1
|
Balamurugan R, Karthik S, Arul V. Effect of cryopreservation on motility, DNA integrity and gene expression in grey mullet, Mugil cephalus sperm. Cryobiology 2024; 114:104848. [PMID: 38219856 DOI: 10.1016/j.cryobiol.2024.104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
This study documents the effect of cryopreservation on motility, DNA integrity, and gene expression in Mugil cephalus sperm. Fresh sperm were cryopreserved using V2 extender (V2E) or 0.3 M glucose, each in combination with one of three cryoprotective agents (CPAs), i.e., 10 % of dimethylsulfoxide, ethylene glycol, or glycerol, all at once. After two different storage (7- vs 60- day) periods in liquid nitrogen, sperm samples were thawed. Single-cell gel electrophoresis was used to detect the DNA integrity. Heat shock proteins (HSPs), HSP70, HSP90 and glutathione peroxidase (GPx2) genes mRNA expression levels was documented using qRT-PCR. The results demonstrated that among 0.3 M glucose + CPAs combinations, EG recorded higher frozen-thawed motility 69 % (7- day) and 59 % (60- day). Similarly, in V2E + CPAs combinations, EG recorded higher frozen-thawed motility 31 % (7- day) and 26 % (60- day). The DNA integrity of all thawed sperm (both periods) did not differ from that of fresh sperm. The qRT-PCR results revealed that in the combination of 0.3 M glucose + CPAs, the level of HSP90 and GPx2 gene expression was found to be upregulated in frozen-thawed sperm on both periods. Whereas, the expression level of the HSP70 gene was down-regulated. On the contrary, in the combination of V2E + CPAs, the expression levels of HSP70, HSP90 and GPx2 genes could not be detected on both periods. Overall, the findings of this study demonstrate that the cryomedium (extender + cryoprotectant) has a more influential role in the motility and levels of gene expression in the frozen-thawed sperm of M. cephalus.
Collapse
Affiliation(s)
- Ramachandran Balamurugan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India.
| | - Sundaram Karthik
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India.
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
2
|
Blawut B, Wolfe B, Premanandan C, Schuenemann G, Ludsin SA, Liu SL, Veeramachaneni DNR, Coutinho da Silva MA. Effects of activation and assisted reproduction techniques on the composition, structure, and properties of the sauger (Sander Canadensis) spermatozoa plasma membrane. Theriogenology 2023; 198:87-99. [PMID: 36566603 DOI: 10.1016/j.theriogenology.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The sperm plasma membrane is a multifunctional organelle essential to fertilization. However, assisted reproduction techniques often negatively affect this structure, resulting in reduced fertility. These reductions have been attributed to plasma membrane damage in a wide array of species, including fish. Considerable research has been conducted on the fish sperm membrane, but few have examined the effect of cryopreservation and other assisted reproduction techniques (ARTs) on not only membrane composition, but also specific characteristics (e.g., fluidity) and organization (e.g., lipid rafts). Herein, we determined the effects of three ARTs (testicular harvest, strip spawning, and cryopreservation) on the sperm plasma membrane, using Sauger (Sander canadensis) sperm as a model. To this end, a combination of fluorescent dyes (e.g., merocyanine 540, filipin III, cholera toxin subunit β), liquid chromatography - mass spectroscopy (LC-MS) analysis of membrane lipids, and membrane ultracentrifugation coupled with plate assays and immunofluorescence were used to describe and compare sperm fluidity, membrane composition, as well as lipid raft composition and distribution among sperm types. Stripped sperm became more fluid following motility activation (40% increase in highly fluid cells characterized by a 2 × increase in fluorescence) and contained lipid rafts restricted to the midpiece. Testicular harvest yielded sperm with characteristics similar to stripped sperm. By contrast, cryopreservation impacted every aspect of membrane physiology. Two cell populations, one highly fluid and the other rigid, resulted from the freeze-thaw process. Cryopreservation reduced lipid raft cholesterol content by 44% and flotilin-2 (a lipid raft marker) was partially displaced owing to a decrease in buoyancy. Unlike stripped and testicular sperm, LC-MS analysis revealed increases in oxidative damage markers, membrane destabilization, and apoptotic signaling in cryopreserved sperm. Ultrastructural analysis also revealed widespread physical damage to the membrane following freeze-thaw. Sperm motility, however, was unrelated to any measure of membrane physiology used in this study. Our results demonstrate that ARTs have the potential to substantially affect the sperm plasma membrane, but not always detrimentally. These results provide multiple potential biomarkers of sperm quality as well as insight into sources of sub-fertility resulting from use of ARTs.
Collapse
Affiliation(s)
- Bryan Blawut
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Clinical Sciences, Columbus, OH, USA
| | - Barbara Wolfe
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Chris Premanandan
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, OH, USA
| | - Gustavo Schuenemann
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Stuart A Ludsin
- The Ohio State University, Department of Ecology, Evolution and Organismal Biology, Aquatic Ecology Lab, Columbus, OH, USA
| | - Shan-Lu Liu
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Viruses and Emerging Pathogens Program, The Infectious Diseases Institute, Columbus, OH, USA
| | - D N Rao Veeramachaneni
- Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Fort Collins, CO, USA
| | - Marco A Coutinho da Silva
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Clinical Sciences, Columbus, OH, USA.
| |
Collapse
|
3
|
Wang Y, Gong W, Zhou H, Hu Y, Wang L, Shen Y, Yu G, Cao J. A Novel miRNA From Egg-Derived Exosomes of Schistosoma japonicum Promotes Liver Fibrosis in Murine Schistosomiasis. Front Immunol 2022; 13:860807. [PMID: 35572578 PMCID: PMC9094574 DOI: 10.3389/fimmu.2022.860807] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis caused by Schistosoma japonicum is a serious public health problem in China. Granuloma and hepatic fibrosis are the main pathological features of schistosomiasis japonica. The role and mechanism of egg-derived exosomes of S. japonicum in liver fibrosis remain unclear. In this study, we found that egg-derived exosomes of S. japonicum carry a new type of microRNA (miRNA-33). In vitro, this novel miRNA upregulated the expression of smooth muscle actin (α-SMA) and collagen 1 α1 (Col 1 α1) in the human hepatic stellate cell (LX-2) line at both mRNA and protein levels. In vivo, this novel miRNA was upregulated in the serum of infected mice, and when injected into mice through the tail vein using miRNA agomir, α-SMA, Col 1 α1, and Col 3 α1 were upregulated in liver tissue at both mRNA and protein levels. In addition, this novel miRNA downregulated the expression of α-SMA and Col 1 α1 in liver tissue at mRNA and protein levels in mice infected with S. japonicum and treated with miRNA antagomir. The novel miRNA-33 upregulated TGF-β Receptor I (TGF-β RI) at both mRNA and protein levels in LX-2 cells. Our results suggest that this novel miRNA from egg-derived exosomes of S. japonicum can promote liver fibrosis in the host in a cross-species manner, and the degree of fibrosis can be decreased by inhibiting the expression of this miRNA.
Collapse
Affiliation(s)
- Yiluo Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China.,State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Wenci Gong
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - Hao Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China.,State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Hossen S, Sharker MR, Cho Y, Sukhan ZP, Kho KH. Effects of Antifreeze Protein III on Sperm Cryopreservation of Pacific Abalone, Haliotis discus hannai. Int J Mol Sci 2021; 22:ijms22083917. [PMID: 33920155 PMCID: PMC8069295 DOI: 10.3390/ijms22083917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/29/2023] Open
Abstract
Pacific abalone (Haliotis discus hannai) is a highly commercial seafood in Southeast Asia. The aim of the present study was to improve the sperm cryopreservation technique for this valuable species using an antifreeze protein III (AFPIII). Post-thaw sperm quality parameters including motility, acrosome integrity (AI), plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA integrity, fertility, hatchability, and mRNA abundance level of heat shock protein 90 (HSP90) were determined to ensure improvement of the cryopreservation technique. Post-thaw motility of sperm cryopreserved with AFPIII at 10 µg/mL combined with 8% dimethyl sulfoxide (DMSO) (61.3 ± 2.7%), 8% ethylene glycol (EG) (54.3 ± 3.3%), 6% propylene glycol (PG) (36.6 ± 2.6%), or 2% glycerol (GLY) (51.7 ± 3.0%) was significantly improved than that of sperm cryopreserved without AFPIII. Post-thaw motility of sperm cryopreserved with 2% MeOH and 1 µg/mL of AFPIII was also improved than that of sperm cryopreserved without AFPIII. A combination of 10 µg/mL AFPIII with 8% DMSO resulted in the highest post-thaw motility, showing AI of 60.1 ± 3.9%, PMI of 67.2 ± 4.0%, and MMP of 59.1 ± 4.3%. DNA integrity of sperm cryopreserved using 10 µg/mL AFPIII combined with 8% DMSO was not significantly (p > 0.05) different from that of fresh sperm. Cryopreservation using a combination of AFPIII with 8% DMSO improved fertilization and hatching rates of sperm compared to that of cryopreservation without supplementation of 10 µg/mL AFPIII. Sperm cryopreserved using AFPIII showed higher mRNA abundance levels of HSP90 than those cryopreserved without AFPIII. Results of the present study suggest that 10 µg/mL AFPIII combined with 8% DMSO can be used for large scale cryopreservation of Pacific abalone sperm and for hatchery production.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; (S.H.); (M.R.S.); (Y.C.); (Z.P.S.)
| | - Md. Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; (S.H.); (M.R.S.); (Y.C.); (Z.P.S.)
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Yusin Cho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; (S.H.); (M.R.S.); (Y.C.); (Z.P.S.)
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; (S.H.); (M.R.S.); (Y.C.); (Z.P.S.)
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; (S.H.); (M.R.S.); (Y.C.); (Z.P.S.)
- Correspondence: ; Tel.: +82-616-597-168; Fax: +82-616-597-169
| |
Collapse
|
5
|
Díaz R, Quiñones J, Short S, Contreras P, Ulloa-Rodríguez P, Cancino-Baier D, Sepúlveda N, Valdebenito I, Farías JG. Effect of exogenous lipids on cryotolerance of Atlantic salmon (Salmo salar) spermatozoa. Cryobiology 2021; 98:25-32. [PMID: 33412157 DOI: 10.1016/j.cryobiol.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/06/2020] [Accepted: 01/01/2021] [Indexed: 01/22/2023]
Abstract
The development of semen cryopreservation strategies is necessary to improve the semen storage technologies of species of great commercial interest for aquaculture. Recent studies demonstrate that lipids play an important role in the fertility and cryotolerance of fish gametes. This study investigated the effect of exogenous lipids in the freezing medium on the post-thaw functional parameters of Salmo salar spermatozoa. Semen samples (n = 12) were incubated in standard extender supplemented with different concentrations of oleic acid (OA, C18:1n9), linoleic acid (LA, C18:2n6), arachidonic acid (ARA, C20:4n6) and cholesterol-loaded cyclodextrin (CLC). Post-thaw motility, membrane integrity, mitochondrial membrane potential (ΔΨm), superoxide anion (O2•-) and fertility rates were analyzed. The results revealed that the semen incubated with 0.003 mmol/L OA increased the motility (~7%) and ΔΨm (~2%) (P < 0.05), but membrane integrity and fertility were not increased. The addition of 0.003 mmol/L LA increased the motility (~4%) and all LA extenders increased the ΔΨm (P < 0.05); however, LA increased the O2•- levels and decreased the membrane integrity and fertility (P < 0.05). Semen incubated with ARA improved sperm motility (~5%), membrane integrity (~10.5%) and fertility rates (~11%) (P < 0.05). The maximum improvement in post-thaw sperm functionality was observed by adding 0.003 mmol/L ARA. In contrast, sperm quality parameters and fertility were decreased by the CLC addition (P < 0.05). This study showed that ARA could be considered as an additive for semen cryopreservation and could be relevant in the reproductive process and reproductive management of Salmo salar.
Collapse
Affiliation(s)
- Rommy Díaz
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile; Centro de Biotecnología de La Reproducción (CEBIOR-BIOREN), Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - John Quiñones
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Stefania Short
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Pablo Contreras
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Patricio Ulloa-Rodríguez
- Departamento de Ciencias Agrarias, Facultad de Ciencias Agrarias y Forestales, Universidad Católica Del Maule, Curicó, Chile
| | - David Cancino-Baier
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Temuco, Chile
| | - Néstor Sepúlveda
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Iván Valdebenito
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Jorge G Farías
- Centro de Biotecnología de La Reproducción (CEBIOR-BIOREN), Facultad de Medicina, Universidad de La Frontera, Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
6
|
Grandhaye J, Partyka A, Ligocka Z, Dudek A, Niżański W, Jeanpierre E, Estienne A, Froment P. Metformin Improves Quality of Post-Thaw Canine Semen. Animals (Basel) 2020; 10:ani10020287. [PMID: 32059492 PMCID: PMC7070956 DOI: 10.3390/ani10020287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cryopreservation of semen is getting easier, however, fertilizing results after insemination with frozen-thawed semen is still not constant in canine species depending on the breed and could be still improved. In this study, we decided to modulate the mitochondrial activity through the addition of metformin in semen extender to increase germ cells’ quality. Metformin presented the absence of toxicity and an improvement in sperm motility after thawing, as well as an increase in the expression of several molecular markers associated with quality. In addition, the oxidative stress and DNA damage were reduced in semen frozen in the presence of metformin. Overall, these data suggest that metformin added in canine semen extender has beneficial effects on canine semen quality and could be associated with different components such as vitamins, to enhance the antioxidants status. Abstract Sperm cryopreservation is an assisted reproductive technique routinely used in canine species for genetic conservation. However, during cryopreservation, the DNA damages are still elevated, limiting the fertilization rate. The present study was conducted to evaluate whether supplementation of canine semen extender with a molecule limiting the metabolic activities can improve the quality of frozen-thawed canine spermatozoa. We used metformin, known to limit the mitochondrial respiratory and limit the oxidative stress. Before and during the freezing procedure, metformin (50 µM and 500 µM) has been added to the extender. After thawing, sperm exposed to metformin conserved the same viability without alteration in the membrane integrity or acrosome reaction. Interestingly, 50 µM metformin improved the sperm motility in comparison to the control, subsequently increasing mitochondrial activity and NAD+ content. In addition, the oxidative stress level was reduced in sperm treated with metformin improving the sperm quality as measured by a different molecular marker. In conclusion, we have shown that metformin is able to improve the quality of frozen-thawed dog semen when it is used during the cryopreservative procedure.
Collapse
Affiliation(s)
- Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (J.G.); (E.J.); (A.E.)
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, 37380 Nouzilly, France
| | - Agnieszka Partyka
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland; (Z.L.); (A.D.); (W.N.)
- Correspondence: (A.P.); (P.F.); Tel.: +48-7-13-20-53-00 (A.P.); +33-2-47-42-78-24 (P.F.)
| | - Zuzanna Ligocka
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland; (Z.L.); (A.D.); (W.N.)
| | - Agata Dudek
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland; (Z.L.); (A.D.); (W.N.)
| | - Wojciech Niżański
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland; (Z.L.); (A.D.); (W.N.)
| | - Eric Jeanpierre
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (J.G.); (E.J.); (A.E.)
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, 37380 Nouzilly, France
| | - Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (J.G.); (E.J.); (A.E.)
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, 37380 Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (J.G.); (E.J.); (A.E.)
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, 37380 Nouzilly, France
- Correspondence: (A.P.); (P.F.); Tel.: +48-7-13-20-53-00 (A.P.); +33-2-47-42-78-24 (P.F.)
| |
Collapse
|