-50. [PMID: 20210932 DOI: 10.1111/j.1432-2277.2010.01067.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Grafts from non-heart-beating donors are thought to be best preserved by hypothermic machine perfusion (HMP). Controversy exists concerning the role of oxygenation during HMP. In this study, we wanted to evaluate the relative role of oxygenation for graft integrity during and after HMP. Cardiac arrest was induced in male Wistar rats (250-300 g) by phrenotomy. Thirty minutes later, livers were flushed via the portal vein and subjected to 18 h of HMP at 5 ml/min at 4 degrees C. During HMP, the preservation solution was equilibrated with 100% oxygen (HMP100), with air (HMP20) or not oxygenated at all (HMP0). Graft integrity was assessed thereafter upon warm reperfusion in vitro. During preservation, oxygenation of the perfusate reduced alanine aminotransferase release by 50% compared with HMP0. HMP100 resulted in reduced oxygen free radical-mediated lipid peroxidation upon warm reperfusion compared with both HMP20 and HMP0. One hundred per cent oxygenation during HMP also significantly enhanced the activation of AMPK salvage pathway, and upstream activation of protein kinase A when compared with HMP0. Enzyme release during reperfusion was reduced by approximately 40% (HMP20) or approximately 70% (HMP100) after oxygenation compared with HMP0. Functional recovery (bile production) was only enhanced by HMP100 (approximately twofold increase vs. HMP20 and HMP0, P < 0.05). Efficiency of HMP might be markedly increased by additional aeration of the perfusate, most successfully by equilibration with 100% oxygen.
Collapse
Affiliation(s)
- Bastian Lüer
- Surgical Research Division, University Clinic of Surgery, Bonn, Germany
| | | | | | | |
Collapse
|
20
|
de Rougemont O, Lehmann K, Clavien PA. Preconditioning, organ preservation, and postconditioning to prevent ischemia-reperfusion injury to the liver. Liver Transpl 2009; 15:1172-82. [PMID: 19790166 DOI: 10.1002/lt.21876] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ischemia and reperfusion lead to injury of the liver. Ischemia-reperfusion injury is inevitable in liver transplantation and trauma and, to a great extent, in liver resection. This article gives an overview of the mechanisms involved in this type of injury and summarizes protective and treatment strategies in clinical use today. Intervention is possible at different time points: during harvesting, during the period of preservation, and during implantation. Liver preconditioning and postconditioning can be applied in the transplant setting and for liver resection. Graft optimization is merely possible in the period between the harvest and the implantation. Given that there are 3 stages in which a surgeon can intervene against ischemia-reperfusion injury, we have structured the review as follows. The first section reviews the approaches using surgical interventions, such as ischemic preconditioning, as well as pharmacological applications. In the second section, static organ preservation and machine perfusion are addressed. Finally, the possibility of treating the recipient or postconditioning is discussed.
Collapse
Affiliation(s)
- Olivier de Rougemont
- Swiss Hepato-Pancreatico-Biliary Center, Department of Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
21
|
Endoplasmic reticulum stress: an unrecognized actor in solid organ transplantation. Transplantation 2009; 88:605-13. [PMID: 19741454 DOI: 10.1097/tp.0b013e3181b22cec] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum (ER) stress is an adaptive response to the accumulation of misfolded proteins within the ER, which can trigger cell dedifferentiation and cell suicide. Increasing evidences suggest its implication in mediating allograft injury. Herein, we summarize the mechanisms of ER stress and discuss its implication in allograft injury. Increasing our understanding of the cellular and molecular mechanisms of acute and chronic allograft damages could lead to the development of new biomarkers and to the discovery of new therapeutic strategies to prevent the initiation of graft dysfunction or to promote the tissue regeneration after injury.
Collapse
|
22
|
Vekemans K, Liu Q, Pirenne J, Monbaliu D. Artificial circulation of the liver: machine perfusion as a preservation method in liver transplantation. Anat Rec (Hoboken) 2008; 291:735-40. [PMID: 18484620 DOI: 10.1002/ar.20662] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to the sharp increase in liver transplant candidates and the subsequent shortage of suitable donor livers, an extension of the current donor criteria is necessary. Simple cold storage, the current standard in organ preservation has proven to be insufficient to preserve extended criteria donor livers. Therefore a renewed interest grew toward alternative methods for liver preservation, such as hypothermic machine perfusion and normothermic machine perfusion. These "new" preservation methods were primarily assessed in rat models, and only a few clinically relevant large animal models have been described so far. This review will elaborate on these alternative preservation methods.
Collapse
Affiliation(s)
- Katrien Vekemans
- Abdominal Transplant Surgery, Catholic University of Leuven (KULeuven), Leuven, Belgium.
| | | | | | | |
Collapse
|
23
|
Abstract
Due to the critical shortage of deceased donor grafts, clinicians are continually expanding the criteria for an acceptable liver donor to meet the waiting list demands. However, the reduced ischemic tolerance of those extended criteria grafts jeopardizes organ viability during cold storage. Machine perfusion has been developed to limit ischemic liver damage but despite its proven biochemical benefit, machine liver perfusion is not yet considered clinically due to its low practicability. In this review, we summarize our understanding of the role of machine perfusion in marginal liver preservation. The goal is to highlight advantages or disadvantages of current perfusion techniques and to explain the underlying mechanisms. We provide evidence for the need of a liver perfusion performance shortly before implantation, and point out promising designs.
Collapse
Affiliation(s)
- P Dutkowski
- Swiss HPB (Hepato-Pancreato-Biliary) Center, Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zurich, Switzerland
| | | | | |
Collapse
|
24
|
Fuller BJ, Lee CY. Hypothermic perfusion preservation: the future of organ preservation revisited? Cryobiology 2007; 54:129-45. [PMID: 17362905 DOI: 10.1016/j.cryobiol.2007.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 12/24/2022]
Abstract
Hypothermic perfusion preservation (HPP) was an integral step in the development of early clinical transplantation programmes, and considerable progress was made in understanding the basic principles underlying the technique. In subsequent years, the development of better preservation solutions for cold hypoxic storage, along with pragmatic choices made on grounds of costs and logistics, saw a fall in the application of HPP. More recently, the acute shortage of suitable organ donors and the inevitable pressure to use organs from sub-optimal (or expanded criteria) donors, has forced a re-evaluation of HPP, and the development of a new generation of HPP machines and associated perfusion solutions. This review sets out the historical development of HPP across the range of organs in which the method was originally investigated, describes the biological benefits and drawbacks associated with HPP, and sets out the most recent literature on the topic (including comments on the interest in use of higher temperatures in organ perfusion).
Collapse
Affiliation(s)
- Barry J Fuller
- University Department of Surgery and Liver Transplant Unit, Royal Free and University College Medical School, Hampstead, London NW3 2QG, UK.
| | | |
Collapse
|
25
|
Dutkowski P, Furrer K, Tian Y, Graf R, Clavien PA. Novel short-term hypothermic oxygenated perfusion (HOPE) system prevents injury in rat liver graft from non-heart beating donor. Ann Surg 2006; 244:968-76; discussion 976-7. [PMID: 17122622 PMCID: PMC1856639 DOI: 10.1097/01.sla.0000247056.85590.6b] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To assess a machine perfusion system in rescuing liver grafts from non-heart-beating donors (NHBD). SUMMARY BACKGROUND DATA The introduction of extracorporeal liver perfusion systems in the clinical routine depends on feasibility. Conceivably, perfusion could be performed during recipient preparation. We investigated whether a novel rat liver machine perfusion applied after in situ ischemia and cold storage can rescue NHBD liver grafts. METHODS We induced cardiac arrest in male Brown Norway rats by phrenotomy and ligation of the subcardial aorta. We studied 2 experimental groups: 45 minutes of warm in situ ischemia + 5 hours cold storage versus 45 minutes of warm in situ ischemia + 5 hours cold storage followed by 1 hour hypothermic oxygenated extracorporeal perfusion (HOPE). In both groups, livers were reperfused in a closed sanguineous isolated liver perfusion device for 3 hours at 37 degrees C. To test the benefit of HOPE on survival, we performed orthotopic liver transplantation in both experimental groups. RESULTS After cold storage and reperfusion, NHBD livers showed necrosis of hepatocytes, increased release of AST, and decreased bile flow. HOPE improved NHBD livers significantly with a reduction of necrosis, less AST release, and increased bile flow. ATP was severely depleted in cold-stored NHBD livers but restored in livers treated by HOPE. After orthotopic liver transplantation, grafts treated by HOPE demonstrated a significant extension on animal survival. CONCLUSIONS We demonstrate a beneficial effect of HOPE by preventing reperfusion injury in a clinically relevant NHBD model.
Collapse
Affiliation(s)
- Philipp Dutkowski
- Swiss Hepato-Pancreato-Biliary (HPB) Center, Laboratory for HPB and Transplantation Surgery, Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
Dutkowski P, Graf R, Clavien PA. Rescue of the cold preserved rat liver by hypothermic oxygenated machine perfusion. Am J Transplant 2006; 6:903-12. [PMID: 16611326 DOI: 10.1111/j.1600-6143.2006.01264.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of the study was to investigate whether hypothermic oxygenated liver perfusion after cold liver preservation resuscitated metabolic parameters and whether this treatment had a benefit for liver viability upon reperfusion. We preserved rat livers either by cold storage (UW) for 10 h, or by perfusion for 3 h (oxygenated modified UW) after 10 h cold storage. We assessed viability of livers after preservation and after ischemic rewarming+normothermic reperfusion ex vivo. Ten hour cold storage reduced mitochondrial cytochrome oxidase and metabolically depleted the livers. Oxygenated perfusion after cold storage resulted in uploaded cellular energy charge and oxidized mitochondrial cytochrome oxidase. Reperfusion after 10 h cold storage increased formation of superoxid anions, release of cytosolic LDH, lipid peroxidation, caspase activities and led to disruption of sinusoidal endothelial cells. In contrast, reperfusion after 10 h cold storage+3 h hypothermic oxygenated perfusion resulted in no changes of lipid peroxidation, bile flow, energy charge, total glutathione, LDH release and of caspase activation, as compared to fresh resected livers. This study demonstrates, that a metabolically depleted liver due to cold storage can be energy recharged by short-termed cold machine perfusion. The machine perfused graft exhibited improved viability and functional integrity.
Collapse
Affiliation(s)
- P Dutkowski
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Switzerland.
| | | | | |
Collapse
|