1
|
Wang J, Yang D, Yu HF, Jin J, Nie Y, Zhang S, Ren W, Ge Z, Zhang Z, Ma X, Dai S, Sui G, Teng CB. Copper is essential for cyclin B1-mediated CDK1 activation. Nat Commun 2025; 16:2288. [PMID: 40055333 PMCID: PMC11889272 DOI: 10.1038/s41467-025-57538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
Cyclin-dependent kinase 1 (CDK1) is the pivotal kinase responsible for initiating cell division. Its activation is dependent on binding to regulatory cyclins, such as CCNB1. Our research demonstrates that copper binding to both CDK1 and CCNB1 is essential for activating CDK1 in cells. Mutations in the copper-binding amino acids of either CDK1 or CCNB1 do not disrupt their interaction but are unable to activate CDK1. We also reveal that CCNB1 facilitates the transfer of copper from ATOX1 to CDK1, consequently activating its kinase function. Disruption of copper transfer through the ATOX1-CCNB1-CDK1 pathway can impede CDK1 activation and halt cell cycle progression. In summary, our findings elucidate a mechanism through which copper promotes CDK1 activation and the G2/M transition in the cell cycle. These results could provide insight into the acquisition of proliferative properties associated with increased copper levels in cancer and offer targets for cancer therapy.
Collapse
Affiliation(s)
- Jiaru Wang
- Laboratory of Cell Biology, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Dian Yang
- Laboratory of Cell Biology, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hai-Fan Yu
- Laboratory of Cell Biology, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jing Jin
- Laboratory of Cell Biology, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yuzhe Nie
- Laboratory of Cell Biology, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Sihua Zhang
- Laboratory of Cell Biology, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Weiwei Ren
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zihan Ge
- Laboratory of Cell Biology, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhuo Zhang
- Laboratory of Cell Biology, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xinghong Ma
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guangchao Sui
- Laboratory of Cell Biology, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Chun-Bo Teng
- Laboratory of Cell Biology, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 PMCID: PMC11918410 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Kuchur O, Pogodaeva S, Shcherbakova A, Tsymbal S. Atox1-cyclin D1 loop activity is critical for survival of tumor cells with inactivated TP53. Biosci Rep 2024; 44:BSR20240389. [PMID: 38813981 PMCID: PMC11166628 DOI: 10.1042/bsr20240389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
The search for relevant molecular targets is one of the main tasks of modern tumor chemotherapy. To successfully achieve this, it is necessary to have the most complete understanding of the functioning of a transcriptional apparatus of the cell, particularly related to proliferation. The p53 protein plays an important role in regulating processes such as apoptosis, repair, and cell division, and the loss of its functionality often accompanies various types of tumors and contributes to the development of chemoresistance. Additionally, the proliferative activity of tumor cells is closely related to the metabolism of transition metals. For example, the metallochaperone Atox1 - a copper transporter protein - acts as a transcription activator for cyclin D1, promoting progression through the G1/S phase of the cell cycle. On the other hand, p53 suppresses cyclin D1 at the transcriptional level, thereby these proteins have divergent effects on cell cycle progression. However, the contribution of the interaction between these proteins to cell survival is poorly understood. This work demonstrates that not only exists a positive feedback loop between Atox1 and cyclin D1 but also that the activity of this loop depends on the status of the TP53 gene. Upon inactivation of TP53 in A549 and HepG2 cell lines, the expression of ATOX1 and CCND1 genes is enhanced, and their suppression in these cells leads to pronounced apoptosis. This fundamental observation may be useful in selecting more precise interventions for combined therapy of p53-negative tumors.
Collapse
Affiliation(s)
- Oleg A. Kuchur
- National Research University ITMO, 197101 St. Petersburg, Russia
| | | | | | | |
Collapse
|
4
|
Chen X, Xiang W, Li L, Xu K. Copper Chaperone Atox1 Protected the Cochlea From Cisplatin by Regulating the Copper Transport Family and Cell Cycle. Int J Toxicol 2024; 43:134-145. [PMID: 37859596 DOI: 10.1177/10915818231206665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Antioxidant 1 copper chaperone (Atox1) may contribute to preventing DDP cochlear damage by regulating copper transport family and cell cycle proteins. A rat model of cochlear damage was developed by placing gelatin sponges treated with DDP in the cochlea. HEI-OC1 cells were treated with 133 μM DDP as a cell model. DDP-induced ototoxicity in rats was confirmed by immunofluorescence (IF) imaging. The damage of DDP to HEI-OC1 cells was assessed by using CCK-8, TUNEL, and flow cytometry. The relationship between Atox1, a member of the copper transport protein family, and the damage to in vivo/vitro models was explored by qRT-PCR, western blot, CCK-8, TUNEL, and flow cytometry. DDP had toxic and other side effects causing cochlear damage and promoted HEI-OC1 cell apoptosis and cell cycle arrest. The over-expression of Atox1 (oe-Atox1) was accomplished by transfecting lentiviral vectors into in vitro/vivo models. We found that oe-Atox1 increased the levels of Atox1, copper transporter 1 (CTR1), and SOD3 in HEI-OC1 cells and decreased the expression levels of ATPase copper transporting α (ATP7A) and ATPase copper transporting β (ATP7B). In addition, the transfection of oe-Atox1 decreased cell apoptosis rate and the number of G2/M stage cells. Similarly, the expression of myosin VI and phalloidin of cochlea cells in vivo decreased. Atox1 ameliorated DDP-induced damage to HEI-OC1 cells or rats' cochlea by regulating the levels of members of the copper transport family.
Collapse
Affiliation(s)
- Xubo Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiren Xiang
- Department of Otolaryngology, Head and Neck Surgery, Jiu Jiang No.1 People's Hospital, Jiujiang, China
| | - Lihua Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
6
|
Guo J, Sun Y, Liu G. The mechanism of copper transporters in ovarian cancer cells and the prospect of cuproptosis. J Inorg Biochem 2023; 247:112324. [PMID: 37481825 DOI: 10.1016/j.jinorgbio.2023.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Copper transporters can not only carry copper (Cu) to maintain the homeostasis of Cu in cells but also transport platinum-based chemotherapy drugs. The effect of copper transporters on chemosensitivity has been demonstrated in a variety of malignancies. In addition, recent studies have reported that copper transporters can act as vectors to induce cuproptosis. Therefore, copper transporters can act on cells through different mechanisms to achieve different purposes. This review mainly describes the current research progress of the intracellular transport mechanism of copper transporters and cuproptosis, and prospects for the application of them in the treatment of ovarian cancer (OC).
Collapse
Affiliation(s)
- Jiahuan Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guoyan Liu
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
7
|
Philpott CC, Protchenko O, Wang Y, Novoa-Aponte L, Leon-Torres A, Grounds S, Tietgens AJ. Iron-tracking strategies: Chaperones capture iron in the cytosolic labile iron pool. Front Mol Biosci 2023; 10:1127690. [PMID: 36818045 PMCID: PMC9932599 DOI: 10.3389/fmolb.2023.1127690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Cells express hundreds of iron-dependent enzymes that rely on the iron cofactors heme, iron-sulfur clusters, and mono-or di-nuclear iron centers for activity. Cells require systems for both the assembly and the distribution of iron cofactors to their cognate enzymes. Proteins involved in the binding and trafficking of iron ions in the cytosol, called cytosolic iron chaperones, have been identified and characterized in mammalian cells. The first identified iron chaperone, poly C-binding protein 1 (PCBP1), has also been studied in mice using genetic models of conditional deletion in tissues specialized for iron handling. Studies of iron trafficking in mouse tissues have necessitated the development of new approaches, which have revealed new roles for PCBP1 in the management of cytosolic iron. These approaches can be applied to investigate use of other nutrient metals in mammals.
Collapse
|
8
|
Tsymbal SA, Refeld AG, Kuchur OA. The p53 Tumor Suppressor and Copper Metabolism: An Unrevealed but Important Link. Mol Biol 2022. [DOI: 10.1134/s0026893322060188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Sudhahar V, Shi Y, Kaplan JH, Ushio-Fukai M, Fukai T. Whole-Transcriptome Sequencing Analyses of Nuclear Antixoxidant-1 in Endothelial Cells: Role in Inflammation and Atherosclerosis. Cells 2022; 11:2919. [PMID: 36139494 PMCID: PMC9496719 DOI: 10.3390/cells11182919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Inflammation, oxidative stress, and copper (Cu) play an important role in cardiovascular disease, including atherosclerosis. We previously reported that cytosolic Cu chaperone antioxidant-1 (Atox1) translocates to the nucleus in response to inflammatory cytokines or exogenous Cu and that Atox1 is localized at the nucleus in the endothelium of inflamed atherosclerotic aorta. However, the roles of nuclear Atox1 and their function are poorly understood. Here we showed that Atox1 deficiency in ApoE-/- mice with a Western diet exhibited a significant reduction of atherosclerotic lesion formation. In vitro, adenovirus-mediated overexpression of nuclear-targeted Atox1 (Ad-Atox1-NLS) in cultured human endothelial cells (ECs) increased monocyte adhesion and reactive oxygen species (ROS) production compared to control cells (Ad-null). To address the underlying mechanisms, we performed genome-wide mapping of Atox1-regulated targets in ECs, using an unbiased systemic approach integrating sequencing data. Combination of ChIP-Seq and RNA-Seq analyses in ECs transfected with Ad-Atox1-NLS or Ad-null identified 1387 differentially expressed genes (DEG). Motif enrichment assay and KEGG pathway enrichment analysis revealed that 248 differentially expressed genes, including inflammatory and angiogenic genes, were regulated by Atox1-NLS, which was then confirmed by real-time qPCR. Among these genes, functional analysis of inflammatory responses identified CD137, CSF1, and IL5RA as new nuclear Atox1-targeted inflammatory genes, while CD137 is also a key regulator of Atox1-NLS-induced ROS production. These findings uncover new nuclear Atox1 downstream targets involved in inflammation and ROS production and provide insights into the nuclear Atox1 as a potential therapeutic target for the treatment of inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30901, USA
| | - Yang Shi
- Department of Population Health Science, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jack H. Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine (Cardiology), Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30901, USA
| |
Collapse
|
10
|
Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res 2022; 20:1339-1353. [PMID: 35604085 DOI: 10.1158/1541-7786.mcr-22-0056] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Physiological roles of copper in metabolic homeostasis have been well established, however, whether and how copper is dysregulated in tumors and contributes to tumorigenesis are not recapitulated. Here, we comprehensively summarize the potential origins of copper accumulation in diseases especially in cancers by dysregulating copper transporter 1 (CTR1) or ATPase copper transporting alpha/beta (ATP7A/B) and further demonstrate the underlying mechanism of copper contributing to tumorigenesis. Specifically, in addition to modulating reactive oxygen species (ROS), angiogenesis, immune response, and metabolic homeostasis, copper recently has drawn more attention by directly binding to oncoproteins such as MEK, ULK, Memo, and PDK1 to activate distinct oncogenic signals and account for tumorigenesis. In the end, we disclose the emerging applications of copper in cancer diagnosis and highlight the promising strategies to target the copper-CTR1 axis for cancer therapies.
Collapse
Affiliation(s)
- Yaqing Su
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Xiaomei Zhang
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaoqiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Jianping Guo
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| |
Collapse
|
11
|
Chen L, Li N, Zhang M, Sun M, Bian J, Yang B, Li Z, Wang J, Li F, Shi X, Wang Y, Yuan F, Zou P, Shan C, Wang J. APEX2-based Proximity Labeling of Atox1 Identifies CRIP2 as a Nuclear Copper-binding Protein that Regulates Autophagy Activation. Angew Chem Int Ed Engl 2021; 60:25346-25355. [PMID: 34550632 DOI: 10.1002/anie.202108961] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Indexed: 01/05/2023]
Abstract
Mammalian cell nuclei contain copper, and cancer cells are known to accumulate aberrantly high copper levels, yet the mechanisms underlying nuclear accumulation and copper's broader functional significance remain poorly understood. Here, by combining APEX2-based proximity labeling focused on the copper chaperone Atox1 with mass spectrometry we identified a previously unrecognized nuclear copper binding protein, Cysteine-rich protein 2 (CRIP2), that interacts with Atox1 in the nucleus. We show that Atox1 transfers copper to CRIP2, which induces a change in CRIP2's secondary structure that ultimately promotes its ubiquitin-mediated proteasomal degradation. Finally, we demonstrate that depletion of CRIP2-as well as copper-induced CRIP2 degradation-elevates ROS levels and activates autophagy in H1299 cells. Thus, our study establishes that CRIP2 as an autophagic suppressor protein and implicates CRIP2-mediated copper metabolism in the activation of autophagy in cancer cells.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Meiqi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Jiaxuan Bian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhengcunxiao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiayu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Feng Yuan
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
12
|
Chen L, Li N, Zhang M, Sun M, Bian J, Yang B, Li Z, Wang J, Li F, Shi X, Wang Y, Yuan F, Zou P, Shan C, Wang J. APEX2‐based Proximity Labeling of Atox1 Identifies CRIP2 as a Nuclear Copper‐binding Protein that Regulates Autophagy Activation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lin Chen
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Meiqi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 China
| | - Jiaxuan Bian
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Bo Yang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Zhengcunxiao Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Jiayu Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Fei Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Feng Yuan
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University Tianjin 300071 China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 China
| |
Collapse
|
13
|
Interference between copper transport systems and platinum drugs. Semin Cancer Biol 2021; 76:173-188. [PMID: 34058339 DOI: 10.1016/j.semcancer.2021.05.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023]
Abstract
Cisplatin, or cis-diamminedichloridoplatinum(II) cis-[PtCl2(NH3)2], is a platinum-based anticancer drug largely used for the treatment of various types of cancers, including testicular, ovarian and colorectal carcinomas, sarcomas, and lymphomas. Together with other platinum-based drugs, cisplatin triggers malignant cell death by binding to nuclear DNA, which appears to be the ultimate target. In addition to passive diffusion across the cell membrane, other transport systems, including endocytosis and some active or facilitated transport mechanisms, are currently proposed to play a pivotal role in the uptake of platinum-based drugs. In this review, an updated view of the current literature regarding the intracellular transport and processing of cisplatin will be presented, with special emphasis on the plasma membrane copper permease CTR1, the Cu-transporting ATPases, ATP7A and ATP7B, located in the trans-Golgi network, and the soluble copper chaperone ATOX1. Their role in eliciting cisplatin efficacy and their exploitation as pharmacological targets will be addressed.
Collapse
|
14
|
Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Murtaza G, Dumat C, Shahid M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. CHEMOSPHERE 2020; 259:127436. [PMID: 32599387 DOI: 10.1016/j.chemosphere.2020.127436] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 05/27/2023]
Abstract
Copper (Cu) is an essential metal for human, animals and plants, although it is also potentially toxic above supra-optimal levels. In plants, Cu is an essential cofactor of numerous metalloproteins and is involved in several biochemical and physiological processes. However, excess of Cu induces oxidative stress inside plants via enhanced production of reactive oxygen species (ROS). Owing to its dual nature (essential and a potential toxicity), this metal involves a complex network of uptake, sequestration and transport, essentiality, toxicity and detoxification inside the plants. Therefore, it is vital to monitor the biogeo-physiochemical behavior of Cu in soil-plant-human systems keeping in view its possible essential and toxic roles. This review critically highlights the latest understanding of (i) Cu adsorption/desorption in soil (ii) accumulation in plants, (iii) phytotoxicity, (iv) tolerance mechanisms inside plants and (v) health risk assessment. The Cu-mediated oxidative stress and resulting up-regulation of several enzymatic and non-enzymatic antioxidants have been deliberated at molecular and cellular levels. Moreover, the role of various transporter proteins in Cu uptake and its proper transportation to target metalloproteins is critically discussed. The review also delineates Cu build-up in plant food and accompanying health disorders. Finally, this review proposes some future perspectives regarding Cu biochemistry inside plants. The review, to a large extent, presents a complete picture of the biogeo-physiochemical behavior of Cu in soil-plant-human systems supported with up-to-date 10 tables and 5 figures. It can be of great interest for post-graduate level students, scientists, industrialists, policymakers and regulatory authorities.
Collapse
Affiliation(s)
- Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Aneeza Sardar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Abrar Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058, Toulouse, Cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326, Auzeville-Tolosane, France; Association Réseau-Agriville, France
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan. http://reseau-agriville.com/
| |
Collapse
|
15
|
Chai LX, Dong K, Liu SY, Zhang Z, Zhang XP, Tong X, Zhu FF, Zou JZ, Wang XB. A putative nuclear copper chaperone promotes plant immunity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6684-6696. [PMID: 32865553 PMCID: PMC7586746 DOI: 10.1093/jxb/eraa401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/26/2020] [Indexed: 05/08/2023]
Abstract
Copper is essential for many metabolic processes but must be sequestrated by copper chaperones. It is well known that plant copper chaperones regulate various physiological processes. However, the functions of copper chaperones in the plant nucleus remain largely unknown. Here, we identified a putative copper chaperone induced by pathogens (CCP) in Arabidopsis thaliana. CCP harbors a classical MXCXXC copper-binding site (CBS) at its N-terminus and a nuclear localization signal (NLS) at its C-terminus. CCP mainly formed nuclear speckles in the plant nucleus, which requires the NLS and CBS domains. Overexpression of CCP induced PR1 expression and enhanced resistance against Pseudomonas syringae pv. tomato DC3000 compared with Col-0 plants. Conversely, two CRISPR/Cas9-mediated ccp mutants were impaired in plant immunity. Further biochemical analyses revealed that CCP interacted with the transcription factor TGA2 in vivo and in vitro. Moreover, CCP recruits TGA2 to the PR1 promoter sequences in vivo, which induces defense gene expression and plant immunity. Collectively, our results have identified a putative nuclear copper chaperone required for plant immunity and provided evidence for a potential function of copper in the salicylic pathway.
Collapse
Affiliation(s)
- Long-Xiang Chai
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Dong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Song-Yu Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao-Peng Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xin Tong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fei-Fan Zhu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing-Ze Zou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
16
|
Inkol JM, Poon AC, Mutsaers AJ. Inhibition of copper chaperones sensitizes human and canine osteosarcoma cells to carboplatin chemotherapy. Vet Comp Oncol 2020; 18:559-569. [PMID: 32060984 DOI: 10.1111/vco.12579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OSA) is the most common primary bone cancer in children, adolescents and dogs. Current combination surgical and chemotherapeutic treatments have increased survival. However, in recurrent or metastatic disease settings, the prognosis significantly decreases, representing an urgent need for better second-line and novel chemotherapeutics. The current gold standard for combination chemotherapy in OSA often includes a platinum agent, for example, cisplatin or carboplatin. These platinum agents are shuttled within the cell via copper transporters. Recent interest in targeting copper transport has been directed towards antioxidant protein 1 (Atox1) and copper chaperone for superoxide dismutase 1 (CCS), with Atox1 demonstrating the ability to aggregate platinum agents, preventing them from forming DNA adducts. DC_AC50 is a small molecule inhibitor of both Atox1 and CCS. To assess the impact of targeting these pathways on chemotherapy response, two human and two canine OSA cell lines were utilized. After treatment with single agent or combination drugs, cell viability was evaluated and pharmacological synergism calculated using the combination index method. Apoptosis, cell cycle distribution, clonogenic survival and migration were also evaluated. DC_AC50 synergised with carboplatin in combination treatment of human and canine OSA cells to reduce cancer cell viability. DC_AC50-treated cells were significantly less mitotically active, as demonstrated by decreased expression of phospho-histone H3 and cell cycle analysis. DC_AC50 also potentiated carboplatin-induced apoptosis in OSA cells and decreased clonogenic survival. Finally, DC_AC50 reduced the migratory ability of OSA cells. These results justify further investigation into inhibiting intracellular copper chaperones as a means of reducing/preventing acquired chemotherapy resistance.
Collapse
Affiliation(s)
- Jordon M Inkol
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Andrew C Poon
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Anthony J Mutsaers
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration. Proc Natl Acad Sci U S A 2020; 117:2014-2019. [PMID: 31932435 PMCID: PMC6995000 DOI: 10.1073/pnas.1910722117] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copper ions are needed for several hallmarks of cancer. However, the involved pathways, mechanisms, and copper-binding proteins are mostly unknown. We recently found that cytoplasmic Antioxidant 1 copper chaperone (Atox1), which is up-regulated in breast cancer, is localized at the lamellipodia edges of aggressive breast cancer cells. To reveal molecular insights into a putative role in cell migration, we here investigated breast cancer cell (MDA-MB-231) migration by video microscopy as a function of Atox1. Tracking of hundreds of individual cells (per condition) over a 9-h time series revealed that cell migration velocity and directionality are significantly reduced upon Atox1 silencing in the cells. Because silencing of the copper transporter ATP7A also reduced cell migration, these proteins appear to be on the same pathway, suggesting that their well-known copper transport activity is involved. In-cell proximity ligation assays demonstrated that Atox1, ATP7A, and the proenzyme of lysyl oxidase (LOX; copper-loaded via ATP7A) are all in close proximity and that LOX activity is reduced upon Atox1 silencing in the cells. Since LOX is an established player in cancer cell migration, our results imply that Atox1 mediates breast cancer cell migration via coordinated copper transport in the ATP7A-LOX axis. Because individual cell migration is an early step in breast cancer metastasis, Atox1 levels in tumor cells may be a predictive measure of metastasis potential and serve as a biomarker for copper depletion therapy.
Collapse
|
18
|
Horvath I, Blockhuys S, Šulskis D, Holgersson S, Kumar R, Burmann BM, Wittung-Stafshede P. Interaction between Copper Chaperone Atox1 and Parkinson's Disease Protein α-Synuclein Includes Metal-Binding Sites and Occurs in Living Cells. ACS Chem Neurosci 2019; 10:4659-4668. [PMID: 31600047 DOI: 10.1021/acschemneuro.9b00476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alterations in copper ion homeostasis appear coupled to neurodegenerative disorders, but mechanisms are unknown. The cytoplasmic copper chaperone Atox1 was recently found to inhibit amyloid formation in vitro of α-synuclein, the amyloidogenic protein in Parkinson's disease. As α-synuclein may have copper-dependent functions, and free copper ions promote α-synuclein amyloid formation, it is important to characterize the Atox1 interaction with α-synuclein on a molecular level. Here we applied solution-state nuclear magnetic resonance spectroscopy, with isotopically labeled α-synuclein and Atox1, to define interaction regions in both proteins. The α-synuclein interaction interface includes the whole N-terminal part up to Gln24; in Atox1, residues around the copper-binding cysteines (positions 11-16) are mostly perturbed, but additional effects are also found for residues elsewhere in both proteins. Because α-synuclein is N-terminally acetylated in vivo, we established that Atox1 also inhibits amyloid formation of this variant in vitro, and proximity ligation in human cell lines demonstrated α-synuclein-Atox1 interactions in situ. Thus, this interaction may provide the direct link between copper homeostasis and amyloid formation in vivo.
Collapse
Affiliation(s)
- Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Stéphanie Blockhuys
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Darius Šulskis
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Stellan Holgersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
19
|
Generation of a genetically modified human embryonic stem cells expressing fluorescence tagged ATOX1. Stem Cell Res 2019; 41:101631. [PMID: 31704540 PMCID: PMC6939864 DOI: 10.1016/j.scr.2019.101631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 11/23/2022] Open
Abstract
ATOX1 is a copper chaperone involved in intracellular copper homeostasis, cell proliferation, and tumor progression. To investigate the physiologically relevant molecular mechanism of ATOX1 by using imaging-based approaches, we genetically modified ATOX1 in H1 hESCs to express mCherry-ATOX1 fusion protein under endogenous regulatory machinery. The fluorescence engineered hESC clone maintains characteristic stem cell features and can differentiate to all three germ layers, serving as a unique tool to dissect the role of ATOX1 in various cellular processes.
Collapse
|
20
|
Kim YJ, Bond GJ, Tsang T, Posimo JM, Busino L, Brady DC. Copper chaperone ATOX1 is required for MAPK signaling and growth in BRAF mutation-positive melanoma. Metallomics 2019; 11:1430-1440. [PMID: 31317143 DOI: 10.1039/c9mt00042a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper (Cu) is a tightly regulated micronutrient that functions as a structural or catalytic cofactor for specific proteins essential for a diverse array of biological processes. While the study of the extremely rare genetic diseases, Menkes and Wilson, has highlighted the requirement for proper Cu acquisition and elimination in biological systems for cellular growth and proliferation, the importance of dedicated Cu transport systems, like the Cu chaperones ATOX1 and CCS, in the pathophysiology of cancer is not well defined. We found that ATOX1 was significantly overexpressed in human blood, breast, and skin cancer samples, while CCS was significantly altered in human brain, liver, ovarian, and prostate cancer when compared to normal tissue. Further analysis of genetic expression data in Cancer Cell Line Encyclopedia (CCLE) revealed that ATOX1 is highly expressed in melanoma cell lines over other cancer cell lines. We previously found that Cu is required for BRAFV600E-driven MAPK signaling and melanomagenesis. Here we show that genetic loss of ATOX1 decreased BRAFV600E-dependent growth and signaling in human melanoma cell lines. Pharmacological inhibition of ATOX1 with a small molecule, DCAC50, decreased the phosphorylation of ERK1/2 and reduced the growth of BRAF mutation-positive melanoma cell lines in a dose-dependent manner. Taken together, these results suggest that targeting the Cu chaperone ATOX1 as a novel therapeutic angle in BRAFV600E-driven melanomas.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gavin J Bond
- Biochemistry Major Program, Department of Chemistry, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Tsang
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica M Posimo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|