1
|
Kumar H, Mandal SK, Gogoi P, Kanaujia SP. Structural and functional role of invariant water molecules in matrix metalloproteinases: a data-mining approach. J Biomol Struct Dyn 2022; 40:10074-10085. [PMID: 34121627 DOI: 10.1080/07391102.2021.1938683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases known to degrade extracellular matrix (ECM). Being involved in many biological and physiological processes of tissue remodeling, MMPs play a crucial role in many pathological conditions such as arthritis, cancer, cardiovascular diseases, etc. Typically, MMPs possess a propeptide, a zinc-containing catalytic domain, a hinge region and a hemopexin domain. Based on their structural domain organization and substrates, MMPs are classified into six different classes, viz. collagenases, stromelysins, gelatinases, matrilysins, membrane-type and other MMPs. As per previous studies, a set of invariant water (IW) molecules of MMP-1 (a collagenase) play a significant role in stabilizing their catalytic domain. However, a functional role of IW molecule in other classes of MMPs has not been reported yet. Thus, in this study, IW molecules of MMPs from different classes were located and their plausible role(s) have been assigned. The results suggest that IW molecules anchor the structurally and functionally essential metal ions present in the vicinity of the active site of MMPs. Further, they (in)directly interlink different structural features and bridge the active site metal ions of MMPs. This study provides the key IW molecules that are structurally and functionally relevant to MMPs and hence, in turn, might facilitate the development of potent generalized inhibitor(s) against different classes of MMPs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Biosciences and Bioengineering,Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Suraj Kumar Mandal
- Department of Biosciences and Bioengineering,Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Prerana Gogoi
- Department of Biosciences and Bioengineering,Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering,Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
How does nintedanib overcome cancer drug-resistant mutation of RET protein-tyrosine kinase: insights from molecular dynamics simulations. J Mol Model 2021; 27:337. [PMID: 34725737 DOI: 10.1007/s00894-021-04964-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022]
Abstract
Targeted drug therapies represent a therapeutic breakthrough in the treatment of human cancer. However, the emergence of acquired resistance inevitably compromises therapeutic drugs. Rearranged during transfection (RET) proto-oncogene, which encodes a receptor tyrosine kinase, is a target for several kinds of human cancer such as thyroid, breast, and colorectal carcinoma. A single mutation L881V at the RET kinase domain was found in familial medullary thyroid carcinoma. Nintedanib can effectively inhibit the RET L881V mutant, whereas its analog compound 1 is unable to combat this mutant. However, the underlying mechanism was still unexplored. Here, molecular dynamics (MD) simulations, binding free energy calculations, and structural analysis were performed to uncover the mechanism of overcoming the resistance of RET L881V mutant to nintedanib. Energetic analysis revealed that the L881V mutant remained sensitive to the treatment of nintedanib, whereas it was insensitive to the compound 1. Structural analysis further showed that the distribution of K758, D892, and N879 network had a detrimental effect on the binding of compound 1 to the L881V mutant. The obtained results may provide insight into the mechanism of overcoming resistance in the RET kinase.
Collapse
|
3
|
Sharma A, Gogoi P, Chandravanshi M, Kanaujia SP. Water-mediated structural rearrangement establishes active conformation of caspases for apoptosis and inflammation. J Biomol Struct Dyn 2021; 40:6013-6026. [PMID: 33491574 DOI: 10.1080/07391102.2021.1875884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Caspases are cysteine-dependent aspartate-specific proteases that play a crucial role in apoptosis (or programmed cell death) and inflammation. Based on their function, caspases are majorly categorized into apoptotic (initiator/apical and effector/executioner) and inflammatory caspases. Caspases undergo transition from an inactive zymogen to an active caspase to accomplish their function. This transition demands structural rearrangements which are most prominent at the active site loops and are imperative for the catalytic activity of caspases. In effector caspase-3, the structural rearrangement in the active site loop is shown to be facilitated by a set of invariant water (IW) molecules. However, the atomic details involving their role in stabilizing the active conformation have not been reported yet. Moreover, it is not known whether water molecules are essential for the active conformation in all caspases. Thus, in this study, we located IW molecules in initiator, effector, and inflammatory caspases to understand their precise role in rendering the structural arrangement of active caspases. Furthermore, IW molecules involved in anchoring the fragments of the protomer and rendering regulated flaccidity to caspases were identified. Location and identification of IW molecules interacting with amino acid residues involved in establishing the active conformation in the caspases might facilitate the design of potent inhibitors during up-regulated caspase activity in neurodegenerative and immune disorders. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anjaney Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Prerana Gogoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Monika Chandravanshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
4
|
Ding F, Peng W, Peng YK, Liu BQ. Elucidating the potential neurotoxicity of chiral phenthoate: Molecular insight from experimental and computational studies. CHEMOSPHERE 2020; 255:127007. [PMID: 32416396 DOI: 10.1016/j.chemosphere.2020.127007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chiral organophosphorus pollutants are existed ubiquitously in the ecological environment, but the enantioselective toxicities of these nerve agents to humans and their molecular bases have not been fully elucidated. Using experimental and computational approaches, this story was to explore the neurotoxic response process of the target acetylcholinesterase (AChE) to chiral phenthoate and further decipher the microscopic mechanism of such toxicological effect at the enantiomeric level. The results showed that the toxic reaction of AChE with chiral phenthoate exhibited significant enantioselectivity, and (R)-phenthoate (K=1.486 × 105 M-1) has a bioaffinity for the nerve enzyme nearly three times that of (S)-phenthoate (K=4.503 × 104 M-1). Dynamic research outcomes interpreted the wet experiments, and the inherent conformational flexibility of the target enzyme has a great influence on the enantioselective neurotoxicological action processes, especially reflected in the conformational changes of the three key loop regions (i.e. residues His-447, Gly-448, and Tyr-449; residues Gly-122, Phe-123, and Tyr-124; and residues Thr-75, Leu-76, and Tyr-77) around the reaction patch. This was supported by the quantitative results of conformational studies derived from circular dichroism spectroscopy (α-helix: 34.7%→30.2%/31.6%; β-sheet: 23.6%→19.5%/20.7%; turn: 19.2%→22.4%/21.9%; and random coil: 22.5%→27.9%/25.8%). Meanwhile, via analyzing the modes of toxic action and free energies, we can find that (R)-phenthoate has a strong inhibitory effect on the enzymatic activity of AChE, as compared with (S)-phenthoate, and electrostatic energy (-23.79/-17.77 kJ mol-1) played a critical role in toxicological reactions. These points were the underlying causes of chiral phenthoate displaying different degrees of enantioselective neurotoxicity.
Collapse
Affiliation(s)
- Fei Ding
- Department of Environmental Science and Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
5
|
Xu F, Huang Y, Liu C, Cai X, Ji Z, Sun M, Ding S, Gu D, Yang Y. Rapid analysis of chemical composition in the active extract against α-amylase from blaps rynchopetera fairmaire by GC-MS and in silico theoretical explanation. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1625373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Fa Xu
- School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, China
- Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Yun Huang
- Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Chang Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Zhenni Ji
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Meiqi Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Shiyu Ding
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dongyu Gu
- School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|