1
|
Sebold SR, Neuwirth T, Tengattini A, Cubitt R, Gilch I, Mühlbauer S, Schulz M. BNPLA: borated plastic for 3D-printing of thermal and cold neutron shielding. Sci Rep 2024; 14:19348. [PMID: 39164431 PMCID: PMC11336209 DOI: 10.1038/s41598-024-70030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
3D printing technologies such as fused filament fabrication (FFF) offer great opportunities to enable the fabrication of complex geometries without access to a workshop or knowledge of machining. By adding filler materials to the raw filaments used for FFF, the material properties of the plastic can be adapted. With the addition of neutron absorbing particles, filaments can be created that enable 3D printing of neutron shielding with arbitrary geometry. Two materials for FFF are presented with different mixing ratios of hexagonal Boron nitride (h-BN) and Polylactic acid (PLA). BNPLA25 with 25 %wt h-BN and BNPLA35 with 35 %wt h-BN are compared to the commercially available Addbor N25 material. To qualify the applicability of BNPLA25 and BNPLA35 as shielding material for neutron instrumentation, such as neutron imaging, we investigated the overall neutron attenuation, the influence of non-optimized print settings, as well as characterized the incoherent neutron scattering and the microstructure using neutron imaging, and time-of-flight small-angle-neutron-scattering. Finally, the tensile strength of the material was determined in standardized tensile tests. The measured neutron attenuation shows excellent agreement with analytical calculations, thus validating both the material composition and the calculation method. Approximately 6 mm (8 mm) BNPLA35 are needed for 1 × 10 - 3 transmission of a cold (thermal) neutron beam. Lack of extrusion due to suboptimal print settings can be compensated by increased thickness, clearly visible defects can be mitigated by 11-18% increase in thickness. Incoherent scattering is shown to be strongly reduced compared to pure PLA. The tensile strength of the material is shown not to be impacted by the h-BN filler. The good agreement between the measured attenuation and calculation, combined with the adoption of safety factor enables the quick and easy development as well as the performance estimation of shielding components. BNPLA is uniquely suited for 3D printing neutron shielding because of the combination of non-abrasive h-BN particles in standard PLA, which results in a filament that can be printed with almost any off-the-shelf printer and virtually no prior experience in 3D printing. This mitigates the slightly lower attenuation observed as compared to filaments containingB 4 C , which is highly abrasive and requires extensive additive manufacturing experience.
Collapse
Affiliation(s)
- Simon R Sebold
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich (TUM), Lichtenbergstr. 1, 85748, Garching, Germany.
| | - Tobias Neuwirth
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich (TUM), Lichtenbergstr. 1, 85748, Garching, Germany
| | - Alessandro Tengattini
- Univ. Grenoble Alpes, Grenoble INP, CNRS, 3SR, 38000, Grenoble, France
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Robert Cubitt
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Ines Gilch
- Chair of Metal Forming and Casting (utg), Technical University of Munich (TUM), Walther-Meißner-Str. 4, 85748, Garching, Germany
| | - Sebastian Mühlbauer
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich (TUM), Lichtenbergstr. 1, 85748, Garching, Germany
| | - Michael Schulz
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich (TUM), Lichtenbergstr. 1, 85748, Garching, Germany
| |
Collapse
|
2
|
Marco-Jiménez F, Garcia-Dominguez X, García-Valero L, Vicente JS. A 3D-Printed Large Holding Capacity Device for Minimum Volume Cooling Vitrification of Embryos in Prolific Livestock Species. Animals (Basel) 2023; 13:ani13050791. [PMID: 36899646 PMCID: PMC10000242 DOI: 10.3390/ani13050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Although many devices have been developed to reduce sample volume, with an explosion of methods appearing in the literature over the last decade, commercially available devices with simultaneous vitrification of a larger number of embryos are scarce, with the apparent gap for their use in prolific livestock species. In this study, we investigated the effectiveness of a new three-dimensional (3D)-printed device that combines minimum volume cooling vitrification with simultaneous vitrification of a larger number of rabbit embryos. Late morulae/early blastocysts were vitrified with the open Cryoeyelet® device (n = 175; 25 embryos per device), the open Cryotop® device (n = 175; 10 embryos per device), and the traditional closed French mini-straw device (n = 125; 25 embryos per straw) and compared in terms of in vitro development and reproductive performance after transfer to adoptive mothers. Fresh embryos constituted the control group (n = 125). In experiment 1, there was no difference in the development rate to the blastocyst hatching stage between the CryoEyelet® and the other devices. In experiment 2, the CryoEyelet® device showed a higher implantation rate compared with the Cryotop® (6.3% unit of SD, p = 0.87) and French mini-straw® (16.8% unit of SD, p = 1.00) devices. In terms of offspring rate, the CryoEyelet® device was similar to the Cryotop® device but superior to the French straw device. Regarding embryonic and fetal losses, the CryoEyelet® showed lower embryonic losses compared to other vitrification devices. The analysis of bodyweight showed that all devices showed a similar outcomes-a higher birthweight but a lower body weight at puberty than those in the fresh transfer embryos group. In summary, the CryoEyelet® device can be used for the vitrification of many late morulae or early blastocyst stage rabbit embryos per device. Further studies should be performed to evaluate the CryoEyelet® device in other polytocous species for the simultaneous vitrification of a large number of embryos.
Collapse
|
3
|
Zuchowicz N, Liu Y, Monroe WT, Tiersch TR. An automated modular open-technology device to measure and adjust concentration of aquatic sperm samples for cryopreservation. SLAS Technol 2023; 28:43-52. [PMID: 36455857 PMCID: PMC9969519 DOI: 10.1016/j.slast.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Repositories for aquatic germplasm are essential for safeguarding valuable genetic diversity for species relevant to aquaculture, biomedical research, and conservation. Development of aquatic germplasm repositories is impeded by a lack of standardization within laboratories and across the research community. Protocols for cryopreservation are often developed ad hoc and without close attention to variables, such as cell concentration, that strongly affect the success and reproducibility of cryopreservation. The wide dissemination and use of specialized tools and devices as open hardware can improve processing reliability and save costs. The goal of the present work was to develop and prototype a modular and open-technology approach to help to standardize the cell concentration of germplasm samples prior to cryopreservation. The specific objectives were to: 1) design and fabricate prototypes of the automated concentration measurement and adjustment system (CMAS), incorporating custom peristaltic pumps and optical evaluation modules, and 2) evaluate the performance of the CMAS with biological samples. Linear regression models were obtained for estimation of aquatic sperm concentration >108 cells/mL and for algae concentration > (3 × 105) cells/mL. Algae were diluted with extender medium by an automated process, resulting in a dilution precision of ±12.6% and ±6.7% in two trials, attaining means of 89% and 71% of the target cell concentration. The development of the CMAS as open technology can provide opportunities for community-level standardization in cryopreservation of aquatic germplasm and can invite new users, makers, and developers into the open-technology community. This will increase the reach and capabilities of much-needed aquatic germplasm repositories.
Collapse
Affiliation(s)
- Nikolas Zuchowicz
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Yue Liu
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, USA; Department of Biological and Agricultural Engineering, Louisiana State University & Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - W Todd Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University & Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Terrence R Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| |
Collapse
|
4
|
Belgodere JA, Liu Y, Reich EL, Eades J, Tiersch TR, Monroe WT. Development of a Single-Piece Sperm Counting Chamber (SSCC) for Aquatic Species. FISHES 2022; 7:231. [PMID: 36644608 PMCID: PMC9838223 DOI: 10.3390/fishes7050231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Accurate determination of sperm concentration in aquatic species is important for assisted reproduction and cryopreservation, yet is challenging as current counting methods are costly or not suitable for many species. The goal of this work was to develop a simple (single-piece and single-layer photolithography) sperm counting chamber (SSCC) for aquatic species. Goldfish (Carassius auratus) and zebrafish (Danio rerio) sperm were used for evaluation in the device, which was created with soft lithography. Four designs with different geometries were evaluated for counting accuracy. Open-corner and open-midpoint designs were the most accurate with no significant differences (P > 0.05) for most of the target sperm concentrations (0.5-1.0 × 108 cells/mL). The open-corner design was not significantly different from the Makler® counting chamber intended for human sperm cells (P = 0.6) but was significantly different from a hemocytometer (P < 0.001) intended for other cell sizes. Material cost of device production was USD 16 per unit, including photolithography supplies, glass slide and coverslip, and polydimethylsiloxane. The cost can be reduced to USD 2 per unit with repeated wafer casts. This device could be further refined for resin 3-D printing and sharing via open-hardware approaches and modified to best suit species specific applications.
Collapse
Affiliation(s)
- Jorge A. Belgodere
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Yue Liu
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| | - Elizabeth L. Reich
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Jason Eades
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Terrence R. Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| | - William Todd Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
5
|
Tiersch NJ, Paulsen J, Liu Y, Tiersch TR. A 3-D printed vitrification device integrated with French straws. HARDWAREX 2022; 12:e00366. [PMID: 36263160 PMCID: PMC9574774 DOI: 10.1016/j.ohx.2022.e00366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The goal of this work was to develop prototypes of open-hardware vitrification devices for sperm cryopreservation that can be integrated with existing straw platforms. The open-hardware Vitrification Device for French Straws (VD-FS) is low-cost, customizable, 3-D printable, standardized, and allows long-term sample storage and identification. The feasibility was shown for vitrifying and storing samples with multiple configurations. The results can be improved by design alternation and evaluation of various vitrification solutions. This is the first complete open-hardware vitrification device that can be integrated with existing French-straw storage systems, providing a foundation for future community-level modifications and improvements.
Collapse
Affiliation(s)
- Nolan J. Tiersch
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jacqueline Paulsen
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Yue Liu
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| | - Terrence R. Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| |
Collapse
|
6
|
Huene AL, Koch JC, Arregui L, Liu Y, Nicotra ML, Weis VM, Tiersch TR. Cryopreservation of Hydractinia symbiolongicarpus Sperm to Support Community-Based Repository Development for Preservation of Genetic Resources. Animals (Basel) 2022; 12:2537. [PMID: 36230277 PMCID: PMC9559378 DOI: 10.3390/ani12192537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hydractinia symbiolongicarpus is an emerging model organism in which cutting-edge genomic tools and resources are being developed for use in a growing number of research fields. One limitation of this model system is the lack of long-term storage for genetic resources. The goal of this study was to establish a generalizable cryopreservation approach for Hydractinia that would support future repository development for other cnidarian species. Specific objectives were to: (1) characterize basic parameters related to sperm quality; (2) develop a generalizable approach for sperm collection; (3) assess the feasibility of in vitro fertilization (IVF) with sperm after refrigerated storage; (4) assess the feasibility of IVF with sperm cryopreserved with various sperm concentrations; (5) evaluate feasibility of cryopreservation with various freezing conditions, and (6) explore the feasibility of cryopreservation by use of a 3-D printed open-hardware (CryoKit) device. Animal husbandry and sperm collection were facilitated by use of 3-D printed open hardware. Hydractinia sperm at a concentration of 2 × 107 cells/mL stored at 4 °C for 6 d were able to achieve 50% fertilization rate. It appeared that relatively higher sperm concentration (>5 × 107 cells/mL) for cryopreservation could promote fertilization. A fertilization rate of 41−69% was observed using sperm equilibrated with 5, 10, or 15% (v/v) cryoprotectant (dimethyl sulfoxide or methanol) for 20 min, cooled at a rate of 5, 10, or 20 °C/min from 4 °C to −80 °C, at a cell concentration of 108/mL, in 0.25 mL French straws. Samples cryopreserved with the CryoKit produced a fertilization rate of 72−82%. Establishing repository capabilities for the Hydractinia research community will be essential for future development, maintenance, protection, and distribution of genetic resources. More broadly, these generalizable approaches can be used as a model to develop germplasm repositories for other cnidarian species.
Collapse
Affiliation(s)
- Aidan L. Huene
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| | - Jack C. Koch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| | - Lucía Arregui
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| | - Yue Liu
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| | - Matthew L. Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Terrence R. Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA
| |
Collapse
|
7
|
Harmon ER, Liu Y, Shamkhalichenar H, Browning V, Savage M, Tiersch TR, Monroe WT. An Open-Hardware Insemination Device for Small-Bodied Live-Bearing Fishes to Support Development and Use of Germplasm Repositories. Animals (Basel) 2022; 12:961. [PMID: 35454209 PMCID: PMC9032428 DOI: 10.3390/ani12080961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Small-bodied live-bearing fishes attract broad attention because of their importance in biomedical research and critical conservation status in natural habitats. Artificial insemination is an essential process to establish hybrid lines and for the operation of sperm repositories. The existing mouth-pipetting technique for artificial insemination of live-bearing fishes has not been substantially upgraded since the first implementation in the 1950s. The goal of this work was to develop a standardized artificial inseminator device (SAID) to address issues routinely encountered in insemination by mouth-pipetting, including lack of reproducibility among different users, difficulty in training, and large unreportable variation in sample volume and pressure during insemination. Prototypes of the SAID were designed as relatively inexpensive ( 0.99) between the piston position and volume. Pressure generation from eight mouth-pipetting operators and SAID prototypes were assessed by pressure sensors. The pressure control by SAID was superior to that produced by mouth-pipetting, yielding lower pressures (31−483 Pa) and smaller variations (standard deviation <11 Pa). These pressures were sufficient to deliver 1−5 μL of fluid into female reproductive tracts yet low enough to avoid physical injury to fish. Community-level enhancements of the SAID prototype could enable standardized insemination with minimal training and facilitate the participation of research communities in the use of cryopreserved genetic resources.
Collapse
Affiliation(s)
- Elise R. Harmon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (E.R.H.); (Y.L.); (V.B.)
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA; (H.S.); (T.R.T.)
| | - Yue Liu
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (E.R.H.); (Y.L.); (V.B.)
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA; (H.S.); (T.R.T.)
| | - Hamed Shamkhalichenar
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA; (H.S.); (T.R.T.)
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Valentino Browning
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (E.R.H.); (Y.L.); (V.B.)
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA;
| | - Terrence R. Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70820, USA; (H.S.); (T.R.T.)
| | - William Todd Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (E.R.H.); (Y.L.); (V.B.)
| |
Collapse
|