1
|
Huang H, He X, Yarmush ML. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 2021; 5:793-804. [PMID: 34426675 PMCID: PMC8765766 DOI: 10.1038/s41551-021-00784-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The three classical core technologies for the preservation of live mammalian biospecimens-slow freezing, vitrification and hypothermic storage-limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combination of microfabrication and nanofabrication, materials science and thermal-fluid engineering and discuss the remaining challenges.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States.
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Zhao G, Fu J. Microfluidics for cryopreservation. Biotechnol Adv 2017; 35:323-336. [PMID: 28153517 PMCID: PMC6236673 DOI: 10.1016/j.biotechadv.2017.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/19/2022]
Abstract
Cryopreservation has utility in clinical and scientific research but implementation is highly complex and includes labor-intensive cell-specific protocols for the addition/removal of cryoprotective agents and freeze-thaw cycles. Microfluidic platforms can revolutionize cryopreservation by providing new tools to manipulate and screen cells at micro/nano scales, which are presently difficult or impossible with conventional bulk approaches. This review describes applications of microfluidic tools in cell manipulation, cryoprotective agent exposure, programmed freezing/thawing, vitrification, and in situ assessment in cryopreservation, and discusses achievements and challenges, providing perspectives for future development.
Collapse
Affiliation(s)
- Gang Zhao
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, PR China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Ceyhan E, Xu F, Gurkan UA, Emre AE, Turali ES, El Assal R, Acikgenc A, Wu CAM, Demirci U. Prediction and control of number of cells in microdroplets by stochastic modeling. LAB ON A CHIP 2012; 12:4884-93. [PMID: 23034772 PMCID: PMC3524309 DOI: 10.1039/c2lc40523g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Manipulation and encapsulation of cells in microdroplets has found many applications in various fields such as clinical diagnostics, pharmaceutical research, and regenerative medicine. The control over the number of cells in individual droplets is important especially for microfluidic and bioprinting applications. There is a growing need for modeling approaches that enable control over a number of cells within individual droplets. In this study, we developed statistical models based on negative binomial regression to determine the dependence of number of cells per droplet on three main factors: cell concentration in the ejection fluid, droplet size, and cell size. These models were based on experimental data obtained by using a microdroplet generator, where the presented statistical models estimated the number of cells encapsulated in droplets. We also propose a stochastic model for the total volume of cells per droplet. The statistical and stochastic models introduced in this study are adaptable to various cell types and cell encapsulation technologies such as microfluidic and acoustic methods that require reliable control over number of cells per droplet provided that settings and interaction of the variables is similar.
Collapse
Affiliation(s)
- Elvan Ceyhan
- Department of Mathematics, College of Sciences, Koç University, Istanbul, Turkey
| | - Feng Xu
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Umut Atakan Gurkan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmet Emrehan Emre
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emine Sumeyra Turali
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rami El Assal
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Acikgenc
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chung-an Max Wu
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Kasper HU, Konze E, Kutinová Canová N, Dienes HP, Dries V. Cryopreservation of precision cut tissue slices (PCTS): Investigation of morphology and reactivity. ACTA ACUST UNITED AC 2011; 63:575-80. [DOI: 10.1016/j.etp.2010.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 03/23/2010] [Accepted: 04/18/2010] [Indexed: 12/19/2022]
|
5
|
Tuleuova N, Revzin A. Micropatterning of Aptamer Beacons to Create Cytokine-Sensing Surfaces. Cell Mol Bioeng 2010; 3:337-344. [PMID: 21170394 PMCID: PMC2991185 DOI: 10.1007/s12195-010-0148-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/08/2010] [Indexed: 01/09/2023] Open
Abstract
Aptamer beacons are DNA or RNA probes that bind proteins or small molecules of interest and emit signal directly upon interaction with the target analyte. This paper describes micropatterning of aptamer beacons for detection of IFN-γ—an important inflammatory cytokine. The beacon consisted of a fluorophore-labeled aptamer strand hybridized with a shorter, quencher-carrying complementary strand. Cytokine molecules were expected to displace quenching strands of the beacon, disrupting FRET effect and resulting in fluorescence signal. The glass substrate was first micropatterned with poly(ethylene glycol) (PEG) hydrogel microwells (35 μm diameter individual wells) so as to define sites for attachment of beacon molecules. PEG microwell arrays were then incubated with avidin followed by biotin-aptamer-fluorophore constructs. Subsequent incubation with quencher-carrying complementary strands resulted in formation of DNA duplex and caused quenching of fluorescence due to FRET effect. When exposed to IFN-γ, microwells changed fluorescence from low (quencher hybridized with fluorophore-carrying strand) to high (quenching strand displaced by cytokine molecules). The fluorescence signal was confined to microwells, was changing in real-time and was dependent on the concentration of IFN-γ. In the future, we plan to co-localize aptamer beacons and cells on micropatterned surfaces in order to monitor in real-time cytokine secretion from immune cells in microwells.
Collapse
Affiliation(s)
- Nazgul Tuleuova
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, #2519, Davis, CA 95616 USA
- National Center for Biotechnology, Astana, Kazakhstan
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, #2519, Davis, CA 95616 USA
| |
Collapse
|
6
|
Deutsch M, Afrimzon E, Namer Y, Shafran Y, Sobolev M, Zurgil N, Deutsch A, Howitz S, Greuner M, Thaele M, Zimmermann H, Meiser I, Ehrhart F. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. I: methodology. BMC Cell Biol 2010; 11:54. [PMID: 20609216 PMCID: PMC2912820 DOI: 10.1186/1471-2121-11-54] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 07/07/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient. RESULTS The present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing--thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing--thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior. CONCLUSIONS The results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing--thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine.
Collapse
Affiliation(s)
- Mordechai Deutsch
- The Biophysical Interdisciplinary Schottenstein Center for the Research and Technology of the Cellome, Bar-Ilan University, Ramat Gan 52900, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lindström S, Andersson-Svahn H. Miniaturization of biological assays -- overview on microwell devices for single-cell analyses. Biochim Biophys Acta Gen Subj 2010; 1810:308-16. [PMID: 20451582 DOI: 10.1016/j.bbagen.2010.04.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/07/2010] [Accepted: 04/16/2010] [Indexed: 01/08/2023]
Abstract
BACKGROUND Today, cells are commonly analyzed in ensembles, i.e. thousands of cells per sample, yielding results on the average response of the cells. However, cellular heterogeneity implies the importance of studying how individual cells respond, one by one, in order to learn more about drug targeting and cellular behavior. SCOPE OF REVIEW This review discusses general aspects on miniaturization of biological assays and in particular summarizes single-cell assays in microwell formats. A range of microwell-based chips are discussed with regard to their well characteristics, cell handling, choice of material etc. along with available detection systems for single-cell studies. History and trends in microsystem technology, various commonly used materials for device fabrication, and conventional methods for single-cell analysis are also discussed, before a closing section with a detailed example from our research in the field. MAJOR CONCLUSIONS A range of miniaturized and microwell devices have shown useful for studying individual cells. GENERAL SIGNIFICANCE In vitro assays offering low volume sampling and rapid analysis in a high-throughput manner are of great interest in a wide range of single-cell applications. Size compatibility between a cell and micron-sized tools has encouraged the field of micro- and nanotechnologies to move into areas such as life sciences and molecular biology. To test as many compounds as possible against a given amount of patient sample requires miniaturized tools where low volume sampling is sufficient for accurate results and on which a high number of experiments per cm(2) can be performed. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
Affiliation(s)
- Sara Lindström
- Division of Nanobiotechnology, School of Biotechnology,Albanova University Center, Royal Institute of Technology, Stockholm, Sweden.
| | | |
Collapse
|
8
|
Abstract
Living cells are remarkably complex. To unravel this complexity, living-cell assays have been developed that allow delivery of experimental stimuli and measurement of the resulting cellular responses. High-throughput adaptations of these assays, known as living-cell microarrays, which are based on microtiter plates, high-density spotting, microfabrication, and microfluidics technologies, are being developed for two general applications: (a) to screen large-scale chemical and genomic libraries and (b) to systematically investigate the local cellular microenvironment. These emerging experimental platforms offer exciting opportunities to rapidly identify genetic determinants of disease, to discover modulators of cellular function, and to probe the complex and dynamic relationships between cells and their local environment.
Collapse
Affiliation(s)
- Martin L Yarmush
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Massachusetts 02139, USA.
| | | |
Collapse
|