1
|
Zhang R, Lian T, Liu J, Du F, Chen Z, Zhang R, Wang Q. Dendritic Cell-Derived Exosomes Stimulated by Treponema pallidum Induce Endothelial Cell Inflammatory Response through the TLR4/MyD88/NF-κB Signaling Pathway. ACS Infect Dis 2023; 9:2299-2305. [PMID: 37843010 DOI: 10.1021/acsinfecdis.3c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Exosomes have been implicated in vascular damage in recent research. The influence of dendritic cell-derived exosomes generated by Treponema pallidum (T. pallidum) on the inflammatory process of vascular cells was examined in this study. Human umbilical vein endothelial cells (HUVECs) were cocultured with exosomes isolated from dendritic cells induced by T. pallidum. Western blot and reverse transcription-quantitative real-time polymerase chain reaction were used to assess toll-like receptor 4 (TLR4) expression and the quantity of proinflammatory cytokines. The findings showed that the expression of TLR4 was considerably upregulated, and TLR4 knockdown dramatically reduced interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) production in exosome-treated HUVECs. Furthermore, TLR4 silencing reduced myeloid differentiation primary response protein 88 (MyD88) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) levels in exosome-treated HUVECs. Additionally, suppression of the activity of NF-κB with BAY11-7082, an NF-κB inhibitor, also reduced the exosome-treated inflammatory response. Our results suggested that dendritic cell-derived exosomes stimulated by T. pallidum induced endothelial cell inflammation, and the TLR4/MyD88/NF-κB signal axis was activated, significantly increasing IL-1β, IL-6, and TNF-α expression. This may have a significant role in the vascular inflammatory response in syphilis, which would contribute to the understanding of the pathogenesis of syphilis and the host immunological response to T. pallidum.
Collapse
Affiliation(s)
- Ruihua Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Tingting Lian
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jinquan Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Fangzhi Du
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zuoxi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - RuiLi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - QianQiu Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
2
|
Kong BS, Lee C, Cho YM. Protocol for the assessment of human T cell activation by real-time metabolic flux analysis. STAR Protoc 2022; 3:101084. [PMID: 35072113 PMCID: PMC8761778 DOI: 10.1016/j.xpro.2021.101084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The elevation of glycolysis in autoreactive T cells is a key target for the prevention and treatment of T cell-related autoimmune diseases, such as type 1 diabetes (T1D). Here, we describe a simple and efficient protocol for isolating human peripheral blood mononuclear cells (PBMCs) and T cells, and the subsequent assessment of T cell glycolysis using Seahorse analyzer. This protocol is useful to analyze different subsets of T cells and applicable to different autoimmune disease models (i.e., T1D, multiple sclerosis). For complete details on the use and execution of this profile, please refer to Kong et al. (2021).
Collapse
Affiliation(s)
- Byung Soo Kong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea,Corresponding author
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea,Corresponding author
| |
Collapse
|
3
|
Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review. Front Med (Lausanne) 2020; 7:592242. [PMID: 33324662 PMCID: PMC7727450 DOI: 10.3389/fmed.2020.592242] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation is a key enabling technology in regenerative medicine that provides stable and secure extended cell storage for primary tissue isolates and constructs and prepared cell preparations. The essential detail of the process as it can be applied to cell-based therapies is set out in this review, covering tissue and cell isolation, cryoprotection, cooling and freezing, frozen storage and transport, thawing, and recovery. The aim is to provide clinical scientists with an overview of the benefits and difficulties associated with cryopreservation to assist them with problem resolution in their routine work, or to enable them to consider future involvement in cryopreservative procedures. It is also intended to facilitate networking between clinicians and cryo-researchers to review difficulties and problems to advance protocol optimization and innovative design.
Collapse
Affiliation(s)
- Julie Meneghel
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | - Peter Kilbride
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | | |
Collapse
|
4
|
Juhl M, Christensen JP, Pedersen AE, Kastrup J, Ekblond A. Cryopreservation of peripheral blood mononuclear cells for use in proliferation assays: First step towards potency assays. J Immunol Methods 2020; 488:112897. [PMID: 33049298 DOI: 10.1016/j.jim.2020.112897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/01/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022]
Abstract
Investigational cell-based therapeutics are rapidly heading towards pivotal clinical trials. The premise is that the scientific rationale is well defined, and that product quality reflects exactly this. In vitro potency assays are necessary tools for evaluating cell products, and with potency assays comes high demands for standardization and reproducibility of the methods involved. For demonstrating principles of cell therapeutics for allogeneic use or with claimed immunosuppressive efficacies, assays involving peripheral blood mononuclear cells (PBMC) are critical. Establishment of a cryopreserved bank of PBMC favors standardization, as it allows repeated use of a single donor and simultaneous testing of several donors. The first step to fulfil such potential is to ensure optimum conditions for preservation of PBMC function, and secondly to design assays which heightens the reproducibility. Emphasis should be put on application of the assay. The objective of the present study was to establish a methodological foundation for cell therapeutics to be tested, and several aspects were factored in, including cell concentrations and partial changes of medium. PBMC were isolated and cryopreserved in six formulations of cryoprotective medium consisting of fetal bovine serum (90%, 60%, and 30%) in combination with dimethyl sulfoxide (10% or 5%). The proliferative capacity of the cryopreserved cells was assayed by labeling with carboxyfluorescein succinimidyl ester and stimulation by phytohemagglutinin or in mixed lymphocyte reactions, analyzed by flow cytometry. To counter an eventual lag phase post thaw, the assays were designed to include two durations and to explore the possibility of reducing cell numbers, two cell concentrations. Qualitative and quantitative aspects of the staining were affected by formulation as well as design, stressing the importance of basic optimization for assay development. We conclude that the established methods allow for optimized preservation of function and will serve as a platform for further development of robust functional assays.
Collapse
Affiliation(s)
- Morten Juhl
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Denmark.
| | | | | | - Jens Kastrup
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Denmark
| |
Collapse
|
5
|
The Impact of Varying Cooling and Thawing Rates on the Quality of Cryopreserved Human Peripheral Blood T Cells. Sci Rep 2019; 9:3417. [PMID: 30833714 PMCID: PMC6399228 DOI: 10.1038/s41598-019-39957-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
For the clinical delivery of immunotherapies it is anticipated that cells will be cryopreserved and shipped to the patient where they will be thawed and administered. An established view in cellular cryopreservation is that following freezing, cells must be warmed rapidly (≤5 minutes) in order to maintain high viability. In this study we examine the interaction between the rate of cooling and rate of warming on the viability, and function of T cells formulated in a conventional DMSO based cryoprotectant and processed in conventional cryovials. The data obtained show that provided the cooling rate is -1 °C min-1 or slower, there is effectively no impact of warming rate on viable cell number within the range of warming rates examined (1.6 °C min-1 to 113 °C min-1). It is only following a rapid rate of cooling (-10 °C min-1) that a reduction in viable cell number is observed following slow rates of warming (1.6 °C min-1 and 6.2 °C min-1), but not rapid rates of warming (113 °C min-1 and 45 °C min-1). Cryomicroscopy studies revealed that this loss of viability is correlated with changes in the ice crystal structure during warming. At high cooling rates (-10 °C min-1) the ice structure appeared highly amorphous, and when subsequently thawed at slow rates (6.2 °C min-1 and below) ice recrystallization was observed during thaw suggesting mechanical disruption of the frozen cells. This data provides a fascinating insight into the crystal structure dependent behaviour during phase change of frozen cell therapies and its effect on live cell suspensions. Furthermore, it provides an operating envelope for the cryopreservation of T cells as an emerging industry defines formulation volumes and cryocontainers for immunotherapy products.
Collapse
|
6
|
Wu H, Chang Q. The cryoprotectant trehalose could inhibit ERS-induced apoptosis by activating autophagy in cryoprotected rat valves. PLoS One 2018. [PMID: 29522567 PMCID: PMC5844695 DOI: 10.1371/journal.pone.0194078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Valvular diseases are common health problems that are strongly related to high morbidity and mortality; aortic valve allograft transplantation may be a promising way to improve survival and relieve symptoms. However, ideal tissue viability has not been observed with common valve cryopreservation methods, which could lead to apoptosis and necrosis in cryopreserved tissue. It has been observed that trehalose plays a positive role by acting to maintain cell structures and protect cells from stress responses. In this study, we studied the effects of trehalose in protecting rat valve tissue from the cooling process. We found improved higher cell function in rat valves treated with trehalose during cryopreservation than in those treated with dimethyl sulphoxide (DMSO). To further explore the mechanisms, we found that trehalose could down-regulate the expression of cleaved caspase-3, an important molecule involved in cell apoptosis. In addition, treatment with trehalose also decreased Glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP), the key proteins in the endoplasmic reticulum stress (ERS) process. Intriguingly, we observed that trehalose promotes cryoprotected rat valve cell autophagy via an mTOR-independent but p38 MAPK-dependent signaling pathway. Additionally, miR-221 and miR-32 have been implicated in such cell activities. In summary, our study offers a new and meaningful cryopreservation approach for valve allograft storage.
Collapse
Affiliation(s)
- Hongyan Wu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Chang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- * E-mail:
| |
Collapse
|
7
|
Carluccio S, Delbue S, Signorini L, Setola E, Bagliani A, Della Valle A, Galli A, Ferrante P, Bregni M. Generation of tumor-specific cytotoxic T-lymphocytes from the peripheral blood of colorectal cancer patients for adoptive T-cell transfer. J Cell Physiol 2015; 230:1457-65. [PMID: 25556900 DOI: 10.1002/jcp.24886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
This study designs a strategy for an adoptive cellular therapy (ACT) protocol based on the ex-vivo selection of autologous peripheral blood-derived CD8-enriched T-cells, stimulated with dendritic cells (DCs) that had been pulsed with apoptotic tumor cells to generate cytotoxic T lymphocytes (CTLs) with anti-tumor activity. Seventy-eight colorectal cancer (CRC) patients were enrolled in this study. Tumor tissues and peripheral blood (PB) were obtained at surgery. Tissues were mechanically dissociated and cultured to obtain a primary tumor cell line from each patient. DCs were derived from peripheral blood mononuclear cells (PBMCs) using magnetic positive selection of CD14+ monocytes. Anti-tumor CTLs were elicited in co-/micro-cultures using DCs as antigen-presenting cells, autologous apoptotic tumor cells as a source of antigens, and CD8+ T lymphocytes as effectors. Interferon-γ (IFN-γ) secretion was assessed by ELISpot assays to evaluate the activation of the CTLs against the autologous tumor cells. Primary tumor cell lines were obtained from 20 of 78 patients (25.6%). DCs were generated from 26 patients, and of them, corresponding tumor cell lines were derived from six patients. ELISpot results showed that significant IFN-γ secretion was detected after different numbers of stimulations for two patients, whereas weak secretion was observed for three patients. Despite difficulties due to contamination of several primary tumor cell lines with gut intestinal flora, the results suggest that the generation of tumor-specific CTLs is feasible from patients with CRC, and could be useful for supporting an ACT approach in CRC.
Collapse
Affiliation(s)
- Silvia Carluccio
- Department of Biomedical, Surgical and Dental Science, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bissoyi A, Nayak B, Pramanik K, Sarangi SK. Targeting cryopreservation-induced cell death: a review. Biopreserv Biobank 2014; 12:23-34. [PMID: 24620767 DOI: 10.1089/bio.2013.0032] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite marked developments in the field of cryopreservation of cells and tissues for research and therapeutic applications, post-thaw cell death remains a significant drawback faced by cryobiologists. Post cryopreservation apoptosis and necrosis are normally observed within 6 to 24 h after post-thaw culture. As a result, massive loss of cell viability and cellular function occur due to cryopreservation. However, in this new generation of cryopreservation science, scientists in this field are focusing on incorporation of apoptosis and necrosis inhibitors (zVAD-fmk, p38 MAPK inhibitor, ROCK inhibitor, etc.) to cryopreservation and post-thaw culture media. These inhibitors target and inhibit various proteins such as caspases, proteases, and kinases, involved in the cell death cascade, resulting in reduced intensity of apoptosis and necrosis in the cryopreserved cells and tissues, increased cell viability, and maintenance of cellular function; thus improved overall cryopreservation efficiency is achieved. The present article provides an overview of various cell death pathways, molecules mediating cryopreservation-induced apoptosis and the potential of certain molecules in targeting cryopreservation-induced delayed-onset cell death.
Collapse
Affiliation(s)
- A Bissoyi
- 1 Department of Biotechnology and Medical Engineering, National Institute of Technology , Rourkela, India
| | | | | | | |
Collapse
|
9
|
Buhl T, Legler TJ, Rosenberger A, Schardt A, Schön MP, Haenssle HA. Controlled-rate freezer cryopreservation of highly concentrated peripheral blood mononuclear cells results in higher cell yields and superior autologous T-cell stimulation for dendritic cell-based immunotherapy. Cancer Immunol Immunother 2012; 61:2021-31. [PMID: 22527251 PMCID: PMC3493671 DOI: 10.1007/s00262-012-1262-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 04/04/2012] [Indexed: 11/28/2022]
Abstract
Availability of large quantities of functionally effective dendritic cells (DC) represents one of the major challenges for immunotherapeutic trials against infectious or malignant diseases. Low numbers or insufficient T-cell activation of DC may result in premature termination of treatment and unsatisfying immune responses in clinical trials. Based on the notion that cryopreservation of monocytes is superior to cryopreservation of immature or mature DC in terms of resulting DC quantity and immuno-stimulatory capacity, we aimed to establish an optimized protocol for the cryopreservation of highly concentrated peripheral blood mononuclear cells (PBMC) for DC-based immunotherapy. Cryopreserved cell preparations were analyzed regarding quantitative recovery, viability, phenotype, and functional properties. In contrast to standard isopropyl alcohol (IPA) freezing, PBMC cryopreservation in an automated controlled-rate freezer (CRF) with subsequent thawing and differentiation resulted in significantly higher cell yields of immature and mature DC. Immature DC yields and total protein content after using CRF were comparable with results obtained with freshly prepared PBMC and exceeded results of standard IPA freezing by approximately 50 %. While differentiation markers, allogeneic T-cell stimulation, viability, and cytokine profiles were similar to DC from standard freezing procedures, DC generated from CRF-cryopreserved PBMC induced a significantly higher antigen-specific IFN-γ release from autologous effector T cells. In summary, automated controlled-rate freezing of highly concentrated PBMC represents an improved method for increasing DC yields and autologous T-cell stimulation.
Collapse
Affiliation(s)
- Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Brooks-Worrell B, Tree T, Mannering SI, Durinovic-Bello I, James E, Gottlieb P, Wong S, Zhou Z, Yang L, Cilio CM, Reichow J, Menart B, Rutter R, Schreiner R, Pham M, Petrich de Marquesini L, Lou O, Scotto M, Mallone R, Schloot NC. Comparison of cryopreservation methods on T-cell responses to islet and control antigens from type 1 diabetic patients and controls. Diabetes Metab Res Rev 2011; 27:737-45. [PMID: 22069253 DOI: 10.1002/dmrr.1245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Type 1 diabetes (T1D) is a cell-mediated autoimmune disease characterized by destruction of the pancreatic islet cells. The use of cryopreserved cells is preferable to the use of freshly isolated cells to monitor clinical trials to decrease assay and laboratory variability. METHODS The T-Cell Workshop Committee of the Immunology of Diabetes Society compared two widely accepted T-cell freezing protocols (warm and cold) to freshly isolated peripheral blood mononuclear cells from patients with T1D and controls in terms of recovery, viability, cell subset composition, and performance in functional assays currently in use in T1D-related research. Nine laboratories participated in the study with four different functional assays included. RESULTS The cold freezing method yielded higher recovery and viability compared with the warm freezing method. Irrespective of freezing protocol, B cells and CD8+ T cells were enriched, monocyte fraction decreased, and islet antigen-reactive responses were lower in frozen versus fresh cells. However, these results need to take in to account that the overall response to islet autoantigens was low in some assays. CONCLUSIONS In the current study, none of the tested T-cell functional assays performed well using frozen samples. More research is required to identify a freezing method and a T-cell functional assay that will produce responses in patients with T1D comparable to responses using fresh peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- B Brooks-Worrell
- University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stroncek DF, Xing L, Chau Q, Zia N, McKelvy A, Pracht L, Sabatino M, Jin P. Stability of cryopreserved white blood cells (WBCs) prepared for donor WBC infusions. Transfusion 2011; 51:2647-55. [PMID: 21658051 DOI: 10.1111/j.1537-2995.2011.03210.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND White blood cells (WBCs) collected from hematopoietic stem cell transplant donors are often given to the recipient to speed immune recovery or treat disease relapse. The postthaw recovery and viability of cryopreserved donor WBCs, stored for as long as 7 years, were assessed. STUDY DESIGN AND METHODS Total nucleated cell (TNC) cell recovery, CD3+ cell recovery, and TNC viability were measured in 311 clinical donor WBC products: 168 products were unmanipulated or minimally manipulated and 143 products were extensively manipulated. An additional 45 products were selected because they were stored for a longer duration; these were tested using both standard methods and global transcriptional analysis. All products were cryopreserved in 5% dimethyl sulfoxide (DMSO) plus 6% pentastarch and stored in liquid nitrogen. RESULTS The mean duration of storage of the 311 products was 143 days. Their TNC recovery was 92 ± 17%, CD3+ cell recovery was 76 ± 19%, and the TNC viability was 84 ± 6%. Duration of storage had no effect on TNC recovery, CD3+ cell recovery, or TNC viability of the 311 products. The mean duration of storage of the long-term stored products was 5.2 years; their TNC recovery (93 ± 14%) and the TNC viability (78 ± 13%) did not differ from the 311 products, but their CD3 cell recovery was greater (86 ± 22%; p = 0.0042). Gene expression profiles of the long-term-stored products revealed no differences due to storage duration. CONCLUSIONS Donor WBC products cryopreserved in 5% DMSO and 6% pentastarch can be stored in liquid nitrogen for at least 7 years.
Collapse
Affiliation(s)
- David F Stroncek
- Department of Transfusion Medicine and Clinical Center, NIH, Bethesda, Maryland 20892-1184, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Son JH, Heo YJ, Park MY, Kim HH, Lee KS. Optimization of cryopreservation condition for hematopoietic stem cells from umbilical cord blood. Cryobiology 2010; 60:287-92. [PMID: 20138169 DOI: 10.1016/j.cryobiol.2010.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 02/07/2023]
Abstract
The conditions for cryopreservation of CD34(+) hematopoietic stem cells (HSC) from umbilical cord blood (UCB) were optimized with a new cryo-medium containing 10% ethylene glycol (EG) and 2% dimethyl sulfoxide (Me(2)SO) using a controlled-rate freezing (CRF) method. After the cryopreservation of mononuclear cells (MNC) from UCB, recoveries of MNC, CD34(+) cells, and total colony-forming units (CFU) were significantly improved compared to those in the control cryo-medium containing 10% Me(2)SO and 2% Dextran-40 (P<0.05). This study shows that the new cryo-medium and CRF method provide better recoveries of MNC, HSC and total CFU than the control cryo-medium and isopropylalcohol freezing (IPA) method. Therefore, this cryo-medium, combined with the CRF method, is valuable for optimizing cryopreservation conditions for HSC from UCB to obtain satisfactory HSC recovery.
Collapse
Affiliation(s)
- Jeong Hwa Son
- Binex Research Institute, Binex Co. Ltd., 480-2, Jangrim-dong, Saha-gu, Busan 604-846, Republic of Korea.
| | | | | | | | | |
Collapse
|
13
|
Current world literature. Curr Opin Pediatr 2010; 22:117-26. [PMID: 20068414 DOI: 10.1097/mop.0b013e32833539b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Ihmig FR, Shirley SG, Durst CHP, Schulz JC, Briesen HV, Zimmermann H. The technology of the Global HIV Vaccine Research Cryorepository. Eng Life Sci 2009. [DOI: 10.1002/elsc.200800121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|