1
|
Liu C, Wang X, Zhou C, Cao X. A real-world disproportionality analysis of cidofovir from the FDA Adverse Event Reporting System (FAERS) database. Expert Opin Drug Saf 2025:1-9. [PMID: 40193180 DOI: 10.1080/14740338.2025.2490271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Cidofovir, an antiviral drug used to treat cytomegalovirus retinitis in AIDS patients. While effective against several viruses, cidofovir's nephrotoxicity and other adverse events (AEs) limit its broader use. This study aims to evaluate the AE profile of cidofovir using data from the FAERS database. RESEARCH DESIGN AND METHODS An analysis of FAERS data from the first quarter of 2004 to the fourth quarter of 2023 was performed. Signal detection was conducted using four algorithms: ROR, PRR, BCPNN, and EBGM. Data were categorized by system organ classes (SOCs) and preferred terms (PTs), and the strength of association between cidofovir and AEs was assessed. RESULTS 1,874 AE reports involving 1,266 patients were identified. 'Renal and urinary disorders,' 'Infections and infestations,' and 'Immune system disorders' were the most frequently reported SOCs, with the highest signal detected for 'Renal and urinary disorders.' Off-label use was the most common PT, highlighting the importance of controlling the indication of medication in clinical practice. CONCLUSION This study identified significant signals related to cidofovir, suggesting that clinicians should carefully monitor patients, especially when using cidofovir for off-label purposes to mitigate potential risk outcomes. Further research is needed to optimize the safe and effective use of cidofovir.
Collapse
Affiliation(s)
- Chengzhi Liu
- Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xinyu Wang
- Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chuanlie Zhou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xusheng Cao
- Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Bai B, Srinivas Kandadai A, Hena M, Belovodskiy A, Shen J, Houghton M, Nieman JA. Discovery of Novel Pyrido[2,3-b]Pyrazine Human Cytomegalovirus Polymerase Inhibitors with Broad Spectrum Antiherpetic Activity and Reduced hERG Inhibition. ChemMedChem 2025; 20:e202400629. [PMID: 39656778 PMCID: PMC11911297 DOI: 10.1002/cmdc.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The development of non-nucleoside inhibitors targeting human cytomegalovirus (HCMV) polymerase presents a promising approach for enhancing therapeutic treatment for patients with sustained HCMV viremia. A series of non-nucleoside HCMV DNA polymerase inhibitors with various substitution groups at 2-postition of the novel pyrido[2,3-b]pyrazine core was synthesized and investigated. The study focused on optimizing HCMV polymerase inhibition while minimizing off-target inhibition of human ether-à-go-go (hERG) ion channel. Several compounds exhibited strong antiviral activity against HCMV (typical EC50<1 μM), with favorable cytotoxicity profiles. A potent lead compound, 27, with an EC50 of 0.33 μM and improved aqueous solubility was identified. Further antiviral assessments revealed the potential of select compounds to target a broad spectrum of herpesviruses, including herpes simplex virus (HSV-1, HSV-2) and Epstein-Barr virus (EBV).
Collapse
Affiliation(s)
- Bing Bai
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| | - Appan Srinivas Kandadai
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| | - Mostofa Hena
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| | - Alexandr Belovodskiy
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| | - John Shen
- ProFoldin10 Technology Drive, Suite 40HudsonMA 01749–2791USA
| | - Michael Houghton
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| | - James A. Nieman
- Li Ka Shing Applied Virology InstituteDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmonton, AlbertaT6G 2E1Canada
| |
Collapse
|
3
|
Grgic I, Gorenec L. Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review. Trop Med Infect Dis 2024; 9:49. [PMID: 38393138 PMCID: PMC10892457 DOI: 10.3390/tropicalmed9020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a pathogen with high prevalence in the general population that is responsible for high morbidity and mortality in immunocompromised individuals and newborns, while remaining mainly asymptomatic in healthy individuals. The HCMV genome is 236,000 nucleotides long and encodes approximately 200 genes in more than 170 open reading frames, with the highest rate of genetic polymorphisms occurring in the envelope glycoproteins. HCMV infection is treated with antiviral drugs such as ganciclovir, valganciclovir, cidofovir, foscarnet, letermovir and maribavir targeting viral enzymes, DNA polymerase, kinase and the terminase complex. One of the obstacles to successful therapy is the emergence of drug resistance, which can be tested phenotypically or by genotyping using Sanger sequencing, which is a widely available but less sensitive method, or next-generation sequencing performed in samples with a lower viral load to detect minority variants, those representing approximately 1% of the population. The prevalence of drug resistance depends on the population tested, as well as the drug, and ranges from no mutations detected to up to almost 50%. A high prevalence of resistance emphasizes the importance of testing the patient whenever resistance is suspected, which requires the development of more sensitive and rapid tests while also highlighting the need for alternative therapeutic targets, strategies and the development of an effective vaccine.
Collapse
Affiliation(s)
- Ivana Grgic
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Hume J, Sweeney EL, Lowry K, Fraser C, Clark JE, Whiley DM, Irwin AD. Cytomegalovirus in children undergoing haematopoietic stem cell transplantation: a diagnostic and therapeutic approach to antiviral resistance. Front Pediatr 2023; 11:1180392. [PMID: 37325366 PMCID: PMC10267881 DOI: 10.3389/fped.2023.1180392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus which causes a mild illness in healthy individuals. In immunocompromised individuals, such as children receiving haematopoietic stem cell transplantation, CMV can reactivate, causing serious disease and increasing the risk of death. CMV can be effectively treated with antiviral drugs, but antiviral resistance is an increasingly common complication. Available therapies are associated with adverse effects such as bone marrow suppression and renal impairment, making the choice of appropriate treatment challenging. New agents are emerging and require evaluation in children to establish their role. This review will discuss established and emerging diagnostic tools and treatment options for CMV, including antiviral resistant CMV, in children undergoing haematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Jocelyn Hume
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Emma L. Sweeney
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kym Lowry
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Fraser
- Blood and Bone Marrow Transplant Program, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - Julia E. Clark
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - David M. Whiley
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Adam D. Irwin
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Srinivas Kandadai A, Bai B, Rahim M, Lin F, Gu Z, Qi X, Zhang X, Dong H, Chen Y, Shen J, Nieman JA. Inhibition of the hERG potassium ion channel by different non-nucleoside human cytomegalovirus polymerase antiviral inhibitor series and the exploration of variations on a pyrroloquinoline core to reduce cardiotoxicity potential. Bioorg Med Chem 2023; 85:117276. [PMID: 37037115 DOI: 10.1016/j.bmc.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Many non-nucleoside human cytomegalovirus (HCMV) inhibitors have been reported in patent and scientific literature, however, none have reached commercialization despite the urgent need for new HCMV treatments. Herein we report select compounds from different templates that all had low micromolar human ether-à-go-go (hERG) ion channel IC50 values. We also describe a series of pyrroloquinoline derivatives that were designed and synthesized to understand the effect of various substitution on human cytomegalovirus (HCMV) polymerase activity, antiviral activity, and hERG inhibition. These results demonstrated that hERG inhibition can be significantly altered based on the substitution on this template. An HCMV inhibitor with low hERG inhibition and reduced cytotoxicity is also described. The results suggest substitution can be fine tuned for the non-nucleoside polymerase inhibitors to reduce hERG inhibition and maintain HCMV antiviral potency.
Collapse
Affiliation(s)
- Appan Srinivas Kandadai
- Li Ka Shing Applied Virology Institute and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Bing Bai
- Li Ka Shing Applied Virology Institute and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Mohammad Rahim
- Rane Pharmaceuticals, Inc., Edmonton, Alberta T6E 5V2, Canada
| | - Fusen Lin
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Zhengxian Gu
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Xinyi Qi
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Xuecheng Zhang
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Haiheng Dong
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Ying Chen
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - John Shen
- ProFoldin, 10 Technology Drive, Suite 40, Hudson, MA 01749-2791, USA
| | - James A Nieman
- Li Ka Shing Applied Virology Institute and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
6
|
Demin MV, Tikhomirov DS, Biderman BV, Drokov MY, Sudarikov AB, Tupoleva TA, Filatov FP. [Mutations in the UL97 gene of cytomegalovirus ( Herpesvirales: Herpesviridae: Cytomegalovirus: Human betaherpesvirus 5) associated with ganciclovir resistance in recipients of allogeneic hematopoietic stem cells]. Vopr Virusol 2022; 67:37-47. [PMID: 35293187 DOI: 10.36233/0507-4088-90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Infection caused by cytomegalovirus (CMV) is a serious problem for patients with weakened immunity, including patients with hematopoietic depression. The cases of complications associated with cytomegalovirus require antiviral therapy. However, during the natural mutation process, especially with prolonged use of drugs in suboptimal doses, CMV strains resistant to the action of antiviral drugs (such as ganciclovir, valganciclovir) may occur. Hypothetically, the emergence of resistance in the virus may cause a more aggressive course of infection, the ineffectiveness of antiviral therapy and, as a result, an increase in the number of deaths. In this regard, timely detection of mutations that can potentially lead to the resistance of the virus to antiviral drugs during hematopoietic stem cell transplantation (HSCT), as well as during organ and tissue transplantation, may be important when making a therapeutic decision. We describe three clinical cases for which the dynamics of the appearance of a mutant strain of CMV by the UL97 gene, which correlates with the viral load and clinical picture, is analyzed.The aim of the study was to determine the timing of the occurrence of mutations in CMV phosphotransferase UL97 gene associated with resistance to antiviral drugs in patients with hemoblastoses after allogeneic hematopoietic stem cell (allo-HSCs) transplantation. MATERIAL AND METHODS The study included 48 samples of CMV DNA isolated from the peripheral blood of three allo-HSCs recipients with CMV infection who were treated in the clinics of the FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia with oncohematological diseases during 2015-2017. Patients received conditional codes (PR, PD, and FS). Mutations associated with antiviral therapy (AVT) resistance were identified in all patients. Sanger sequencing was used for mutation detection. The obtained DNA sequences were analyzed using Nucleotide BLAST and Genome compiler software. Mutations were searched in MRA mutation resistance analyzer software. The nucleotide sequences were compared with the UL97 reference sequence of the Merlin CMV strain using this software environment. RESULTS AND DISCUSSION For all patients in whom the virus strains containing C592G (PR), C607F (PD) and C603W (FS) mutations were detected, the timing of the mutation occurrence was determined at days 187, 124 and 1184, respectively. The emergence of mutations with a high resistance factor was shown to be accompanied by an increase in viral load (VL), the appearance of a clinical picture characteristic of CMV infection and a lack of an adequate response to therapy with ganciclovir and its derivatives. CONCLUSION Using these results, it is proposed to develop the test system based on random polymerase chain reaction (rPCR) to detect mutations in the most frequently encountered codons: M460I/V, C592G, A591V, A594T/V, L595F/S, C603W. Given that the data on the prevalence of these mutations were obtained from foreign sources, it is advisable to conduct similar studies on the frequency of mutations in the UL97 gene among the population of the Russian Federation in order to improve the quality and accuracy of test systems.
Collapse
Affiliation(s)
- M V Demin
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - D S Tikhomirov
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - B V Biderman
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - M Yu Drokov
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - A B Sudarikov
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - T A Tupoleva
- FSBI «National Medical Research Center for Hematology» of the Ministry of Health of Russia
| | - F P Filatov
- FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»; FSBI «National Research Centre for Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| |
Collapse
|
7
|
Park KR, Kim YE, Shamim A, Gong S, Choi SH, Kim KK, Kim YJ, Ahn JH. Analysis of Novel Drug-Resistant Human Cytomegalovirus DNA Polymerase Mutations Reveals the Role of a DNA-Binding Loop in Phosphonoformic Acid Resistance. Front Microbiol 2022; 13:771978. [PMID: 35185843 PMCID: PMC8851065 DOI: 10.3389/fmicb.2022.771978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
The appearance of drug-resistant mutations in UL54 DNA polymerase and UL97 kinase genes is problematic for the treatment of human cytomegalovirus (HCMV) diseases. During treatment of HCMV infection in a pediatric hematopoietic cell transplant recipient, H600L and T700A mutations and E576G mutation were independently found in the UL54 gene. Foscarnet (FOS; phosphonoformic acid) resistance by T700A mutation is reported. Here, we investigated the role of novel mutations in drug resistance by producing recombinant viruses and a model polymerase structure. The H600L mutant virus showed an increase in resistance to ganciclovir (GCV) by 11-fold and to FOS and cidofovir (CDV) by 5-fold, compared to the wild type, while the E756G mutant virus showed an increase in resistance to FOS by 9-fold and modestly to CDV by 2-fold. With the FOS-resistant T700A mutation, only H600L produced increased FOS resistance up to 37-fold, indicating an additive effect of these mutations on FOS resistance. To gain insight into drug resistance mechanisms, a model structure for UL54 polymerase was constructed using the yeast DNA polymerase as a template. In this model, HCMV DNA polymerase contains a long palm loop domain of which H600 and T700 are located on each end and T700 interacts with the FOS binding pocket. Our results demonstrate that H600L and E756G mutations in UL54 polymerase are novel drug-resistant mutations and that the acquisition of both H600L and T700A mutations in the DNA-binding loop confers increased resistance to FOS treatment, providing novel insights for the mechanism acquiring foscarnet resistance.
Collapse
Affiliation(s)
- Kye Ryeong Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Young-Eui Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Amen Shamim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Department of Computer Science, University of Agriculture, Faisalabad, Pakistan
| | - Shuang Gong
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Soo-Han Choi
- Department of Pediatrics, Pusan National University Hospital, Busan, South Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, South Korea
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
8
|
Cytomegalovirus and other herpesviruses after hematopoietic cell and solid organ transplantation: From antiviral drugs to virus-specific T cells. Transpl Immunol 2022; 71:101539. [PMID: 35051589 DOI: 10.1016/j.trim.2022.101539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Herpesviruses can either cause primary infection or may get reactivated after both hematopoietic cell and solid organ transplantations. In general, viral infections increase post-transplant morbidity and mortality. Prophylactic, preemptive, or therapeutically administered antiviral drugs may be associated with serious side effects and may induce viral resistance. Virus-specific T cells represent a valuable addition to antiviral treatment, with high rates of response and minimal side effects. Even low numbers of virus-specific T cells manufactured by direct selection methods can reconstitute virus-specific immunity after transplantation and control viral replication. Virus-specific T cells belong to the advanced therapy medicinal products, and their production is regulated by appropriate legislation; also, strict safety regulations are required to minimize their side effects.
Collapse
|
9
|
Lodding IP, Jørgensen M, Bennedbæk M, Kirkby N, Naegele K, Gustafsson F, Perch M, Rasmussen A, Sengeløv H, Sørensen SS, Hirsch HH, Lundgren JD. Development and Dynamics of Cytomegalovirus UL97 Ganciclovir Resistance Mutations in Transplant Recipients Detected by Next-Generation Sequencing. Open Forum Infect Dis 2021; 8:ofab462. [PMID: 34660835 PMCID: PMC8514173 DOI: 10.1093/ofid/ofab462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background (Val)ganciclovir resistance mutations in CMV UL97 (UL97-GCV-R) complicate anti-CMV therapy in recipients of solid organ and hematopoietic stem cell transplants, but comprehensive data on prevalence, emergence, and outcome are scarce. Methods Using next-generation sequencing (NGS; Illumina MiSeq platform), we analyzed UL97-GCV-R in patients with available plasma samples and refractory CMV replication/DNAemia (n = 87) containing viral loads ≥910 IU/mL. Twenty-one patients with CMV DNAemia resolving under antiviral therapy were analyzed as controls. Detected mutations were considered induced and of potential clinical significance if they increased by ≥10% compared with the first detected frequency or if they had a maximum frequency ≥25%. Results Nineteen of 87 (21.8%) with refractory CMV replication had ≥1 UL97-GCV-R detected by NGS, in comparison to 0/21 of the controls (P = .02). One-third of the recipients had 2 or more induced UL97-GCV-R mutations. The most frequently induced mutations affected codons 595 (42% [8/19]), 594 (32% [6/19]), and 603 (32% [6/19]). C592G was present in all episodes of both cases and controls at frequencies <15%, but never induced. UL97-GCV-R tended to be more frequent in donor/recipient CMV immunoglobulin G mismatch or following failure to complete primary prophylaxis, and many developed invasive CMV disease. Conclusions UL97-GCV-R is common among transplant patients with refractory CMV replication. Early testing by NGS allows for identification of major mutations at codons 595, 594, and 603 and excludes a major role of C592G in ganciclovir resistance. Large prospective studies on UL97-GCV-R are warranted.
Collapse
Affiliation(s)
- Isabelle P Lodding
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Copenhagen, Denmark.,Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - Mette Jørgensen
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Copenhagen, Denmark
| | - Marc Bennedbæk
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Copenhagen, Denmark
| | - Nikolai Kirkby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Klaudia Naegele
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Abdominal Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - Søren S Sørensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Nephrology, Rigshospitalet, Copenhagen, Denmark
| | - Hans H Hirsch
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Jens D Lundgren
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Chiereghin A, Belotti T, Borgatti EC, Fraccascia N, Piccirilli G, Fois M, Borghi M, Turello G, Gabrielli L, Masetti R, Prete A, Fanti S, Lazzarotto T. Off-Label Use of Letermovir as Preemptive Anti-Cytomegalovirus Therapy in a Pediatric Allogeneic Peripheral Blood Stem Cell Transplant. Infect Drug Resist 2021; 14:1185-1190. [PMID: 33790588 PMCID: PMC8001039 DOI: 10.2147/idr.s296927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the effectiveness of the currently available antiviral drugs in treating cytomegalovirus (CMV) infection, high rates of adverse effects are associated with their use. Moreover, a problem of increasing importance is the emergence of drug-resistant CMV infection. Here, we describe the first case of off-label use of letermovir (LMV) as preemptive antiviral therapy, in a pediatric allogeneic peripheral blood stem cell transplant recipient with ganciclovir-resistant CMV infection who was intolerant to foscarnet and unable to achieve viral clearance after seven doses of cidofovir. After the administration of LMV, a gradual reduction in viral load was observed and within 6 weeks of LMV treatment, after more than 6 months of positive CMV-DNAemia, the patient cleared the infection. No adverse effects associated with LMV were observed during treatment. In this pediatric study case, the off-label use of LMV for the treatment of CMV infection has been well tolerated and proved to be effective in leading to the suppression of viral replication.
Collapse
Affiliation(s)
- Angela Chiereghin
- Section of Microbiology, Department of Specialized, Experimental, and Diagnostic Medicine, University of Bologna, Bologna, Italy.,Department of Public Health, Local Health Authority of Bologna, Bologna, Italy
| | - Tamara Belotti
- Pediatric Oncology and Haematology Unit "Lalla Seragnoli", Department of Pediatrics, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Eva Caterina Borgatti
- Microbiology Unit, Department of Specialized, Experimental, and Diagnostic Medicine, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Nicola Fraccascia
- Nuclear Medicine Unit, Department of Specialized, Experimental, and Diagnostic Medicine, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Giulia Piccirilli
- Microbiology Unit, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Maura Fois
- Pediatric Oncology and Haematology Unit "Lalla Seragnoli", Department of Pediatrics, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Michele Borghi
- Microbiology Unit, Department of Specialized, Experimental, and Diagnostic Medicine, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Gabriele Turello
- Microbiology Unit, Department of Specialized, Experimental, and Diagnostic Medicine, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Liliana Gabrielli
- Microbiology Unit, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Haematology Unit "Lalla Seragnoli", Department of Pediatrics, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Haematology Unit "Lalla Seragnoli", Department of Pediatrics, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine Unit, Department of Specialized, Experimental, and Diagnostic Medicine, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, Department of Specialized, Experimental, and Diagnostic Medicine, IRCCS St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Resistance to a Nucleoside Analog Antiviral Drug from More Rapid Extension of Drug-Containing Primers. mBio 2021; 12:mBio.03492-20. [PMID: 33563814 PMCID: PMC7885103 DOI: 10.1128/mbio.03492-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nucleoside analogs are mainstays of antiviral therapy. Although resistance to these drugs hinders their use, understanding resistance can illuminate mechanisms of the drugs and their targets. Certain nucleoside analogs, such as ganciclovir (GCV), a leading therapy for human cytomegalovirus (HCMV), contain the equivalent of a 3'-hydoxyl moiety, yet their triphosphates can terminate genome synthesis (nonobligate chain termination). For ganciclovir, chain termination is delayed until incorporation of the subsequent nucleotide, after which viral polymerase idling (repeated addition and removal of incorporated nucleotides) prevents extension. Here, we investigated how an alanine-to-glycine substitution at residue 987 (A987G), in conserved motif V in the thumb subdomain of the catalytic subunit (Pol) of HCMV DNA polymerase, affects polymerase function to overcome delayed chain termination and confer ganciclovir resistance. Steady-state enzyme kinetic studies revealed no effects of this substitution on incorporation of ganciclovir-triphosphate into DNA that could explain resistance. We also found no effects of the substitution on Pol's exonuclease activity, and the mutant enzyme still exhibited idling after incorporation of GCV and the subsequent nucleotide. However, despite extending normal DNA primers similarly to wild-type enzyme, A987G Pol more rapidly extended ganciclovir-containing DNA primers, thereby overcoming chain termination. The mutant Pol also more rapidly extended RNA primers, a previously unreported activity for HCMV Pol. Structural analysis of related Pols bound to primer-templates provides a rationale for these results. These studies uncover a new drug resistance mechanism, potentially applicable to other nonobligate chain-terminating nucleoside analogs, and shed light on polymerase functions.IMPORTANCE While resistance to antiviral drugs can hinder their clinical use, understanding resistance mechanisms can illuminate how these drugs and their targets act. We studied a substitution in the human cytomegalovirus (HCMV) DNA polymerase that confers resistance to a leading anti-HCMV drug, ganciclovir. Ganciclovir is a nucleoside analog that terminates DNA replication after its triphosphate and the subsequent nucleotide are incorporated. We found that the substitution studied here results in an increased rate of extension of drug-containing DNA primers, thereby overcoming termination, which is a new mechanism of drug resistance. The substitution also induces more rapid extension of RNA primers, a function that had not previously been reported for HCMV polymerase. Thus, these results provide a novel resistance mechanism with potential implications for related nucleoside analogs that act against established and emerging viruses, and shed light on DNA polymerase functions.
Collapse
|
12
|
Papadakis G, Gerasi M, Snoeck R, Marakos P, Andrei G, Lougiakis N, Pouli N. Synthesis of New Imidazopyridine Nucleoside Derivatives Designed as Maribavir Analogues. Molecules 2020; 25:molecules25194531. [PMID: 33022923 PMCID: PMC7582934 DOI: 10.3390/molecules25194531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/26/2023] Open
Abstract
The strong inhibition of Human Cytomegalovirus (HCMV) replication by benzimidazole nucleosides, like Triciribine and Maribavir, has prompted us to expand the structure-activity relationships of the benzimidazole series, using as a central core the imidazo[4,5-b]pyridine scaffold. We have thus synthesized a number of novel amino substituted imidazopyridine nucleoside derivatives, which can be considered as 4-(or 7)-aza-d-isosters of Maribavir and have evaluated their potential antiviral activity. The target compounds were synthesized upon glycosylation of suitably substituted 2-aminoimidazopyridines, which were prepared in six steps starting from 2-amino-6-chloropyridine. Even if the new compounds possessed only a slight structural modification when compared to the original drug, they were not endowed with interesting antiviral activity. Even so, three derivatives showed promising cytotoxic potential.
Collapse
Affiliation(s)
- Georgios Papadakis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece; (G.P.); (M.G.); (P.M.); (N.P.)
| | - Maria Gerasi
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece; (G.P.); (M.G.); (P.M.); (N.P.)
| | - Robert Snoeck
- Laboratory of Virology & Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (R.S.); (G.A.)
| | - Panagiotis Marakos
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece; (G.P.); (M.G.); (P.M.); (N.P.)
| | - Graciela Andrei
- Laboratory of Virology & Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (R.S.); (G.A.)
| | - Nikolaos Lougiakis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece; (G.P.); (M.G.); (P.M.); (N.P.)
- Correspondence:
| | - Nicole Pouli
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece; (G.P.); (M.G.); (P.M.); (N.P.)
| |
Collapse
|
13
|
Stojković D, Kostić M, Smiljković M, Aleksić M, Vasiljević P, Nikolić M, Soković M. Linking Antimicrobial Potential of Natural Products Derived from Aquatic Organisms and Microbes Involved in Alzheimer's Disease - A Review. Curr Med Chem 2020. [PMID: 29521212 DOI: 10.2174/0929867325666180309103645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The following review is oriented towards microbes linked to Alzheimer's disease (AD) and antimicrobial effect of compounds and extracts derived from aquatic organisms against specific bacteria, fungi and viruses which were found previously in patients suffering from AD. Major group of microbes linked to AD include bacteria: Chlamydia pneumoniae, Helicobacter pylori, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, Actinomyces naeslundii, spirochete group; fungi: Candida sp., Cryptococcus sp., Saccharomyces sp., Malassezia sp., Botrytis sp., and viruses: herpes simplex virus type 1 (HSV-1), Human cytomegalovirus (CMV), hepatitis C virus (HCV). In the light of that fact, this review is the first to link antimicrobial potential of aquatic organisms against these sorts of microbes. This literature review might serve as a starting platform to develop novel supportive therapy for patients suffering from AD and to possibly prevent escalation of the disease in patients already having high-risk factors for AD occurrence.
Collapse
Affiliation(s)
- Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Kostić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Smiljković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Milena Aleksić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
| | - Perica Vasiljević
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
| | - Miloš Nikolić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
14
|
Resistant or refractory cytomegalovirus infections after hematopoietic cell transplantation: diagnosis and management. Curr Opin Infect Dis 2020; 32:565-574. [PMID: 31567572 DOI: 10.1097/qco.0000000000000607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Refractory or resistant cytomegalovirus (CMV) infections are challenging complications after hematopoietic cell transplantation (HCT). Most refractory or resistant CMV infections are associated with poor outcomes and increased mortality. Prompt recognition of resistant or refractory CMV infections, understanding the resistance pathways, and the treatment options in HCT recipients are imperative. RECENT FINDINGS New definitions for refractory and resistant CMV infections in HCT recipients have been introduced for future clinical trials. Interestingly, refractory CMV infections are more commonly encountered in HCT recipients when compared with resistant CMV infections. CMV terminase complex mutations in UL56, UL89, and UL51 could be associated with letermovir resistance; specific mutations in UL56 are the most commonly encountered in clinical practice. Finally, brincidofovir, maribavir, letermovir, and CMV-specific cytotoxic T-cell therapy expanded our treatment options for refractory or resistant CMV infections. SUMMARY Many advances have been made to optimize future clinical trials for management of refractory or resistant CMV infections, and to better understand new resistance mechanisms to novel drugs. New drugs or strategies with limited toxicities are needed to improve outcomes of difficult to treat CMV infections in HCT recipients.
Collapse
|
15
|
Piccirilli G, Chiereghin A, Maritati M, Turello G, Felici S, La Corte R, Gabrielli L, Contini C, Lazzarotto T. Multidrug-resistant cytomegalovirus infection in a patient with granulomatosis with polyangiitis during immunosuppressive treatment. Antivir Ther 2020; 25:111-114. [PMID: 32297594 DOI: 10.3851/imp3352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Cytomegalovirus (CMV) infection is a major complication in immunocompromised patients, including those with autoimmune diseases. Here, we describe the first case of granulomatosis with polyangiitis treated with steroids and cyclophosphamide, complicated by a multidrug-resistant (MDR) CMV infection in presence of weak antiviral cellular immunity. Since reports regarding CMV infection in rheumatological patients are rarely described and no guidelines on its management exist, the described case contributes to identify potential strategies to predict the risk of CMV disease and developing of MDR-CMV in these patients, through virological and immunological surveillance.
Collapse
Affiliation(s)
- Giulia Piccirilli
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Angela Chiereghin
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Martina Maritati
- Department of Medical Sciences, Section of Infectious Diseases and Dermatology, University of Ferrara, Ferrara, Italy
| | - Gabriele Turello
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Silvia Felici
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Renato La Corte
- Department of Medical Sciences, Section of Hematology and Rheumatology, University of Ferrara, Ferrara, Italy
| | - Liliana Gabrielli
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Carlo Contini
- Department of Medical Sciences, Section of Infectious Diseases and Dermatology, University of Ferrara, Ferrara, Italy
| | - Tiziana Lazzarotto
- Department of Specialized, Experimental and Diagnostic Medicine, Microbiology Unit, Laboratory of Virology, St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Becker T, Le-Trilling VTK, Trilling M. Cellular Cullin RING Ubiquitin Ligases: Druggable Host Dependency Factors of Cytomegaloviruses. Int J Mol Sci 2019; 20:E1636. [PMID: 30986950 PMCID: PMC6479302 DOI: 10.3390/ijms20071636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that frequently causes morbidity and mortality in individuals with insufficient immunity, such as transplant recipients, AIDS patients, and congenitally infected newborns. Several antiviral drugs are approved to treat HCMV infections. However, resistant HCMV mutants can arise in patients receiving long-term therapy. Additionally, side effects and the risk to cause birth defects limit the use of currently approved antivirals against HCMV. Therefore, the identification of new drug targets is of clinical relevance. Recent work identified DNA-damage binding protein 1 (DDB1) and the family of the cellular cullin (Cul) RING ubiquitin (Ub) ligases (CRLs) as host-derived factors that are relevant for the replication of human and mouse cytomegaloviruses. The first-in-class CRL inhibitory compound Pevonedistat (also called MLN4924) is currently under investigation as an anti-tumor drug in several clinical trials. Cytomegaloviruses exploit CRLs to regulate the abundance of viral proteins, and to induce the proteasomal degradation of host restriction factors involved in innate and intrinsic immunity. Accordingly, pharmacological blockade of CRL activity diminishes viral replication in cell culture. In this review, we summarize the current knowledge concerning the relevance of DDB1 and CRLs during cytomegalovirus replication and discuss chances and drawbacks of CRL inhibitory drugs as potential antiviral treatment against HCMV.
Collapse
Affiliation(s)
- Tanja Becker
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
17
|
Koval CE. Prevention and Treatment of Cytomegalovirus Infections in Solid Organ Transplant Recipients. Infect Dis Clin North Am 2018; 32:581-597. [PMID: 30146024 DOI: 10.1016/j.idc.2018.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite advances in prevention and treatment, cytomegalovirus (CMV) infection and disease remain an expected problem in solid organ transplant recipients. Because of the effect of immunosuppressing medications, CMV primary, secondary, and reactivated infection requires antiviral medications to prevent serious direct and indirect effects of the virus. Side effects and drug resistance, however, often limit the capacity of traditional antiviral therapies. This article updates the clinician on current and promising approaches to the management and control of CMV in the solid organ transplant recipient.
Collapse
Affiliation(s)
- Christine E Koval
- Department of Infectious Diseases, Cleveland Clinic Foundation, 9500 Euclid Avenue, Box G21, Cleveland, OH 44195, USA.
| |
Collapse
|
18
|
Large-Scale Screening of HCMV-Seropositive Blood Donors Indicates that HCMV Effectively Escapes from Antibodies by Cell-Associated Spread. Viruses 2018; 10:v10090500. [PMID: 30223489 PMCID: PMC6163834 DOI: 10.3390/v10090500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins are only moderately effective for the treatment of human cytomegalovirus (HCMV) infections, possibly due to ineffectiveness against cell-associated virus spread. To overcome this limitation, we aimed to identify individuals with exceptional antibodies in their plasma that can efficiently block the cell-associated spread of HCMV. A Gaussia luciferase-secreting mutant of the cell-associated HCMV strain Merlin was generated, and luciferase activity evaluated as a readout for the extent of cell-associated focal spread. This reporter virus-based assay was then applied to screen plasma samples from 8400 HCMV-seropositive individuals for their inhibitory effect, including direct-acting antiviral drugs as positive controls. None of the plasmas reduced virus spread to the level of these controls. Even the top-scoring samples that partially reduced luciferase activity in the screening assay failed to inhibit focal growth when reevaluated with a more accurate, immunofluorescence-based assay. Selected sera with high neutralizing capacity against free viruses were analyzed separately, and none of them prevented the focal spread of three recent clinical HCMV isolates nor reduced the number of particles transmitted, as demonstrated with a fluorescent Merlin mutant. We concluded that donors with cell-to-cell-spread-inhibiting plasma are nonexistent or extremely rare, emphasizing cell-associated spread as a highly efficient immune escape mechanism of HCMV.
Collapse
|
19
|
Silva DDFLD, Cardoso JF, Silva SPD, Arruda LMF, Medeiros RLFD, Moraes MM, Sousa RCM. HCMV UL97 phosphotransferase gene mutations may be associated with antiviral resistance in immunocompromised patients in Belém, PA, Northern Brazil. Rev Soc Bras Med Trop 2018; 51:141-145. [PMID: 29768545 DOI: 10.1590/0037-8682-0345-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Human cytomegalovirus is one of the causes of opportunist infections in immunocompromised patients, and is triggered by factors such as state of viral latency, weakened immune responses, and development of antiviral resistance to ganciclovir, the only drug offered by the public health system in Brazil to treat the infection. The goal of this study was to identify mutations that may be associated with antiviral resistance in immunocompromised patients. METHODS Molecular analysis was performed in 82 blood samples and subjected to genomic DNA extraction by a silica-based method. Three sequences of the HCMV UL97 gene, which encodes a phosphotransferase protein required for activation of ganciclovir, were amplified by polymerase chain reaction. Pyrosequencing methods were applied to one external 2096-bp segment DNA and two internal sequences between nucleotides 1087 to 1828 to detect mutations in this gene. RESULTS Approximately 10% of sequences contained mutations between nucleotides 377 and 594, in conserved regions of the UL97 gene, leading to amino acid changes. Eleven coding mutations were identified, including changes leading to amino acid substitutions, E596K and S604F, which were observed in 100% of samples and are described for the first time in Brazil. In addition, one mutation (A594V) that is associated with ganciclovir resistance was detected in a kidney transplant patient. CONCLUSIONS Further studies to detect mutations associated with HCMV resistance to antiviral drugs are required to demonstrate the need to increase the variety and availability of drugs used to treat viral infections in the public health care system in Brazil.
Collapse
Affiliation(s)
- Dorotéa de Fátima Lobato da Silva
- Programa de Pós-Graduação Stricto Sensu em Patologia Tropical, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brasil.,Laboratório de Virologia e Biologia Molecular, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, Brasil
| | | | | | - Leda Mani França Arruda
- Laboratório de Virologia e Biologia Molecular, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, Brasil
| | | | - Marluce Matos Moraes
- Laboratório de Virologia e Biologia Molecular, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, Brasil
| | - Rita Catarina Medeiros Sousa
- Programa de Pós-Graduação Stricto Sensu em Patologia Tropical, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
20
|
Yamada KH, Majima R, Yamaguchi T, Inoue N. Characterization of phenyl pyrimidine derivatives that inhibit cytomegalovirus immediate-early gene expression. Antivir Chem Chemother 2018; 26:2040206618763193. [PMID: 29546767 PMCID: PMC5890547 DOI: 10.1177/2040206618763193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Previously, we established a reporter cell line for human cytomegalovirus and screened anti-human cytomegalovirus compounds using the cell line. In this study, we characterized one of the identified compounds, 2,4-diamino-6–(4-methoxyphenyl)pyrimidine (coded as 35C10). Methods 50% Effective concentrations (EC50s) and 50% cytotoxic concentrations (CC50s) of 35C10 and its derivatives in human fibroblasts were determined by X-gal staining of the cells infected with human cytomegalovirus Towne strain expressing β-galactosidase. Results EC50 and CC50 of 35C10 were 4.3 µM and >200 µM, respectively. Among several 35C10 derivatives, only one lacking 4-amino group of pyrimidine showed a similar EC50. 35C10 weakly inhibited murine cytomegalovirus, herpes simplex virus type 1, and varicella-zoster virus. A “time of addition” experiment suggested that 35C10 inhibited an early phase of the infection. Although 35C10 did not inhibit viral attachment to the cells nor the delivery of viral DNA to the nuclei, it decreased the number of infected cells expressing immediate-early 1 and 2 (IE1/IE2) proteins. 35C10 also inhibited the activation of a promoter for TRL4 in the reporter cells upon human cytomegalovirus infection, but not in the same reporter cells transfected with a plasmid expressing IE2. Conclusion Our findings suggest that 35C10 is a novel compound that inhibits IE gene expression in human cytomegalovirus-infected cells.
Collapse
Affiliation(s)
- Koh-Hei Yamada
- 1 Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryuichi Majima
- 1 Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Toyofumi Yamaguchi
- 2 Department of Biosciences, Teikyo University of Science and Technology, Tokyo, Japan
| | - Naoki Inoue
- 1 Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
21
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Thymidine kinase and protein kinase in drug-resistant herpesviruses: Heads of a Lernaean Hydra. Drug Resist Updat 2018; 37:1-16. [PMID: 29548479 DOI: 10.1016/j.drup.2018.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herpesviruses thymidine kinase (TK) and protein kinase (PK) allow the activation of nucleoside analogues used in anti-herpesvirus treatments. Mutations emerging in these two genes often lead to emergence of drug-resistant strains responsible for life-threatening diseases in immunocompromised populations. In this review, we analyze the binding of different nucleoside analogues to the TK active site of the three α-herpesviruses [Herpes Simplex Virus 1 and 2 (HSV-1 and HSV-2) and Varicella-Zoster Virus (VZV)] and present the impact of known mutations on the structure of the viral TKs. Furthermore, models of β-herpesviruses [Human cytomegalovirus (HCMV) and human herpesvirus-6 (HHV-6)] PKs allow to link amino acid changes with resistance to ganciclovir and/or maribavir, an investigational chemotherapeutic used in patients with multidrug-resistant HCMV. Finally, we set the basis for the understanding of drug-resistance in γ-herpesviruses [Epstein-Barr virus (EBV) and Kaposi's sarcoma associated herpesvirus (KSHV)] TK and PK through the use of animal surrogate models.
Collapse
Affiliation(s)
- Dimitri Topalis
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Sarah Gillemot
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1043, 3000 Leuven, Belgium.
| |
Collapse
|
22
|
Javid N, Talkhabifard M, Tabarraei A, Moradi A. Human cytomegalovirus UL54 and UL97 mutations for detection of ganciclovir resistance in congenital infection. Future Virol 2017. [DOI: 10.2217/fvl-2017-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim: Ganciclovir (GCV) is used as an antiviral drug for the treatment of human cytomegalovirus infection. The aim of this study was to demonstrate GCV-resistant human cytomegalovirus in congenitally infected neonates. Patients & methods: DNA of CMV positive newborn samples was extracted and UL97 and UL54 genes were amplified by PCR and real-time PCR. Sequencing of UL97 and UL54 genes were performed and analyzed. Results: UL97 GCV resistance mutation C603W was detected in one newborn. D605E was the most common polymorphism in UL97 observed in 7/13 (53.8%) of samples. N685S, A688V, A885T and N898D were four known common UL54 polymorphisms. Conclusion: The rate of GCV resistance in congenital CMV is low. Common polymorphisms in UL97 and UL54 genes are also reported as new mutations.
Collapse
Affiliation(s)
- Naeme Javid
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, IR Iran
| | - Majid Talkhabifard
- Faculty of Medical Advance technology, Department of Molecular Medicine, Golestan University of Medical Science, Gorgan, IR Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, IR Iran
| | - Abdolvahab Moradi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, IR Iran
| |
Collapse
|
23
|
Mirarab A, Mohebbi A, Moradi A, Javid N, Vakili MA, Tabarraei A. Frequent pUL27 Variations in HIV-Infected Patients. Intervirology 2017; 59:262-266. [PMID: 28402975 DOI: 10.1159/000471484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Drug-resistant isolates of human cytomegalovirus (HCMV) have led to the development of new anti-HCMV drugs. Maribavir (MBV) is a novel inhibitor of the HCMV viral kinase. Resistance to MBV is mapped to gene UL27, a viral nuclear protein. In this study, we investigated UL27 polymorphisms in MBV-naive HIV-positive and HCMV congenitally infected clinical samples. METHODS DNA was extracted from 20 CMV-positive HIV (9/20) and congenitally infected (11/20) patients and used for UL27 polymerase chain reaction amplification. Sanger sequencing and multiple sequence alignment of products was performed. RESULTS K90 was the most prevalent polymorphism in both HIV-positive and congenitally infected patients. Polymorphisms Q54, D123, and R107 (10%) were seen in more than one sample. There were significantly more polymorphisms in the HIV-positive samples (p = 0.038). CONCLUSION HCMV pUL27 is highly variable in adult immunocompromised HIV-positive patients.
Collapse
Affiliation(s)
- Azam Mirarab
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | | | | | | | | | | |
Collapse
|
24
|
Campos AB, Ribeiro J, Pinho Vaz C, Campilho F, Branca R, Campos A, Baldaque I, Medeiros R, Boutolleau D, Sousa H. Genotypic resistance of cytomegalovirus to antivirals in hematopoietic stem cell transplant recipients from Portugal: A retrospective study. Antiviral Res 2017; 138:86-92. [DOI: 10.1016/j.antiviral.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/24/2016] [Indexed: 01/22/2023]
|
25
|
Burrer CM, Auburn H, Wang X, Luo J, Abulwerdi FA, Nikolovska-Coleska Z, Chan GC. Mcl-1 small-molecule inhibitors encapsulated into nanoparticles exhibit increased killing efficacy towards HCMV-infected monocytes. Antiviral Res 2016; 138:40-46. [PMID: 27914937 DOI: 10.1016/j.antiviral.2016.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 11/26/2022]
Abstract
Human cytomegalovirus (HCMV) spreads and establishes a persistent infection within a host by stimulating the survival of carrier myeloid cells via the upregulation of Mcl-1, an antiapoptotic member of the Bcl-2 family of proteins. However, the lack of potent Mcl-1-specific inhibitors and a targetable delivery system has limited the ability to exploit Mcl-1 as a therapeutic strategy to eliminate HCMV-infected monocytes. In this study, we found a lead compound from a novel class of Mcl-1 small-molecule inhibitors rapidly induced death of HCMV-infected monocytes. Moreover, encapsulation of Mcl-1 antagonists into myeloid cell-targeting nanoparticles was able to selectively increase the delivery of inhibitors into HCMV-activated monocytes, thereby amplifying their potency. Our study demonstrates the potential use of nanotechnology to target Mcl-1 small-molecule inhibitors to HCMV-infected monocytes.
Collapse
Affiliation(s)
- Christine M Burrer
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Helen Auburn
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xu Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Fardokht A Abulwerdi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States
| | | | - Gary C Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
26
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Distribution and effects of amino acid changes in drug-resistant α and β herpesviruses DNA polymerase. Nucleic Acids Res 2016; 44:9530-9554. [PMID: 27694307 PMCID: PMC5175367 DOI: 10.1093/nar/gkw875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Emergence of drug-resistance to all FDA-approved antiherpesvirus agents is an increasing concern in immunocompromised patients. Herpesvirus DNA polymerase (DNApol) is currently the target of nucleos(t)ide analogue-based therapy. Mutations in DNApol that confer resistance arose in immunocompromised patients infected with herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), and to lesser extent in herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV) and human herpesvirus 6 (HHV-6). In this review, we present distinct drug-resistant mutational profiles of herpesvirus DNApol. The impact of specific DNApol amino acid changes on drug-resistance is discussed. The pattern of genetic variability related to drug-resistance differs among the herpesviruses. Two mutational profiles appeared: one favoring amino acid changes in the Palm and Finger domains of DNApol (in α-herpesviruses HSV-1, HSV-2 and VZV), and another with mutations preferentially in the 3′-5′ exonuclease domain (in β-herpesvirus HCMV and HHV-6). The mutational profile was also related to the class of compound to which drug-resistance emerged.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - S Gillemot
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - G Andrei
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| |
Collapse
|
27
|
Houldcroft CJ, Bryant JM, Depledge DP, Margetts BK, Simmonds J, Nicolaou S, Tutill HJ, Williams R, Worth AJJ, Marks SD, Veys P, Whittaker E, Breuer J. Detection of Low Frequency Multi-Drug Resistance and Novel Putative Maribavir Resistance in Immunocompromised Pediatric Patients with Cytomegalovirus. Front Microbiol 2016; 7:1317. [PMID: 27667983 PMCID: PMC5016526 DOI: 10.3389/fmicb.2016.01317] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1–27 weeks. Changes in consensus sequence and resistance mutations were analyzed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54) and C480F (UL97). In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of 11 subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Infection, Immunity, Inflammation and Physiological Medicine, Institute of Child Health, University College LondonLondon, UK; Division of Infection and Immunity, University College LondonLondon, UK
| | - Josephine M Bryant
- Division of Infection and Immunity, University College London London, UK
| | - Daniel P Depledge
- Division of Infection and Immunity, University College London London, UK
| | - Ben K Margetts
- Infection, Immunity, Inflammation and Physiological Medicine, Institute of Child Health, University College LondonLondon, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College LondonLondon, UK
| | - Jacob Simmonds
- Great Ormond Street Hospital for Children NHS Foundation Trust London, UK
| | - Stephanos Nicolaou
- Division of Infection and Immunity, University College London London, UK
| | - Helena J Tutill
- Division of Infection and Immunity, University College London London, UK
| | - Rachel Williams
- Division of Infection and Immunity, University College London London, UK
| | - Austen J J Worth
- Great Ormond Street Hospital for Children NHS Foundation Trust London, UK
| | - Stephen D Marks
- Infection, Immunity, Inflammation and Physiological Medicine, Institute of Child Health, University College LondonLondon, UK; Great Ormond Street Hospital for Children NHS Foundation TrustLondon, UK
| | - Paul Veys
- Great Ormond Street Hospital for Children NHS Foundation Trust London, UK
| | | | - Judith Breuer
- Infection, Immunity, Inflammation and Physiological Medicine, Institute of Child Health, University College LondonLondon, UK; Division of Infection and Immunity, University College LondonLondon, UK; Great Ormond Street Hospital for Children NHS Foundation TrustLondon, UK
| |
Collapse
|
28
|
Moschovi M, Adamaki M, Vlahopoulos SA. Progress in Treatment of Viral Infections in Children with Acute Lymphoblastic Leukemia. Oncol Rev 2016; 10:300. [PMID: 27471584 PMCID: PMC4943096 DOI: 10.4081/oncol.2016.300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 02/08/2023] Open
Abstract
In children, the most commonly encountered type of leukemia is acute lymphoblastic leukemia (ALL). An important source of morbidity and mortality in ALL are viral infections. Even though allogeneic transplantations, which are often applied also in ALL, carry a recognized risk for viral infections, there are multiple factors that make ALL patients susceptible to viral infections. The presence of those factors has an influence in the type and severity of infections. Currently available treatment options do not guarantee a positive outcome for every case of viral infection in ALL, without significant side effects. Side effects can have very serious consequences for the ALL patients, which include nephrotoxicity. For this reason a number of strategies for personalized intervention have been already clinically tested, and experimental approaches are being developed. Adoptive immunotherapy, which entails administration of ex vivo grown immune cells to a patient, is a promising approach in general, and for transplant recipients in particular. The ex vivo grown cells are aimed to strengthen the immune response to the virus that has been identified in the patients' blood and tissue samples. Even though many patients with weakened immune system can benefit from progress in novel approaches, a viral infection still poses a very significant risk for many patients. Therefore, preventive measures and supportive care are very important for ALL patients.
Collapse
Affiliation(s)
- Maria Moschovi
- Hematology-Oncology Unit, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital , Athens, Greece
| | - Maria Adamaki
- Hematology-Oncology Unit, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital , Athens, Greece
| | - Spiros A Vlahopoulos
- Hematology-Oncology Unit, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital , Athens, Greece
| |
Collapse
|
29
|
Sidell D, Ward JA, Pordal A, Quimby C, Nassar M, Choo DI. Combination therapies using an intratympanic polymer gel delivery system in the guinea pig animal model: A safety study. Int J Pediatr Otorhinolaryngol 2016; 84:132-6. [PMID: 27063768 DOI: 10.1016/j.ijporl.2016.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVES High dose antivirals have been shown to cause hearing loss when applied via the intratympanic route. The aim of this study was to determine if a combination therapy using dexamethasone (DXA) with either Cidofovir (CDV) or Ganciclovir (GCV), in solution or in PLGA-PEG-PLGA (PPP) hydrogel, is innocuous to the inner ear. METHODS Cytomegalovirus (CMV)-free guinea pigs were separated into four principal study groups and treated via intratympanic injection (IT) of CDV/DXA solution, CDV/DXA Hydrogel, GCV/DXA solution and GCV/DXA hydrogel. Hearing thresholds were evaluated with pretreatment ABR and post injection weekly ABRs for a total follow up of 28 days. Temporal bone tissue was harvested and stained with Hematoxylin and Eosin for histologic analysis. RESULTS ABR analysis revealed that GCV/DXA in solution and in hydrogel led to a mild hearing loss at days 7-21 but returned to baseline by day 28 When administered via PPP hydrogel, CDV/DXA demonstrated mild persistent hearing loss at 32kHz at 28 days. An inflammatory response was identified in the cochlear specimen of the CDV/DXA/PPP hydrogel group, in concert with mild hearing loss, at days 21 and 28. CONCLUSION Results of this study support the safe intratympanic use of higher concentrations of antivirals when combined with DXA, both in solution and when applied via PPP hydrogel.
Collapse
Affiliation(s)
- Douglas Sidell
- Division of Pediatric Otolaryngology, Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Jonette A Ward
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Angad Pordal
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carson Quimby
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michel Nassar
- Division of Pediatric Otolaryngology, Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel I Choo
- Division of Pediatric Otolaryngology, Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Ear and Hearing Center, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| |
Collapse
|
30
|
Maffini E, Giaccone L, Festuccia M, Brunello L, Busca A, Bruno B. Treatment of CMV infection after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2016; 9:585-96. [PMID: 27043241 DOI: 10.1080/17474086.2016.1174571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite a remarkable reduction in the past decades, cytomegalovirus (CMV) disease in allogeneic hematopoietic stem cell transplant (HSCT) recipients remains a feared complication, still associated with significant morbidity and mortality. Today, first line treatment of CMV infection/reactivation is still based on dated antiviral compounds Ganciclovir (GCV), Foscarnet (FOS) and Cidofovir (CDF) with their burdensome weight of side effects. Maribavir (MBV), Letermovir (LMV) and Brincidofovir (BDF) are three new promising anti-CMV drugs without myelosuppressive properties or renal toxic effects that are under investigation in randomized phase II and III trials. Adoptive T-cell therapy (ATCT) in CMV infection possesses a strong rationale, demonstrated by several proof of concept studies; its feasibility is currently under investigation by clinical trials. ATCT from third-party and naïve donors could meet the needs of HSCT recipients of seronegative donors and cord blood grafts. In selected patients such as recipients of T-cell depleted grafts, ATCT, based on CMV-specific host T-cells reconstitution kinetics, would be of value in the prophylactic and/or preemptive CMV treatment. Vaccine-immunotherapy has the difficult task to reduce the incidence of CMV reactivation/infection in highly immunocompromised HSCT patients. Newer notions on CMV biology may represent the base to flush out the Troll of transplantation.
Collapse
Affiliation(s)
- Enrico Maffini
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Luisa Giaccone
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Moreno Festuccia
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Lucia Brunello
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Alessandro Busca
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy
| | - Benedetto Bruno
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| |
Collapse
|
31
|
Campos AB, Ribeiro J, Boutolleau D, Sousa H. Human cytomegalovirus antiviral drug resistance in hematopoietic stem cell transplantation: current state of the art. Rev Med Virol 2016; 26:161-82. [DOI: 10.1002/rmv.1873] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/09/2016] [Accepted: 02/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ana Bela Campos
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - David Boutolleau
- Sorbonne Universités; UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Paris France
- INSERM, U1135, CIMI-Paris; Paris France
- AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles Foix; Service de Virologie; Paris France
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
| |
Collapse
|
32
|
Persistent CMV infection after allogeneic hematopoietic stem cell transplantation in a CMV-seronegative donor-to-positive recipient constellation: Development of multidrug resistance in the absence of anti-viral cellular immunity. J Clin Virol 2016; 74:57-60. [DOI: 10.1016/j.jcv.2015.11.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 11/21/2022]
|
33
|
Patients with refractory cytomegalovirus (CMV) infection following allogeneic haematopoietic stem cell transplantation are at high risk for CMV disease and non-relapse mortality. Clin Microbiol Infect 2015; 21:1121.e9-15. [DOI: 10.1016/j.cmi.2015.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/10/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022]
|
34
|
Houldcroft C. Sequencing drug-resistant cytomegalovirus in pediatric patients: toward personalized medicine. Future Virol 2015. [DOI: 10.2217/fvl.15.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|