1
|
Caliskan S, Liu D, Oldenhof H, Sieme H, Wolkers WF. Use of membrane transport models to design cryopreservation procedures for oocytes. Anim Reprod Sci 2024; 267:107536. [PMID: 38908169 DOI: 10.1016/j.anireprosci.2024.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Oocyte cryopreservation is increasingly being used in reproductive technologies for conservation and breeding purposes. Further development of oocyte cryopreservation techniques requires interdisciplinary insights in the underlying principles of cryopreservation. This review aims to serve this purpose by: (1) highlighting that preservation strategies can be rationally designed, (2) presenting mechanistic insights in volume and osmotic stress responses associated with CPA loading strategies and cooling, and (3) giving a comprehensive listing of oocyte specific biophysical membrane characteristics and commonly used permeation model equations. It is shown how transport models can be used to simulate the behavior of oocytes during cryopreservation processing steps, i.e., during loading of cryoprotective agents (CPAs), cooling with freezing as well as vitrification, warming and CPA unloading. More specifically, using defined cellular and membrane characteristics, the responses of oocytes during CPA (un)loading were simulated in terms of temperature- and CPA type-and-concentration-dependent changes in cell volume and intracellular solute concentration. In addition, in order to determine the optimal cooling rate for slow programmable cooling cryopreservation, the freezing-induced cell volume response was simulated at various cooling rates to estimate rates with tolerable limits. For vitrification, special emphasis was on prediction of the timing of reaching osmotic tolerance limits during CPA exposure, and the need to use step-wise CPA addition/removal protocols. In conclusion, we present simulations and schematic illustrations that explain the timing of events during slow cooling cryopreservation as well as vitrification, important for rationally designing protocols taking into account how different CPA types, concentrations and temperatures affect the oocyte.
Collapse
Affiliation(s)
- Sükrü Caliskan
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dejia Liu
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
2
|
Xu X, Yang B, Zhang H, Feng X, Hao H, Du W, Zhu H, Khan A, Khan MZ, Zhang P, Zhao X. Effects of β-Nicotinamide Mononucleotide, Berberine, and Cordycepin on Lipid Droplet Content and Developmental Ability of Vitrified Bovine Oocytes. Antioxidants (Basel) 2023; 12:antiox12050991. [PMID: 37237857 DOI: 10.3390/antiox12050991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Oocyte vitrification is crucial for livestock reproduction, germplasm conservation, and human-assisted reproduction, but the overabundance of lipids is highly detrimental to oocyte development. It is necessary to reduce the lipid droplet content of oocytes before cryopreservation. This study analyzed the impact of β-nicotinamide mononucleotide (NMN), berberine (BER), or cordycepin (COR) on various aspects of bovine oocytes, including lipid droplet content and the expression levels of genes related to lipid synthesis in bovine oocytes, development ability, reactive oxygen species (ROS), apoptosis, and the expression levels of genes associated with endoplasmic reticulum (ER) stress, and mitochondrial function in vitrified bovine oocytes. The results of our study indicated that 1 μM NMN, 2.5 μM BER, and 1 μM COR were effective in reducing the lipid droplet content and suppressing the expression levels of genes involved in lipid synthesis in bovine oocytes. Our findings showed that the vitrified bovine oocytes treated with 1 μM of NMN had a significantly higher survival rate and better development ability compared to the other vitrified groups. Additionally, 1 μM NMN, 2.5 μM BER, and 1 μM COR decreased the levels of ROS and apoptosis, decreased the mRNA expression levels of genes involved in ER stress and mitochondrial fission but increased the mRNA expression levels of genes associated with mitochondrial fusion in the vitrified bovine oocytes. Our study results suggested that 1 μM NMN, 2.5 μM BER, and 1 μM COR effectively decreased the lipid droplet content and enhanced the development ability of vitrified bovine oocytes by lowering ROS levels, reducing ER stress, regulating mitochondrial function, and inhibiting apoptosis. Furthermore, the results showed that 1 μM NMN was more effective than 2.5 μM BER and 1 μM COR.
Collapse
Affiliation(s)
- Xi Xu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Baigao Yang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Haisheng Hao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Weihua Du
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Huabin Zhu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Zahoor Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peipei Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| |
Collapse
|
3
|
Kincade JN, Hlavacek A, Akera T, Balboula AZ. Initial spindle positioning at the oocyte center protects against incorrect kinetochore-microtubule attachment and aneuploidy in mice. SCIENCE ADVANCES 2023; 9:eadd7397. [PMID: 36800430 PMCID: PMC9937575 DOI: 10.1126/sciadv.add7397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Spindle positioning within the oocyte must be tightly regulated. In mice, the spindle is predominantly assembled at the oocyte center before its migration toward the cortex to achieve the highly asymmetric division, a characteristic of female meiosis. The significance of the initial central positioning of the spindle is largely unknown. We show that initial spindle positioning at the oocyte center is an insurance mechanism to avoid the premature exposure of the spindle to cortical CDC42 signaling, which perturbs proper kinetochore-microtubule attachments, leading to the formation of aneuploid gametes. These findings contribute to understanding why female gametes are notoriously associated with high rates of aneuploidy, the leading genetic cause of miscarriage and congenital abnormalities.
Collapse
Affiliation(s)
- Jessica N. Kincade
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Avery Hlavacek
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ahmed Z. Balboula
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Aardema H, Bertijn I, van Tol HTA, Rijneveld A, Vernooij JCM, Gadella BM, Vos PLAM. Fatty Acid Supplementation During in vitro Embryo Production Determines Cryosurvival Characteristics of Bovine Blastocysts. Front Cell Dev Biol 2022; 10:837405. [PMID: 35356284 PMCID: PMC8959877 DOI: 10.3389/fcell.2022.837405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
In vitro production (IVP) embryos have a reduced quality and poor cryotolerance in comparison to in vivo embryos. This study investigated whether free fatty acid (FFA) conditions, fatty acid free (FAF)- synthetic oviduct fluid (SOF) without or with 25 μM of saturated stearic (C18:0) or unsaturated oleic (C18:1) acid during the first 5 IVP days, relate to quality and cryosurvival of day 8 blastocysts. Apart from the blastocyst scores, both 1) number and size of lipid droplets of fresh blastocysts and 2) total number and apoptotic and necrotic cells, before and after freezing-thawing, were scored by confocal microscopy. Blastocyst rates were significantly lower in the FAF SOF condition in comparison to other groups. Interestingly, blastocysts originating from the C18:1 group, with a significantly higher lipid content, and blastocysts from the FAF SOF group demonstrated a high cryosurvival rate (70.1 and 67.4%, respectively) comparable with in vivo blastocysts (68%), in contrast to the poor cryosurvival of C18:0 exposed embryos (17.6%). In all freeze-thawed embryos the average amount of apoptotic and necrotic cells increased albeit that the C18:0 condition rates were higher (43.2%) when compared to C18:1 (26.0%) and FAF SOF conditions (26.5%). The current data show that FFA administered during early embryonic development significantly affect the cryotolerance of blastocysts.
Collapse
Affiliation(s)
- H. Aardema
- *Correspondence: H. Aardema, ; B. M. Gadella,
| | | | | | | | | | | | | |
Collapse
|
5
|
From Zygote to Blastocyst: Application of Ultrashort Lasers in the Field of Assisted Reproduction and Developmental Biology. Diagnostics (Basel) 2021; 11:diagnostics11101897. [PMID: 34679594 PMCID: PMC8534476 DOI: 10.3390/diagnostics11101897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Although the use of lasers in medical diagnosis and therapies, as well as in fundamental biomedical research is now almost routine, advanced laser sources and new laser-based methods continue to emerge. Due to the unique ability of ultrashort laser pulses to deposit energy into a microscopic volume in the bulk of a transparent material without disrupting the surrounding tissues, the ultrashort laser-based microsurgery of cells and subcellular components within structurally complex and fragile specimens such as embryos is becoming an important tool in developmental biology and reproductive medicine. In this review, we discuss the mechanisms of ultrashort laser pulse interaction with the matter, advantages of their application for oocyte and preimplantation embryo microsurgery (e.g., for oocyte/blastomere enucleation and embryonic cell fusion), as well as for nonlinear optical microscopy for studying the dynamics of embryonic development and embryo quality assessment. Moreover, we focus on ultrashort laser-based approaches and techniques that are increasingly being applied in the fundamental research and have the potential for successful translation into the IVF (in vitro fertilization) clinics, such as laser-mediated individual embryo labelling and controlled laser-assisted hatching.
Collapse
|
6
|
Tharasanit T, Thuwanut P. Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals (Basel) 2021; 11:ani11102949. [PMID: 34679970 PMCID: PMC8533007 DOI: 10.3390/ani11102949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
Oocyte cryopreservation plays important roles in basic research and the application of models for genetic preservation and in clinical situations. This technology provides long-term storage of gametes for genetic banking and subsequent use with other assisted reproductive technologies. Until recently, oocytes have remained the most difficult cell type to freeze, as the oocytes per se are large with limited surface area to cytoplasm ratio. They are also highly sensitive to damage during cryopreservation, and therefore the success rate of oocyte cryopreservation is generally poor when compared to noncryopreserved oocytes. Although advancement in oocyte cryopreservation has progressed rapidly for decades, the improvement of cryosurvival and clinical outcomes is still required. This review focuses on the principles, techniques, outcomes and prospects of oocyte cryopreservation in domestic animals and humans.
Collapse
Affiliation(s)
- Theerawat Tharasanit
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Bangkok 10330, Thailand
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| | - Paweena Thuwanut
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
7
|
Somfai T, Nguyen VK, Vu HTT, Nguyen HLT, Quan HX, Viet Linh N, Phan SL, Pham LD, Cuc NTK, Kikuchi K. Cryopreservation of immature oocytes of the indigeneous Vietnamese Ban Pig. Anim Sci J 2019; 90:840-848. [PMID: 31006939 DOI: 10.1111/asj.13209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
Abstract
We report the cryopreservation of oocytes from Ban miniature pigs which are endemic in Vietnam. Immature cumulus-oocyte complexes were collected from antral follicles of 7-8 mo old female cyclic Ban pigs and vitrified in micro-drops. Oocyte morphology, lipid content, post-warming survival, nuclear maturation, and embryo development were compared to those of oocytes from commercially slaughtered Landrace × Large white hybrid pigs. The size of oocytes in the two breeds was similar. However, significantly lower amounts of intracellular lipid were detected in Ban oocytes. There was no difference (p > 0.05) between Ban and Landrace × Large white oocytes in percentages of post-warming survival (93.1 ± 3.4% vs. 70.7 ± 16.7%, respectively) and nuclear maturation after in vitro maturation (80.4 ± 5.1% vs. 90.0 ± 1.3% respectively). Similarly, cleavage (30.8 ± 7.8% vs. 10.3 ± 6.1%, respectively) and blastocyst development rates (9.4 ± 5.0% vs. 0.79 ± 0.79, respectively) were not different (p > 0.05) between vitrified Ban and Landrace × Large white oocytes after in vitro fertilization and embryo culture. In conclusion, high survival and maturation rates were achieved after vitrification of immature Ban oocytes and their cryo-tolerance was similar to that of Landrace × Large white oocytes, despite the difference in lipid content. We succeeded to generate reasonable rates of blastocysts from vitrified Ban oocytes by in vitro fertilization.
Collapse
Affiliation(s)
- Tamas Somfai
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Van Khanh Nguyen
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | - Huong Thu Thi Vu
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | - Huong Le Thi Nguyen
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | - Huu Xuan Quan
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | - Nguyen Viet Linh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Son Le Phan
- National Institute of Animal Science, Hanoi, Vietnam
| | - Lan Doan Pham
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | | | - Kazuhiro Kikuchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
8
|
Canesin HS, Brom-de-Luna JG, Choi YH, Ortiz I, Diaw M, Hinrichs K. Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage. Cryobiology 2017; 75:52-59. [DOI: 10.1016/j.cryobiol.2017.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
|
9
|
Jasensky J, Boughton AP, Khmaladze A, Ding J, Zhang C, Swain JE, Smith GW, Chen Z, Smith GD. Live-cell quantification and comparison of mammalian oocyte cytosolic lipid content between species, during development, and in relation to body composition using nonlinear vibrational microscopy. Analyst 2016; 141:4694-706. [PMID: 27272931 DOI: 10.1039/c6an00629a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytosolic lipids participate in the growth, development, and overall health of mammalian oocytes including many roles in cellular homeostasis. Significant emphasis has been placed on the study of lipids as a dynamic organelle, which in turn requires the development of tools and techniques to quantitate and compare how lipid content relates to cellular structure, function, and normalcy. Objectives of this study were to determine if nonlinear vibrational microscopy (e.g., coherent anti-Stokes Raman scattering or CARS microscopy) could be used for live-cell imaging to quantify and compare lipid content in mammalian oocytes during development and in relation to body composition; and compare its efficacy to methods involving cellular fixation and staining protocols. Results of this study demonstrate that CARS is able to identify lipids in live mammalian oocytes, and there exists quantifiable and consistent differences in percent lipid composition across ooctyes of different species, developmental stages, and in relation to body composition. Such a method of live-cell lipid quantification has (i) experimental power in basic cell biology, (ii) practical utility for identifying developmental predictive biomarkers while advancing biology-based oocyte/embryo selection, and (iii) ability to yield rationally supporting technology for decision-making in rodents, domestic species, and human assisted reproduction and/or fertility preservation.
Collapse
Affiliation(s)
- Joshua Jasensky
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Men H, Spate LD, Murphy CN, Prather RS. Cryopreservation of In Vitro-Produced Early-Stage Porcine Embryos in a Closed System. Biores Open Access 2015; 4:258-65. [PMID: 26309801 PMCID: PMC4497712 DOI: 10.1089/biores.2015.0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cryostorage of porcine embryos in a closed pathogen-free system is essential for the maintenance and safeguard of swine models. Previously, we reported a protocol for the successful cryopreservation of porcine embryos at the blastocyst stage in 0.25 mL ministraws. In this experiment, we aimed at developing a protocol to apply the same concept for the cryopreservation of early-stage porcine embryos. Porcine embryos from day 2 through day 4 were delipidated by using a modified two-step centrifugation method and were then cryopreserved in sealed 0.25 mL straws by using a slow cooling method. Control groups included open pulled straw (OPS) vitrified embryos after delipidation and noncryopreserved embryos without delipidation. There were no significant differences in cryosurvival between embryos frozen in 0.25 mL straws and OPS vitrified embryos across all the stages (two cell to morula) examined (p>0.05). Similarly, in all groups examined, the blastocyst rates were not different between the two cryopreserved groups. However, the blastocyst rates from the cryopreserved groups were significantly lower than the noncryopreserved controls (p<0.05). This experiment demonstrated that early-stage porcine embryos can survive cryopreservation in a closed system by using a slow cooling method at a comparable rate to those vitrified by using an ultrarapid cooling method (p>0.05). However, the developmental competence was significantly reduced after cryopreservation compared to noncryopreserved embryos. Further research is needed to optimize the protocol to improve the developmental potential of cryopreserved early-stage porcine embryos in sealed straws.
Collapse
Affiliation(s)
- Hongsheng Men
- Department of Veterinary Pathobiology, University of Missouri , Columbia, Missouri
| | - Lee D Spate
- Division of Animal Sciences, Animal Sciences Research Center, University of Missouri , Columbia, Missouri. ; National Swine Resource and Research Center, University of Missouri , Columbia, Missouri
| | - Clifton N Murphy
- Division of Animal Sciences, Animal Sciences Research Center, University of Missouri , Columbia, Missouri
| | - Randall S Prather
- Division of Animal Sciences, Animal Sciences Research Center, University of Missouri , Columbia, Missouri. ; National Swine Resource and Research Center, University of Missouri , Columbia, Missouri
| |
Collapse
|
11
|
Niu Y, Wang C, Xiong Q, Yang X, Chi D, Li P, Liu H, Li J, Huang R. Distribution and content of lipid droplets and mitochondria in pig parthenogenetically activated embryos after delipation. Theriogenology 2014; 83:131-8. [PMID: 25280581 DOI: 10.1016/j.theriogenology.2014.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 11/26/2022]
Abstract
The present study examines the effect of delipation on developmental competence and the distribution pattern of lipid droplets (LDs) and mitochondria in parthenogenetically activated (PA) pig embryos. Mature oocytes were delipated by centrifugation after partial digestion of the zonae pellucidae, subjected to parthenogenetic activation after total removal of zonae pellucidae by pronase, and then cultured in vitro up to the blastocyst stage. The contents and distributions of LDs and mitochondria in the oocytes and/or embryos were observed by staining with Oil Red O and MitoTracker Red CMXRos, respectively. The LD and mitochondrial contents were significantly reduced by the delipation process, and only smaller LDs remained in the delipated oocytes and/or embryos. Their content remained constant from the metaphase II oocyte to the blastocyst stage, but they became gradually smaller as the oocytes and/or embryos developed. The distribution pattern of the LDs in the delipated embryos changed over time and in a manner different to that seen in the controls. In the early developmental stages (1- to 4-cell stages), they were distributed peripherally and formed a ring around the nucleus. However, by the blastocyst stage, a homogeneous distribution of LDs was observed in both the inner cell mass and trophectoderm. The distribution pattern of mitochondria also changed with the development of the delipated PA embryos and again, in ways different to those seen in the controls. In the early 1- to 4-cell stages, a peripheral distribution of mitochondrial foci was observed in each blastomere. However, in blastocysts, the mitochondria were homogeneously distributed throughout the inner cell mass and trophectoderm. Although the cleavage rate at the 2- and 4-cell stages of the PA embryos was not affected by delipation (95.83 ± 2.25% vs. 97.44 ± 0.67%; 79.17 ± 4.47% vs. 84.62 ± 1.19%), it was reduced significantly in the blastocyst compared with the controls (21.67 ± 3.78% vs. 49.36 ± 1.77%). The distribution pattern of the LDs in oocytes and/or embryos at different developmental stages, and that of the mitochondria in metaphase II oocytes, was affected by delipation. The developmental competence of porcine PA embryos would appear to be affected by delipation.
Collapse
Affiliation(s)
- Yingjie Niu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Chengfei Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Qiang Xiong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Xixiang Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Daming Chi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Pinghua Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Juan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China.
| | - Ruihua Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
12
|
Galiguis J, Gómez MC, Leibo SP, Pope CE. Birth of a domestic cat kitten produced by vitrification of lipid polarized in vitro matured oocytes. Cryobiology 2014; 68:459-66. [PMID: 24631204 DOI: 10.1016/j.cryobiol.2014.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
The ability to cryopreserve oocytes is an effective method to retain valuable genetic material of mammals, including that of endangered animals. Embryos of domestic cats are amenable to cryopreservation, whereas their oocytes are much less cryo-tolerant. The capability of oocytes to survive cryopreservation is affected by several factors, one of which has been hypothesized to be the high concentration of intracellular lipids. To test this hypothesis, in this study we polarized lipids of cat oocytes and tested their cooling and freezing sensitivity. We found that the sensitivity of oocytes to cooling and cryopreservation does appear to be related to their high intracellular lipid content, as indicated by higher cryosurvival and development into blastocysts when intracellular lipids of in vitro matured oocytes were polarized before vitrification. However, polarization of all intracellular lipids was detrimental to development of embryos. Cell numbers in blastocysts derived from fully polarized/vitrified oocytes were significantly lower than those of partially polarized/vitrified or non-vitrified/fresh oocytes. Although embryos derived from fully polarized/vitrified oocytes developed to the blastocyst stage at higher rates than those of partially polarized/vitrified or non-centrifuged/vitrified oocytes, their in vivo developmental competence was compromised. When embryos derived from fully polarized/vitrified oocytes were transferred, although two recipients became pregnant, all implanted embryos were reabsorbed. In contrast, when embryos derived from oocytes that were only partially lipid polarized before vitrification and then were transferred, one recipient did become pregnant and produced a live healthy kitten. The present results suggest that other approaches to altering intra-cellular lipid levels in cat oocytes should be evaluated to improve their functional survival after cryopreservation.
Collapse
Affiliation(s)
- Jason Galiguis
- Audubon Nature Center for Research of Endangered Species, New Orleans, LA, USA.
| | - Martha C Gómez
- Audubon Nature Center for Research of Endangered Species, New Orleans, LA, USA.
| | - S P Leibo
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA.
| | - C Earle Pope
- Audubon Nature Center for Research of Endangered Species, New Orleans, LA, USA.
| |
Collapse
|
13
|
A role of lipid metabolism during cumulus-oocyte complex maturation: impact of lipid modulators to improve embryo production. Mediators Inflamm 2014; 2014:692067. [PMID: 24733963 PMCID: PMC3964899 DOI: 10.1155/2014/692067] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/09/2014] [Accepted: 01/18/2014] [Indexed: 11/18/2022] Open
Abstract
Oocyte intracellular lipids are mainly stored in lipid droplets (LD) providing energy for proper growth and development. Lipids are also important signalling molecules involved in the regulatory mechanisms of maturation and hence in oocyte competence acquisition. Recent studies show that LD are highly dynamic organelles. They change their shape, volume, and location within the ooplasm as well as their interaction with other organelles during the maturation process. The droplets high lipid content has been correlated with impaired oocyte developmental competence and low cryosurvival. Yet the underlying mechanisms are not fully understood. In particular, the lipid-rich pig oocyte might be an excellent model to understand the role of lipids and fatty acid metabolism during the mammalian oocyte maturation and their implications on subsequent monospermic fertilization and preimplantation embryo development. The possibility of using chemical molecules to modulate the lipid content of oocytes and embryos to improve cryopreservation as well as its biological effects during development is here described. Furthermore, these principles of lipid content modulation may be applied not only to germ cells and embryo cryopreservation in livestock production but also to biomedical fundamental research.
Collapse
|
14
|
Lin T, Diao YF, Kang JW, Lee JE, Kim DK, Jin DI. Chromosomes in the porcine first polar body possess competence of second meiotic division within enucleated MII stage oocytes. PLoS One 2013; 8:e82766. [PMID: 24312673 PMCID: PMC3849472 DOI: 10.1371/journal.pone.0082766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/27/2013] [Indexed: 11/18/2022] Open
Abstract
To determine whether chromosomes in the porcine first polar body (PB1) can complete the second meiotic division and subsequently undergo normal pre-implantation embryonic development, we examined the developmental competence of PB1 chromosomes injected into enucleated MII stage oocytes by nuclear transfer method (chromosome replacement group, CR group). After parthenogenetic activation (PA) or in vitro fertilization (IVF), the cleavage rate of reconstructed oocytes in the IVF group (CR-IVF group, 36.4 ± 3.2%) and PA group (CR-PA group, 50.8 ± 4.2%) were significantly lower than that of control groups in which normal MII oocytes were subjected to IVF (MII-IVF group, 75.8 ± 1.5%) and PA (MII-PA group, 86.9 ± 3.7%). Unfertilized rates was significantly higher in the CR-IVF group (48.6 ± 3.3%) than in the MII-IVF group (13.1 ± 3.4%). The blastocyst formation rate was 8.3 ± 1.9% in the CR-PA group, whereas no blastocyst formation was observed in the CR-IVF group. To produce tetraploid parthenogenetic embryos, intact MII stage oocytes injected with PB1 chromosomes were electrically stimulated, treated with 7.5 μg/mL cytochalasin B for 3 h (MII oocyte + PB1 + CB group), and then cultured without cytochalasin B. The average cleavage rate of reconstructed oocytes was 72.5% (48 of 66), and the blastocyst formation rate was 18.7% (9 of 48). Chromosome analysis showed similar proportions of haploid and diploid cells in the control (normal MII oocytes) and CR groups after PA; overall, 23.6% of blastocysts were tetraploid in the MII oocyte + PB1 + CB group. These results demonstrate that chromosomes in PB1 can participate in normal pre-implantation embryonic development when injected into enucleated MII stage oocytes, and that tetraploid PA blastocysts are produced (although at a low proportion) when PB1 chromosomes are injected into intact MII stage oocytes.
Collapse
Affiliation(s)
- Tao Lin
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Yun Fei Diao
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jung Won Kang
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Kyo Kim
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- Department of Animal Biotechnology & Environment, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Hwang IS, Hara H, Chung HJ, Hirabayashi M, Hochi S. Rescue of Vitrified-Warmed Bovine Oocytes with Rho-Associated Coiled-Coil Kinase Inhibitor1. Biol Reprod 2013; 89:26. [DOI: 10.1095/biolreprod.113.109769] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
16
|
Suzuki H. Cryopreservation of canine embryos and resulting pregnancies. Reprod Domest Anim 2013; 47 Suppl 6:141-3. [PMID: 23279484 DOI: 10.1111/rda.12068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/02/2012] [Indexed: 11/28/2022]
Abstract
The assisted reproductive techniques used in dogs have strictly limited utility when compared with other mammals. Although successful somatic cell cloning has been reported, artificial insemination by frozen semen has been only readily available method for improved breeding for companion and working dogs. Recently, successful cryopreservation of embryos and subsequent embryo transfer with a non-surgical technique in dog was reported. Application of embryo cryopreservation and transfer technology could contribute to breeding management in companion dogs, working dogs including guide dogs and drug-detecting dogs and quarantine dogs. Such technology would also facilitate the transportation and storage of genetic materials and aid in the elimination of vertically transmitting diseases in the dog.
Collapse
Affiliation(s)
- H Suzuki
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.
| |
Collapse
|
17
|
Abstract
SummaryOne of the greatest challenges for reproductive cryobiologists today is to develop an efficient cryopreservation method for human and domestic animal oocytes. The objective of the present study was to optimize a low toxicity solution called VM3 to vitrify porcine oocytes using an open pulled straw (OPS) device and to evaluate the effects on viability, chromosomal organization and cortical granules distribution. Two experiments were conducted in this study. Firstly, we determined the minimum concentration of cryoprotectant present in the VM3 solution required (7.6 M) for vitrification using an OPS device. The appearance of opacity was observed when using a cooling solution at –196°C; no observable opacity was noted as vitrification. In addition, the ultrastructure of oocytes in VM3 or VM3 optimized solution was examined using cryo-scanning electron microscopy. The minimum total cryoprotectant concentration present in VM3 solution necessary for apparent vitrification was 5.6 M when combined with use of an OPS device. Use of both vitrification solutions showed a characteristic plasticized surface. In the second experiment, the relative cytotoxicity of vitrification solutions (VM3 and VM3 optimized) was studied. Oocyte viability, chromosomal organization and the cortical granules distribution were assessed by fluorescent stain. After warming, oocyte survival rate was similar to that of fresh oocytes. The vitrification process significantly reduced correct chromosomal organization and cortical granules distribution rates compared with the fresh oocytes group. However, correct chromosomal organization and cortical granules distribution rates did not differ among oocytes placed in different vitrification solutions. In conclusion, our data demonstrated that the VM3 solution can be optimized and that reduction in concentration to 5.6 M enabled vitrification of oocytes with an OPS device, however use of the VM3 optimised solution had no beneficial effect on vitrification of porcine oocytes.
Collapse
|
18
|
NAKAGAWA S, MAEDOMARI N, KIKUCHI K, NAGAI T, MIYANO T, FULKA JR J, MANABE N. Vitrification of Fully Grown and Growing Porcine Oocytes Using Germinal Vesicle Transfer. J Reprod Dev 2011; 57:335-41. [DOI: 10.1262/jrd.10-177h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shoma NAKAGAWA
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Institute of Animal Science
| | - Naoki MAEDOMARI
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University
| | - Kazuhiro KIKUCHI
- Division of Animal Sciences, National Institute of Agrobiological Sciences
| | - Takashi NAGAI
- National Institute of Livestock and Grassland Science
| | - Takashi MIYANO
- Graduate School of Agricultural Science, Kobe University
| | | | - Noboru MANABE
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
19
|
Sugimura S, Yamanaka KI, Kawahara M, Wakai T, Yokoo M, Sato E. Early metaphase II oocytes treated with dibutyryl cyclic adenosine monophosphate provide suitable recipient cytoplasm for the production of miniature pig somatic cell nuclear transfer embryos. Anim Sci J 2010; 81:48-57. [PMID: 20163672 DOI: 10.1111/j.1740-0929.2009.00705.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the effects of in vitro maturation duration and treatment with dibutyryl cyclic adenosine monophosphate (dbcAMP) on the blind enucleation efficiency and developmental competence of miniature pig somatic cell nuclear transfer (SCNT) embryos. Oocytes were cultured for 22 h in NCSU-23 medium with or without 1 mM dbcAMP and then additionally cultured in dbcAMP-free NCSU-23 for 14, 18, or 22 h. Regardless of dbcAMP treatment, the rate of nuclear maturation reached a plateau at 36 and 40 h. However, mitochondrial distribution, a marker for cytoplasmic maturation, differed between the dbcAMP-untreated oocytes at 36 h and dbcAMP-treated oocytes at 40 h. The metaphase II chromosomes were adjacent to the first polar body in 68.8% and 63.5% of the dbcAMP-untreated oocytes at 36 h and dbcAMP-treated oocytes at 40 h, respectively. Furthermore, the blind enucleation efficiency by removing a small volume of cytoplasm was significantly higher in the dbcAMP-untreated oocytes at 36 h (82.9%) and dbcAMP-treated oocytes at 40 h (89.9%) than other groups. The rate of blastocyst formation was highest in the dbcAMP-treated oocytes at 40 h. Hence, this study demonstrated that dbcAMP-treated early metaphase II oocytes are suitable for the production of miniature pig SCNT embryos.
Collapse
Affiliation(s)
- Satoshi Sugimura
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Gupta MK, Uhm SJ, Lee HT. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril 2010; 93:2602-2607. [PMID: 20303480 DOI: 10.1016/j.fertnstert.2010.01.043] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the effect of vitrification and beta-mercaptoethanol (beta-ME) on reactive oxygen species (ROS) activity and in vitro development of oocytes vitrified before or after in vitro fertilization (IVF). DESIGN Randomized prospective study. SETTING University-based assisted reproductive technology laboratory. ANIMALS(S): Abattoir-derived porcine ovaries. INTERVENTIONS(S) Oocytes were vitrified either before or 4 hours after the end of IVF by solid surface vitrification (SSV) without centrifugation and/or delipation procedure. beta-ME was used to inhibit ROS activity. MAIN OUTCOME MEASURES(S) Viability was evaluated by membrane integrity and esterase enzyme activity using fluorescein diacetate staining while ROS activity was assessed by 2',7'-dichlorofluorescein assay. RESULT(S) Vitrification increased the ROS activity and decreased the viability and in vitro development of vitrified oocytes. Addition of beta-ME to vitrification and culture medium partially annihilated the ROS activity but did not improve the viability of vitrified-warmed oocytes. Furthermore, beta-ME had no effect on improving the fertilization ability of oocytes vitrified at metaphase II stage but significantly increased their ability to cleave. beta-ME also increased the rate of cleavage and blastocyst formation ability of oocytes vitrified 4 hours after the end IVF. CONCLUSION(S) Vitrification increases ROS activity in oocytes that can be partially annihilated by beta-ME to obtain enhanced embryonic development.
Collapse
Affiliation(s)
- Mukesh Kumar Gupta
- Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|
21
|
Vitrification of canine cumulus-oocyte complexes in DAP213 with a cryotop holder. Reprod Med Biol 2010; 9:115-120. [PMID: 29662428 DOI: 10.1007/s12522-010-0045-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/25/2009] [Indexed: 10/19/2022] Open
Abstract
Purpose The effects of the cryoprotectant and the container (holder) used for the vitrification of canine germinal vesicle stage oocytes were examined to improve the cryopreservation method for canine oocytes and embryos. Methods Canine cumulus-oocyte complexes (COCs) were collected from ovaries, and were vitrified with E30S (30% ethylene glycol and 0.5 M sucrose) or DAP213 (2 M dimethyl sulfoxide, 1 M acetamide, and 3 M propylene glycol) solution held by a cryotube or cryotop sheets. After warming, the oocytes were stained with propidium iodide for the assessment of their plasma membrane integrity. Results In all the vitrification groups, more than 65% of the vitrified oocytes displayed a normal morphology (E30S-top, 65.6%; DAP-tube, 67.3%; DAP-top, 80.0%). However, when assessed by propidium iodide staining, the viability of oocytes in the DAP-top group (43.6%) was higher than that in the E30S-top group (21.3%, P < 0.05). Furthermore, the viability of the oocytes in the DAP-top group (43.6%) was higher than that in the DAP-tube group (4.1%, P < 0.05). Conclusions These results suggest that a combination of DAP213 as the cryoprotectant and a cryotop sheet as the holder improved viability after the vitrification of canine oocytes at the germinal vesicle stage.
Collapse
|
22
|
Somfai T, Noguchi J, Kaneko H, Nakai M, Ozawa M, Kashiwazaki N, Egerszegi I, Rátky J, Nagai T, Kikuchi K. Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage. Theriogenology 2010; 73:147-56. [DOI: 10.1016/j.theriogenology.2009.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/07/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022]
|
23
|
Ferrières A, Reyftmann L, Pellestor F, Hédon B, Decaud H, Hamamah S. Oocyte recovery post human follicular fluid centrifugation in modified natural cycle and achieving embryo. Reprod Biomed Online 2009; 18:671-3. [PMID: 19549446 DOI: 10.1016/s1472-6483(10)60012-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This case reports a successful live birth by intracytoplasmic sperm injection (ICSI) following human follicular fluid (HFF) centrifugation for oocyte retrieval in the modified natural cycle of a poor responder patient. A 37-year-old patient presenting with a severe ovarian defect underwent a modified natural cycle with HFF centrifugation prior to ICSI. As there was only one oocyte under direct binocular observation, HFF was centrifuged and a second oocyte was collected. ICSI was performed on both oocytes. Embryo quality and outcome were not compromised by HFF centrifugation. A live birth was achieved in April 2008. In a modified natural cycle, HFF centrifugation avoided loss of oocytes, optimized the IVF treatment, and achieved the development of two embryos.
Collapse
Affiliation(s)
- Alice Ferrières
- Département de Médecine et Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, Université Montpellier I, UFR de Médecine, INSERM U, France
| | | | | | | | | | | |
Collapse
|
24
|
Gerelchimeg B, Li-Qing L, Zhong Z, Jiang-Tian T, Qing-Ran K, Jun S, Xue-Dong W, Zhong-Hua L. Effect of chilling on porcine germinal vesicle stage oocytes at the subcellular level. Cryobiology 2009; 59:54-8. [PMID: 19394324 DOI: 10.1016/j.cryobiol.2009.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 04/10/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
The potential subcellular consequence of chilling on porcine germinal vesicle (GV) stage oocytes was examined. Prior to in vitro maturation (IVM), Cumulus-oocyte complexes (COCs) freshly collected from antral follicles (3-6mm in diameter) were evenly divided into four groups and immediately incubated in PVA-TL-HEPES medium at the temperature of 39 degrees C (control group), 23 degrees C (room temperature), 15 degrees C and 10 degrees C for 10min, respectively. Following 42h of IVM at 39 degrees C, the survival rates were examined. There was no significant difference between the survival rate of 23 degrees C chilled group and control group (77.92 and 91.89%), but the survival rate of 15 and 10 degrees C chilled group were significantly decreased (46.34 and 4.81%, P<0.01). A further experiment on 15 degrees C group showed that most oocytes died from 2 to 4h of IVM. In order to investigate the effects of chilling on oocytes at the subcellular level, the control and 15 degrees C chilled group COCs fixed at different time points of the IVM cultures (2, 2.5, 3, 3.5 and 4h of IVM) were prepared for transmission electron microscope (TEM) observation. As the result, compared with the control group, there were two significant changes in the ultrastructural morphology of 15 degrees C treatment group: (1) dramatic reduction of heterogeneous lipid, (2) disorganized mitochondria-endoplasmic reticulum-lipid vesicles (M-E-L) combination. These results indicate that 15 degrees C is a critical chilling temperature for porcine GV stage oocyte and the alteration of cellular chemical composition and the destruction of M-E-L combination maybe responsible for chilling injury of porcine oocyte at this stage.
Collapse
Affiliation(s)
- Bou Gerelchimeg
- College of Life Science, Northeast Agricultural University, Heilongjiang Province, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Successful cryopreservation of porcine gametes and embryos has been very challenging due to their sensitivity to cryoinjuries. Although considerable improvements have been achieved in the vitrification of porcine embryos, there has been no offspring born from the vitrified oocytes in this species. Porcine oocytes characteristically contain large amounts of cytoplasmic lipids that are major obstacles limiting efficient cryopreservation. These droplets together with structures such as mitochondria, membranes, cortical granules and basic components of the spindle and cytoskeleton (microtubules and microfilaments) often incur serious damage during cooling and warming. According to recent reports, the proper combinations of permeable and non-permeable cryoprotectants and vitrification with high cooling and warming rates may increase the survival of porcine oocytes. The cryotolerance of porcine oocytes may also be enhanced by removal of the chilling-sensitive lipid droplets, supplementation of cytoskeleton relaxants in vitrification solutions, or high hydrostatic pressure pretreatment of oocytes before cryopreservation. The improvement in cryopreservation methodology for porcine oocytes will no doubt augment other technologies such as pig cloning and the establishment of a gene bank for transgenic pigs.
Collapse
Affiliation(s)
- Guang-Bin Zhou
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | | |
Collapse
|
26
|
Lin L, Du Y, Liu Y, Kragh PM, Li J, Purup S, Kuwayama M, Zhang X, Yang H, Bolund L, Vajta G. Elevated NaCl concentration improves cryotolerance and developmental competence of porcine oocytes. Reprod Biomed Online 2009; 18:360-6. [DOI: 10.1016/s1472-6483(10)60094-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
The Potential Applications of Peroxisome Proliferator-Activated Receptor delta Ligands in Assisted Reproductive Technology. PPAR Res 2008; 2008:794814. [PMID: 19096716 PMCID: PMC2603272 DOI: 10.1155/2008/794814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/27/2008] [Accepted: 09/12/2008] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ, also known as PPARβ) has ubiquitous distribution and extensive biological functions. The reproductive function of PPARδ was first revealed in the uterus at the implantation site. Since then, PPARδ and its ligand have been discovered in all reproductive tissues, including the gametes and the preimplantation embryos. PPARδ in preimplantation embryos is normally activated by oviduct-derived PPARδ ligand. PPARδ activation is associated with an increase in embryonic cell proliferation and a decrease in programmed cell death (apoptosis). On the other hand, the role of PPARδ and its ligand in gamete formation and function is less well understood. This review will summarize the reproductive functions of PPARδ and project its potential applications in assisted reproductive technology.
Collapse
|
28
|
Improvement in the in vitro maturation rate of porcine oocytes vitrified at the germinal vesicle stage by treatment with a mitochondrial permeability transition inhibitor. Cryobiology 2008; 57:269-75. [DOI: 10.1016/j.cryobiol.2008.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/21/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022]
|
29
|
Huang J, Li Q, Zhao R, Li W, Han Z, Chen X, Xiao B, Wu S, Jiang Z, Hu J, Liu L. Effect of sugars on maturation rate of vitrified-thawed immature porcine oocytes. Anim Reprod Sci 2008; 106:25-35. [PMID: 17478061 DOI: 10.1016/j.anireprosci.2007.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 12/21/2006] [Accepted: 03/23/2007] [Indexed: 11/20/2022]
Abstract
This study examined the effects of monosaccharide (glucose), disaccharide (sucrose) and polysaccharides (Ficoll and Lycium barbarum polysaccharide (LBP)) at different concentrations, using ethylene glycol (EG) as membrane-permeating cryoprotectant, on in vitro maturation of vitrified-thawed immature (GV) porcine oocytes. A total of 1145 oocytes were obtained by follicle aspiration from 496 ovaries of pigs slaughtered at a local abattoir and vitrified using a five-step method. After thawing and removal of cryoprotectant, oocytes were cultured for 44 h at 39 degrees C in a humidified atmosphere of 5% CO(2) in air. Oocytes were stained with DAPI and nuclear maturation was examined. The highest maturation rates were obtained in 1.5M glucose (8.62%), 0.75 M sucrose (20.0%), 3.0 g/ml Ficoll (13.79%) and 0.10 g/ml LBP (20.69%), respectively. The maturation rate using 0.75 M sucrose or 0.10 g/ml LBP was significantly higher compared to 1.5M glucose (P<0.05), but there was no significant difference from using 3.0 g/ml Ficoll (P>0.05). The percentage of oocytes reaching metaphase II (MII) stage in the cryopreserved groups was significantly lower than control (P<0.05). These results suggest that LBP is an effective non-permeating membrane cryoprotectant and 0.75 M sucrose or 0.10 g/ml LBP can be used as the vitrification solution for immature porcine oocytes.
Collapse
Affiliation(s)
- Jing Huang
- College of Animal Science, Northwest Agriculture and Forestry University, Yangling, Shannxi Province 712100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Du Y, Li J, Kragh PM, Zhang Y, Schmidt M, Bøgh IB, Zhang X, Purup S, Kuwayama M, Jørgensen AL, Pedersen AM, Villemoes K, Yang H, Bolund L, Vajta G. Piglets Born from Vitrified Cloned Blastocysts Produced with a Simplified Method of Delipation and Nuclear Transfer. CLONING AND STEM CELLS 2007; 9:469-76. [DOI: 10.1089/clo.2007.0037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yutao Du
- Population Genetics and Embryology, Institute of Genetics and Biotechnology, Tjele, Denmark
- Institute of Human Genetics, University of Aarhus, DK-800 Aarhus, Denmark
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Juan Li
- Population Genetics and Embryology, Institute of Genetics and Biotechnology, Tjele, Denmark
- Institute of Human Genetics, University of Aarhus, DK-800 Aarhus, Denmark
| | - Peter M. Kragh
- Population Genetics and Embryology, Institute of Genetics and Biotechnology, Tjele, Denmark
- Institute of Human Genetics, University of Aarhus, DK-800 Aarhus, Denmark
| | - Yunhai Zhang
- Population Genetics and Embryology, Institute of Genetics and Biotechnology, Tjele, Denmark
- College of Animal Sciences and Technology, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Mette Schmidt
- Veterinary Reproduction and Obstetrics, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ingrid B. Bøgh
- Veterinary Reproduction and Obstetrics, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Xiuqing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Stig Purup
- Nutrition and Production Physiology, Institute of Animal Health, Welfare and Nutrition, Faculty of Agricultural Sciences, University of Aarhus, Tjele, Denmark
| | | | - Arne L. Jørgensen
- Institute of Human Genetics, University of Aarhus, DK-800 Aarhus, Denmark
| | - Anette M. Pedersen
- Population Genetics and Embryology, Institute of Genetics and Biotechnology, Tjele, Denmark
| | - Klaus Villemoes
- Population Genetics and Embryology, Institute of Genetics and Biotechnology, Tjele, Denmark
| | - Huanming Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lars Bolund
- Institute of Human Genetics, University of Aarhus, DK-800 Aarhus, Denmark
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gábor Vajta
- Population Genetics and Embryology, Institute of Genetics and Biotechnology, Tjele, Denmark
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
32
|
Shi LY, Jin HF, Kim JG, Mohana Kumar B, Balasubramanian S, Choe SY, Rho GJ. Ultra-structural changes and developmental potential of porcine oocytes following vitrification. Anim Reprod Sci 2007; 100:128-40. [PMID: 16895747 DOI: 10.1016/j.anireprosci.2006.06.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 05/15/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
This study evaluated the effects of exposure and/or vitrification of porcine metaphase II (MII) oocytes on their in vitro viability and ultra-structural changes with two experiments. Experiment 1 examined the effect of vitrified oocytes on microtubule localization, mitochondrial morphology, chromosome organization and the developmental rate in IVF control and vitrified oocytes. Oocytes matured for 44 h were subjected to IVF (IVF control). Oocytes matured for 42 h were exposed to cryoprotectants (CPA control), followed by 2h culture, and subjected to IVF. Oocytes vitrified at 42 h post-maturation were warmed, cultured for 2h, and subjected to IVF (vitrified). Experiment 2 evaluated the effect of oocytes freezing on development of ICSI with and without activation and parthenotes. Fresh and vitrified oocytes were subjected to ICSI with and without electrical activation. Cleavage and blastocyst rates were significantly (P<0.05) lower in vitrified IVF, parthenote and ICSI embryos than those in fresh counterparts. Between ICSI embryos from fresh oocytes and vitrified oocytes, the rates of blastocyst were significantly higher (P<0.05) in activated group than the group without activation. Significant differences (P<0.05) were observed in normal spindle configuration of vitrified (43.5%) compared to control (81.0%) oocytes, but no significant difference was observed between CPA exposed and control groups. In conclusion, porcine oocytes at MII stage are very sensitive to vitrification with altered microtubule localization and mitochondrial organization thus resulting in impaired fertilization and embryo development.
Collapse
Affiliation(s)
- Lian-Yu Shi
- College of Veterinary Medicine, Gyeongsang National University, Chinju 660-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Ledda S, Bogliolo L, Succu S, Ariu F, Bebbere D, Leoni GG, Naitana S. Oocyte cryopreservation: oocyte assessment and strategies for improving survival. Reprod Fertil Dev 2007; 19:13-23. [PMID: 17389131 DOI: 10.1071/rd06126] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite significant progress in cryopreservation of mammalian oocytes and embryos, many of the molecular and biochemical events that underlie this technology are poorly understood. In recent years, researchers have focused on obtaining viable oocytes that are developmentally competent. Even under the most favourable conditions, experimental approaches have achieved only limited success compared with fresh oocytes used in routine in vitro embryo production. Chilling injuries and toxic effects of the cryoprotectants are the major adverse consequences following cryoprocedures. To overcome these problems, different strategies have been developed for improving cryopreservation results. These strategies include reducing container volumes, increasing the thermal gradient, changing the cell surface/volume ratio, enhancing cryotolerance by supplementation with various additives or modifying the lipid composition of the oocyte membrane. In order to develop new strategies for reducing the various forms of stress associated with oocyte cryopreservation, it is fundamental to gain a better understanding of the major changes responsible for poor post-thaw survival. With this knowledge, we hope that oocyte cryostorage will become a fully reliable reproductive technique in the near future.
Collapse
Affiliation(s)
- Sergio Ledda
- Department of Animal Biology, Veterinary Faculty, University of Sassari, 07100 Sassari, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Li GP, Bunch TD, White KL, Rickords L, Liu Y, Sessions BR. Denuding and centrifugation of maturing bovine oocytes alters oocyte spindle integrity and the ability of cytoplasm to support parthenogenetic and nuclear transfer embryo development. Mol Reprod Dev 2006; 73:446-51. [PMID: 16425229 DOI: 10.1002/mrd.20436] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of cumulus cell removal and centrifugation of maturing bovine oocytes on nuclear maturation and subsequent embryo development after parthenogenetic activation and nuclear transfer were examined. Removal of cumulus cells at 4, 8, and 15 hr after in vitro maturation (IVM) or the centrifugation of denuded oocytes had no effect on maturation rates. Oocytes treated at 0 hr of IVM had a lower expulsion rate (50%) of the first polar body (PB1). The removal of cumulus cells and centrifugation affected the pattern of spindle microtubule distribution and division of chromosomes. There were almost no spindle microtubules allocated to PB1 and the spindles were swollen in anaphase I and telophase I oocytes. Approximately 20% of PB1 oocytes contained tripolar or multipolar spindles. After activation, oocytes denuded with or without centrifugation at 8 hr of IVM resulted in the lowest rate of development (3.0%). Denuded oocytes at 4, 15, and 24 hr of IVM with centrifugation or not resulted in similar blastocyst development rates (9.6%-13.2%). However, centrifugation of oocytes denuded at the beginning of IVM resulted in lower blastocyst development rate (8.1%, P < 0.05) than the noncentrifuged oocytes (17.3%). After nuclear transfer, the blastocyst development rates of oocytes denuded and centrifuged at 0, 4, and 8 hr of IVM were not different when compared to the same patch of noncentrifuged oocytes. However, oocytes denuded and centrifuged at 15 hr of IVM resulted in lower (P < 0.05) blastocyst development rates than the noncentrifuged oocytes. The results of this study suggest that removal of cumulus cells and centrifugation of denuded oocytes affect the spindle pattern. Embryo development of denuded and centrifuged oocytes may differ depending on the time of removal of cumulus cells.
Collapse
Affiliation(s)
- Guang-Peng Li
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84321, USA.
| | | | | | | | | | | |
Collapse
|