1
|
Aarattuthodi S, Kang D, Gupta SK, Chen P, Redel B, Matuha M, Mohammed H, Sinha AK. Cryopreservation of biological materials: applications and economic perspectives. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01027-0. [PMID: 40266443 DOI: 10.1007/s11626-025-01027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/09/2025] [Indexed: 04/24/2025]
Abstract
Cryopreservation is a transformative technology that allows for the long-term storage of biological materials by cooling them to extremely low temperatures at which metabolic and biochemical processes are effectively slowed or halted. Cryopreservation utilizes various techniques to minimize ice crystal formation and cellular damage during freezing and thawing processes. This technology has broad applications in the fields of medicine, agriculture, and conservation, spanning across stem cell research, reproductive and regenerative medicine, organ transplantation, and cell-based therapies, each with significant economic implications. While current techniques and their associated costs present certain challenges, ongoing research advancements related to cryoprotectants, cooling methods, and automation promise to enhance efficiency and accessibility, potentially broadening the technology's impact across various sectors. This review focuses on the applications of cryopreservation, research advancements, and economic implications, emphasizing the importance of continued research to overcome the current limitations.
Collapse
Affiliation(s)
- Suja Aarattuthodi
- Plant Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA.
| | - David Kang
- Biological Control of Insects Research Laboratory, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA
| | - Sanjay Kumar Gupta
- Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, Jharkhand, 834003, India
| | - Paula Chen
- Plant Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA
| | - Bethany Redel
- Plant Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA
| | - Moureen Matuha
- Department of Agriculture and Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO, 65101, USA
| | - Haitham Mohammed
- Department of Rangeland, Wildlife and Fisheries Management, Texas a&M University, College Station, TX, 77843, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas Pine Bluff, Pine Bluff, AR, 71601, USA
| |
Collapse
|
2
|
Yukhta M, Bespalova I, Hubenia O, Braslavsky I, Chichkov BN, Gryshkov O. Conjugates of gold nanoparticles and antifreeze protein III for cryopreservation of cells and tissues. Cryobiology 2025; 119:105246. [PMID: 40252312 DOI: 10.1016/j.cryobiol.2025.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
The development of non-toxic cryoprotectants is crucial for advancing fields such as regenerative medicine, cell therapy and tissue engineering, where the preservation of the viability of cells, tissues and organs during cryopreservation is essential. This interdisciplinary effort involves areas such as cryobiology, nanotechnology, biochemistry and material science to create more efficient and safer cryoprotective solutions. This study explores the development and application of gold nanoparticles (AuNPs) conjugated with antifreeze protein III (AFPIII) for improving the cryopreservation of bone marrow stem cells (bMSCs) encapsulated in alginate macrospheres (AMSs). Two types of AuNPs, stabilized with citrate (CitAuNPs) and BSPP (BSPPAuNPs), were functionalized with AFPIII using both covalent and non-covalent conjugation methods and were characterized for their size, surface charge and protein layer thickness. The cytotoxicity assays indicated that both types of AuNPs and their AFPIII conjugates had no adverse effects on bMSC viability and proliferation over 48 h, demonstrating their non-toxicity. Furthermore, the cryopreservation of bMSC-contained AMSs revealed that the covalent BSPPAuNPs-AFPIII conjugate provided superior preservation of cell viability and metabolic activity, outperforming both non-covalent conjugates and individual components. Cryomicroscopic analysis revealed that AFPIII altered ice crystal formation, promoting smaller, multidirectional crystals, which minimized cellular damage during freezing. The covalent BSPPAuNPs-AFPIII conjugate exhibited superior cryoprotective effects, preserving cell viability and function better than the non-covalent CitAuNPs-AFPIII conjugate. These findings suggest that AuNPs-AFPIII conjugates, particularly the covalent BSPPAuNPs-AFPIII complex, hold great promise for improving cell and tissue cryopreservation protocols.
Collapse
Affiliation(s)
- Mariia Yukhta
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23, Pereyaslavskaya Str., Kharkov, 61015, Ukraine.
| | - Iryna Bespalova
- Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60, Nauky Ave., Kharkiv, 61072, Ukraine.
| | - Oleksandra Hubenia
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23, Pereyaslavskaya Str., Kharkov, 61015, Ukraine.
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Herzl 229, Rehovot, 7610001, Israel.
| | - Boris N Chichkov
- Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany; Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hanover, Germany.
| | - Oleksandr Gryshkov
- Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany; Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hanover, Germany.
| |
Collapse
|
3
|
Dantas RV, Marques LS, Freitas TR, Teixeira NDS, Rodrigues RB, Benato JL, Santos RSD, Siqueira Silva DH, Streit DP. Understanding Rigor Mortis Impacts on Zebrafish Gamete Viability. Zebrafish 2025; 22:31-41. [PMID: 40014454 DOI: 10.1089/zeb.2024.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
This study aimed to evaluate the viability of gametes in zebrafish (Danio rerio), at different rigor mortis stages. Viability assessments were conducted on oocytes at various developmental stages using LIVE/DEAD and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. For sperm evaluation, both kinetic (computer-assisted sperm analysis) and morphological assessments (Rose Bengal staining) were performed. Results demonstrated that rigor mortis progression significantly impacted oocyte viability during post-rigor stages, with the following viability rates: pre-rigor (70.43 ± 12.31%), fresh/control (46.43 ± 12.54%), post-rigor (27.62 ± 22.29%), and rigor mortis (comparable to fresh/control). Conversely, sperm kinetics exhibited nuanced responses to the rigor mortis stages, with specific parameters showing sensitivity, whereas the others remained relatively stable. Sperm motility was higher in the fresh/control (63.23 ± 19.03%) and pre-rigor (58.96 ± 14.38%) compared to the post-rigor group (3.34 ± 4.65%). This study highlights the significance of the pre-rigor for successful gamete collection and preservation. These findings provide valuable insights for conservation efforts and optimization of genetic resource management for endangered fish species. This study aimed to develop effective assistive reproductive techniques by elucidating the interplay between rigor mortis and gamete quality, contributing to the broader goals of species conservation and maintenance of genetic diversity in fish populations.
Collapse
Affiliation(s)
- Renata Villar Dantas
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lis Santos Marques
- Veterinary Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thaiza Rodrigues Freitas
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rômulo Batista Rodrigues
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jhony Lisbôa Benato
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Raquel Santos Dos Santos
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Danilo Pedro Streit
- AQUAM Research Group, Animal Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Veterinary Science Research Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Wang X, Li F, Wu S, Xing W, Fu J, Wang R, He Y. Research progress on optimization of in vitro isolation, cultivation and preservation methods of dental pulp stem cells for clinical application. Front Bioeng Biotechnol 2024; 12:1305614. [PMID: 38633667 PMCID: PMC11021638 DOI: 10.3389/fbioe.2024.1305614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Due to high proliferative capacity, multipotent differentiation, immunomodulatory abilities, and lack of ethical concerns, dental pulp stem cells (DPSCs) are promising candidates for clinical application. Currently, clinical research on DPSCs is in its early stages. The reason for the failure to obtain clinically effective results may be problems with the production process of DPSCs. Due to the different preparation methods and reagent formulations of DPSCs, cell characteristics may be affected and lead to inconsistent experimental results. Preparation of clinical-grade DPSCs is far from ready. To achieve clinical application, it is essential to transit the manufacturing of stem cells from laboratory grade to clinical grade. This review compares and analyzes experimental data on optimizing the preparation methods of DPSCs from extraction to resuscitation, including research articles, invention patents and clinical trials. The advantages and disadvantages of various methods and potential clinical applications are discussed, and factors that could improve the quality of DPSCs for clinical application are proposed. The aim is to summarize the current manufacture of DPSCs in the establishment of a standardized, reliable, safe, and economic method for future preparation of clinical-grade cell products.
Collapse
Affiliation(s)
- Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Fenyao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shuting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Wenbo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ruoxuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Ortiz Silva NA, Denis S, Vergnaud J, Hillaireau H. Controlled hydrogel-based encapsulation of macrophages determines cell survival and functionality upon cryopreservation. Int J Pharm 2024; 650:123491. [PMID: 37806508 DOI: 10.1016/j.ijpharm.2023.123491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The development of novel cell-based therapies has increased the necessity to improve the long-term storage of cells. The current method of cryopreservation is far from optimal, causing ice-associated mechanical and osmotic damage to sensitive cells. Cell encapsulation is emerging as a new strategy to overcome those current limitations; however, few data are applicable to slow freezing, with conflicting results and multiple experimental conditions. The objective of this research work was to evaluate the impact of capsule size and encapsulation method on cell survival and functionality after a conventional freezing protocol. To this end, cells were encapsulated in alginate beads of different sizes, spanning the range of 200-2000 µm thanks to multiple extrusion techniques and conditions, and further cryopreserved using a slow cooling rate (-1°C/min) and 10 % DMSO as cryoprotectant. Our data show that there is a strong correlation between bead size and cell survival after a slow cooling cryopreservation process, with cell viabilities ranging from 7 to 70 % depending on the capsule size, with the smallest capsules (230 µm) achieving the highest level of survival. The obtained results indicate that the beads' diameter, rather than their morphology or the technique used, plays a significant role in the post-thawing cell survival and functionality. These results show that a fine control of cell encapsulation in alginate hydrogels is required when it comes to overcoming the current limitations of long-term preservation techniques by slow cooling.
Collapse
Affiliation(s)
| | - Stéphanie Denis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Juliette Vergnaud
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Hervé Hillaireau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
6
|
Hydrogel encapsulation as a handling and vitrification tool for zebrafish ovarian tissue. Theriogenology 2023; 198:153-163. [PMID: 36586353 DOI: 10.1016/j.theriogenology.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/25/2022]
Abstract
Zebrafish is an important animal model, thousands lines have been developed, thus having a great need for their preservation. However, the cryopreservation of fish oocytes is still limited and needs improvement. The sodium alginate hydrogel, in addition to providing support for the cells, has been shown to be a potential cryoprotectant. Therefore, the aim of this study was to evaluate the sodium alginate hydrogel encapsulation technique efficiency during zebrafish ovarian tissue vitrification. The encapsulation methodology was standardized in the first experiment. In Experiment 2, we evaluated four vitrified groups: standard protocol without encapsulation (VS); encapsulated with cryoprotectants (VS1-A); encapsulated with half the cryoprotectants concentration (VS2-A); encapsulated without cryoprotectants (VA). VS treatment (54.6 ± 12.3%; 23.7 ± 9.9%; 12.6 ± 5.0%) did not differ from the VS1-A and VA showed a lower membrane integrity percentage (1.2 ± 1.4%; 0.3 ± 0.6%; 0.5 ± 1.5%). Mitochondrial activity was significantly greater in non-encapsulated treatment (VS) when compared to the encapsulated treatments. VS1-A and VS obtained the lowest lipid peroxidation (39.4 ± 4.4 and 40.5 ± 3.3 nmol MDA/mg respectively) in which VS was not significantly different from the VS2-A treatment (63.6 ± 3.1 nmol MDA/mg), unlike, VA obtained the highest lipid peroxidation level (124.7 ± 7.9 nmol MDA/mg). The results obtained in this study demonstrate that the sodium alginate hydrogel encapsulation technique did not have a cryoprotective action, but maintained the membrane integrity when used the standard concentration of cryoprotectants. However, halving the cryoprotectant concentration of fragments encapsulated in alginate hydrogel did not cause an increase in lipid peroxidation. In addition, it provided support and prevented the oocytes from loosening from the tissue during the vitrification process, being an interesting alternative for later in vitro maturation.
Collapse
|
7
|
Kuang G, Zhang Q, Jia J, Yu Y. Freezing biological organisms for biomedical applications. SMART MEDICINE 2022; 1:e20220034. [PMID: 39188743 PMCID: PMC11235656 DOI: 10.1002/smmd.20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 08/28/2024]
Abstract
Biological organisms play important roles in human health, either in a commensal or pathogenic manner. Harnessing inactivated organisms or living organisms is a promising way to treat diseases. As two types of freezing, cryoablation makes it simple to inactivate organisms that must be in a non-pathogenic state when needed, while cryopreservation is a facile way to address the problem of long-term storage challenged by living organism-based therapy. In this review, we present the latest studies of freezing biological organisms for biomedical applications. To begin with, the freezing strategies of cryoablation and cryopreservation, as well as their corresponding technical essentials, are illustrated. Besides, biomedical applications of freezing biological organisms are presented, including transplantation, tissue regeneration, anti-infection therapy, and anti-tumor therapy. The challenges and prospects of freezing living organisms for biomedical applications are well discussed. We believe that the freezing method will provide a potential direction for the standardization and commercialization of inactivated or living organism-based therapeutic systems, and promote the clinical application of organism-based therapy.
Collapse
Affiliation(s)
- Gaizhen Kuang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Jinxuan Jia
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
8
|
Gryshkov O, Mutsenko V, Tarusin D, Khayyat D, Naujok O, Riabchenko E, Nemirovska Y, Danilov A, Petrenko AY, Glasmacher B. Coaxial Alginate Hydrogels: From Self-Assembled 3D Cellular Constructs to Long-Term Storage. Int J Mol Sci 2021; 22:3096. [PMID: 33803546 PMCID: PMC8003018 DOI: 10.3390/ijms22063096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
Alginate as a versatile naturally occurring biomaterial has found widespread use in the biomedical field due to its unique features such as biocompatibility and biodegradability. The ability of its semipermeable hydrogels to provide a favourable microenvironment for clinically relevant cells made alginate encapsulation a leading technology for immunoisolation, 3D culture, cryopreservation as well as cell and drug delivery. The aim of this work is the evaluation of structural properties and swelling behaviour of the core-shell capsules for the encapsulation of multipotent stromal cells (MSCs), their 3D culture and cryopreservation using slow freezing. The cells were encapsulated in core-shell capsules using coaxial electrospraying, cultured for 35 days and cryopreserved. Cell viability, metabolic activity and cell-cell interactions were analysed. Cryopreservation of MSCs-laden core-shell capsules was performed according to parameters pre-selected on cell-free capsules. The results suggest that core-shell capsules produced from the low viscosity high-G alginate are superior to high-M ones in terms of stability during in vitro culture, as well as to solid beads in terms of promoting formation of viable self-assembled cellular structures and maintenance of MSCs functionality on a long-term basis. The application of 0.3 M sucrose demonstrated a beneficial effect on the integrity of capsules and viability of formed 3D cell assemblies, as compared to 10% dimethyl sulfoxide (DMSO) alone. The proposed workflow from the preparation of core-shell capsules with self-assembled cellular structures to the cryopreservation appears to be a promising strategy for their off-the-shelf availability.
Collapse
Affiliation(s)
- Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (V.M.); (D.K.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (V.M.); (D.K.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Dmytro Tarusin
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavsky Street, 61015 Kharkiv, Ukraine; (D.T.); (Y.N.); (A.Y.P.)
| | - Diaa Khayyat
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (V.M.); (D.K.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany;
| | - Ekaterina Riabchenko
- Institute for Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia; (E.R.); (A.D.)
| | - Yuliia Nemirovska
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavsky Street, 61015 Kharkiv, Ukraine; (D.T.); (Y.N.); (A.Y.P.)
| | - Arseny Danilov
- Institute for Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia; (E.R.); (A.D.)
| | - Alexander Y. Petrenko
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavsky Street, 61015 Kharkiv, Ukraine; (D.T.); (Y.N.); (A.Y.P.)
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (V.M.); (D.K.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
9
|
hDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111850. [PMID: 33579484 DOI: 10.1016/j.msec.2020.111850] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
The microsphere system has attracted considerable attention as a stem-cell delivery vehicle in regeneration medicine owing to its injectability, fast substance transfer ability, and mimicry of the three-dimensional native environment. However, suitable biomaterials for preparation of microspheres optimal for endodontic regeneration are still being explored. Owing to its excellent bioactivity and biodegradability, gelatin methacryloyl (GelMA) was used to fabricate hydrogel microspheres by the electrostatic microdroplet method, and the potential of GelMA microspheres applied in endodontic regeneration was studied. The average size of GelMA microspheres encapsulating human dental pulp stem cells (hDPSCs) was ~200 μm, and the Young's modulus was approximately 582.8 ± 66.0 Pa, which was close to that of the natural human dental pulp. The encapsulated hDPSCs could effectively adhere, spread, proliferate, and secrete extracellular matrix proteins in the microspheres, and tended to occupy the outer layer. Moreover, the cell-laden GelMA microsphere system could withstand cryopreservation, and the thawed cells exhibited normal functions. After subcutaneous implantation in a nude mouse model, more vascularized pulp-like tissues were generated in the cell-laden GelMA microsphere group compared with that in the cell-laden bulk GelMA group, and this was accompanied by a suitable degradation rate. The GelMA microspheres showed remarkable performances and great potential as cell delivery vehicles in endodontic regeneration.
Collapse
|
10
|
Mutsenko V, Knaack S, Lauterboeck L, Tarusin D, Sydykov B, Cabiscol R, Ivnev D, Belikan J, Beck A, Dipresa D, Lode A, El Khassawna T, Kampschulte M, Scharf R, Petrenko AY, Korossis S, Wolkers WF, Gelinsky M, Glasmacher B, Gryshkov O. Effect of 'in air' freezing on post-thaw recovery of Callithrix jacchus mesenchymal stromal cells and properties of 3D collagen-hydroxyapatite scaffolds. Cryobiology 2020; 92:215-230. [PMID: 31972153 DOI: 10.1016/j.cryobiol.2020.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
Through enabling an efficient supply of cells and tissues in the health sector on demand, cryopreservation is increasingly becoming one of the mainstream technologies in rapid translation and commercialization of regenerative medicine research. Cryopreservation of tissue-engineered constructs (TECs) is an emerging trend that requires the development of practically competitive biobanking technologies. In our previous studies, we demonstrated that conventional slow-freezing using dimethyl sulfoxide (Me2SO) does not provide sufficient protection of mesenchymal stromal cells (MSCs) frozen in 3D collagen-hydroxyapatite scaffolds. After simple modifications to a cryopreservation protocol, we report on significantly improved cryopreservation of TECs. Porous 3D scaffolds were fabricated using freeze-drying of a mineralized collagen suspension and following chemical crosslinking. Amnion-derived MSCs from common marmoset monkey Callithrix jacchus were seeded onto scaffolds in static conditions. Cell-seeded scaffolds were subjected to 24 h pre-treatment with 100 mM sucrose and slow freezing in 10% Me2SO/20% FBS alone or supplemented with 300 mM sucrose. Scaffolds were frozen 'in air' and thawed using a two-step procedure. Diverse analytical methods were used for the interpretation of cryopreservation outcome for both cell-seeded and cell-free scaffolds. In both groups, cells exhibited their typical shape and well-preserved cell-cell and cell-matrix contacts after thawing. Moreover, viability test 24 h post-thaw demonstrated that application of sucrose in the cryoprotective solution preserves a significantly greater portion of sucrose-pretreated cells (more than 80%) in comparison to Me2SO alone (60%). No differences in overall protein structure and porosity of frozen scaffolds were revealed whereas their compressive stress was lower than in the control group. In conclusion, this approach holds promise for the cryopreservation of 'ready-to-use' TECs.
Collapse
Affiliation(s)
- Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany.
| | - Sven Knaack
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Lothar Lauterboeck
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, USA
| | - Dmytro Tarusin
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Bulat Sydykov
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Ramon Cabiscol
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dmitrii Ivnev
- Institute of Power Plant Engineering and Heat Transfer, Leibniz University Hannover, Hannover, Germany
| | - Jan Belikan
- Department of Radiology, University Hospital of Giessen Marburg, Giessen, Germany
| | - Annemarie Beck
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Marian Kampschulte
- Department of Radiology, University Hospital of Giessen Marburg, Giessen, Germany
| | - Roland Scharf
- Institute of Power Plant Engineering and Heat Transfer, Leibniz University Hannover, Hannover, Germany
| | - Alexander Yu Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Sotirios Korossis
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Centre for Biological Engineering, Wolfson School for Mechanical Electrical and Manufacturing Engineering, University of Loughborough, Loughborough, United Kingdom
| | - Willem F Wolkers
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
11
|
Effective Cryopreservation and Recovery of Living Cells Encapsulated in Multiple Emulsions. Biopreserv Biobank 2019; 17:468-476. [DOI: 10.1089/bio.2018.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Gryshkov O, Müller M, Leal-Marin S, Mutsenko V, Suresh S, Kapralova VM, Glasmacher B. Advances in the application of electrohydrodynamic fabrication for tissue engineering. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1236/1/012024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Gurruchaga H, Del Burgo LS, Orive G, M Hernandez R, Ciriza J, L Pedraz J. Cell Microencapsulation and Cryopreservation with Low Molecular Weight Hyaluronan and Dimethyl Sulfoxide. Bio Protoc 2019; 9:e3164. [PMID: 33654970 DOI: 10.21769/bioprotoc.3164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 11/02/2022] Open
Abstract
Cryopreservation is commonly used for the storage of cells, tissues, organs or 3D cell-based products using ultra-low temperatures, which involves the immersion in liquid nitrogen for their long-term preservation. The cryopreservation of several microencapsulated cells is usually performed by the slow freezing with the dimethyl sulfoxide (DMSO) as a cryoprotectant agent (CPA). In this study, we cryopreserved several microencapsulated cells with the natural, non-toxic low molecular-weight hyaluronan (LMW-HA) at 5% and DMSO 10% solution assessing cell viability and metabolic activity after thawing. The cryopreservation of microencapsulated D1 mesenchymal stem cells (D1MSC) and murine myoblast cells (C2C12) with the LMW-HA 5% presented similar outcomes after thawing compared to the DMSO solution, showing the low molecular weight hyaluronan as a natural, non-toxic CPA that can be used preventing the DMSO related adverse effects after the implantation of the cryopreserved cell-based products.
Collapse
Affiliation(s)
- H Gurruchaga
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - L Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain
| | - R M Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| |
Collapse
|
14
|
Pogozhykh O, Prokopyuk V, Prokopyuk O, Kuleshova L, Goltsev A, Figueiredo C, Pogozhykh D. Towards biobanking technologies for natural and bioengineered multicellular placental constructs. Biomaterials 2018; 185:39-50. [PMID: 30218835 DOI: 10.1016/j.biomaterials.2018.08.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Clinical application of a large variety of biomaterials is limited by the imperfections in storage technology. Perspective approaches utilizing low-temperature storage are especially challenging for multicellular structures, such as tissues, organs, and bioengineered constructs. Placenta, as a temporary organ, is a widely available unique biological material, being among the most promising sources of various cells and tissues for clinical and experimental use in regenerative medicine and tissue engineering. The aim of this study was to analyse the mechanisms of cryoinjuries in different placental tissues and bioengineered constructs as well as to support the viability after low temperature storage, which would contribute to development of efficient biobanking technologies. This study shows that specificity of cryodamage depends on the structure of the studied object, intercellular bonds, as well as interaction of its components with cryoprotective agents. Remarkably, it was possible to efficiently isolate cells after thawing from all of the studied tissues. While the outcome was lower in comparison to the native non-frozen samples, the phenotype and expression levels of pluripotency genes remained unaffected. Further progress in eliminating of recrystallization processes during thawing would significantly improve biobanking technologies for multicellular constructs and tissues.
Collapse
Affiliation(s)
- Olena Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine
| | - Volodymyr Prokopyuk
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine
| | - Olga Prokopyuk
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine
| | - Larisa Kuleshova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine
| | - Constança Figueiredo
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Denys Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine.
| |
Collapse
|
15
|
Advances in the slow freezing cryopreservation of microencapsulated cells. J Control Release 2018; 281:119-138. [PMID: 29782945 DOI: 10.1016/j.jconrel.2018.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022]
Abstract
Over the past few decades, the use of cell microencapsulation technology has been promoted for a wide range of applications as sustained drug delivery systems or as cells containing biosystems for regenerative medicine. However, difficulty in their preservation and storage has limited their availability to healthcare centers. Because the preservation in cryogenic temperatures poses many biological and biophysical challenges and that the technology has not been well understood, the slow cooling cryopreservation, which is the most used technique worldwide, has not given full measure of its full potential application yet. This review will discuss the different steps that should be understood and taken into account to preserve microencapsulated cells by slow freezing in a successful and simple manner. Moreover, it will review the slow freezing preservation of alginate-based microencapsulated cells and discuss some recommendations that the research community may pursue to optimize the preservation of microencapsulated cells, enabling the therapy translate from bench to the clinic.
Collapse
|
16
|
Pogozhykh D, Pogozhykh O, Prokopyuk V, Kuleshova L, Goltsev A, Blasczyk R, Mueller T. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells. Stem Cell Res Ther 2017; 8:66. [PMID: 28284229 PMCID: PMC5346212 DOI: 10.1186/s13287-017-0512-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/11/2017] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Successful implementation of rapidly advancing regenerative medicine approaches has led to high demand for readily available cellular suspensions. In particular, multipotent stromal cells (MSCs) of placental origin have shown therapeutic efficiency in the treatment of numerous pathologies of varied etiology. Up to now, cryopreservation is the only effective way to preserve the viability and unique properties of such cells in the long term. However, practical biobanking is often associated with repeated temperature fluctuations or interruption of a cold chain due to various technical, transportation, and stocking events. While biochemical processes are expected to be suspended during cryopreservation, such temperature fluctuations may lead to accumulation of stress as well as to periodic release of water fractions in the samples, possibly leading to damage during long-term storage. METHODS In this study, we performed a comprehensive analysis of changes in cell survival, vital parameters, and differentiation potential, as well as transgene expression of placental MSCs after temperature fluctuations within the liquid nitrogen steam storage, mimicking long-term preservation in practical biobanking, transportation, and temporal storage. RESULTS It was shown that viability and metabolic parameters of placental MSCs did not significantly differ after temperature fluctuations in the range from -196 °C to -100 °C in less than 20 cycles in comparison to constant temperature storage. However, increasing the temperature range to -80 °C as well as increasing the number of cycles leads to significant lowering of these parameters after thawing. The number of apoptotic changes increases depending on the number of cycles of temperature fluctuations. Besides, adhesive properties of the cells after thawing are significantly compromised in the samples subjected to temperature fluctuations during storage. Differentiation potential of placental MSCs was not compromised after cryopreservation with constant end temperatures or with temperature fluctuations. However, regulation of various genes after cryopreservation procedures significantly varies. Interestingly, transgene expression was not compromised in any of the studied samples. CONCLUSIONS Alterations in structural and functional parameters of placental MSCs after long-term preservation should be considered in practical biobanking due to potential temperature fluctuations in samples. At the same time, differentiation potential and transgene expression are not compromised during studied storage conditions, while variation in gene regulation is observed.
Collapse
Affiliation(s)
- Denys Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany. .,Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015, Kharkiv, Ukraine.
| | - Olena Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015, Kharkiv, Ukraine
| | - Volodymyr Prokopyuk
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015, Kharkiv, Ukraine
| | - Larisa Kuleshova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015, Kharkiv, Ukraine
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015, Kharkiv, Ukraine
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Mueller
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Synlab Medical Care Center Weiden Ltd., Zur Kesselschmiede 4, 92637, Weiden in der Oberpfalz, Germany
| |
Collapse
|
17
|
Lauterboeck L, Wolkers W, Glasmacher B. Cryobiological parameters of multipotent stromal cells obtained from different sources. Cryobiology 2017; 74:93-102. [DOI: 10.1016/j.cryobiol.2016.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/10/2016] [Accepted: 11/26/2016] [Indexed: 11/26/2022]
|
18
|
Lauterboeck L, Saha D, Chatterjee A, Hofmann N, Glasmacher B. Xeno-Free Cryopreservation of Bone Marrow-Derived Multipotent Stromal Cells from Callithrix jacchus. Biopreserv Biobank 2016; 14:530-538. [DOI: 10.1089/bio.2016.0038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lothar Lauterboeck
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| | - Debapriya Saha
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| | - Anamika Chatterjee
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| | - Nicola Hofmann
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
19
|
Impact of alginate concentration on the viability, cryostorage, and angiogenic activity of encapsulated fibroblasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:269-77. [PMID: 27157752 DOI: 10.1016/j.msec.2016.04.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 01/25/2023]
Abstract
Cryopreservation or cryostorage of tissue engineered constructs can enhance the off-the shelf availability of these products and thus can potentially facilitate the commercialization or clinical translation of tissue engineered products. Encapsulation of cells within hydrogel matrices, in particular alginate, is widely used for fabrication of tissue engineered constructs. While previous studies have explored the cryopreservation response of cells encapsulated within alginate matrices, systematic investigation of the impact of alginate concentration on the metabolic activity and functionality of cryopreserved cells is lacking. The objective of the present work is to determine the metabolic and angiogenic activity of cryopreserved human dermal fibroblasts encapsulated within 1.0%, 1.5% and 2.0% (w/v) alginate matrices. In addition, the goal is to compare the efficacy of dimethyl sulfoxide (DMSO) and trehalose as cryoprotectant. Our study revealed that the concentration of alginate plays a significant role in the cryopreservation response of encapsulated cells. The lowest metabolic activity of the cryopreserved cells was observed in 1% alginate microspheres. When higher concentration of alginate was utilized for cell encapsulation, the metabolic and angiogenic activity of the cells frozen in the absence of cryoprotectants was comparable to that observed in the presence of DMSO or trehalose.
Collapse
|
20
|
Repanas A, Andriopoulou S, Glasmacher B. The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|