1
|
Andreu-Sánchez S, Chen W, Stiller J, Zhang G. Multiple origins of a frameshift insertion in a mitochondrial gene in birds and turtles. Gigascience 2021; 10:giaa161. [PMID: 33463679 PMCID: PMC7814300 DOI: 10.1093/gigascience/giaa161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND During evolutionary history, molecular mechanisms have emerged to cope with deleterious mutations. Frameshift insertions in protein-coding sequences are extremely rare because they disrupt the reading frame. There are a few known examples of their correction through translational frameshifting, a process that enables ribosomes to skip nucleotides during translation to regain proper reading frame. Corrective frameshifting has been proposed to act on the single base pair insertion at position 174 of the mitochondrial NADH dehydrogenase subunit 3 gene (ND3) that has been observed in several turtles and birds. However, the relatively sparse taxonomic representation has hampered our understanding of the evolution of this insertion in vertebrates. RESULTS Here, we analyzed 87,707 ND3 sequences from 10,309 vertebrate taxa to reveal the evolutionary history of this insertion and its common genomic characteristics. We confirmed that the insertion only appears in turtles and birds and reconstructed that it evolved independently in both groups with complex patterns of gains and losses. The insertion was observed in almost all bird orders but was absent in all members of the diverse Passeriformes. We found strong conservation in the nucleotides surrounding the insertion in both turtles and birds, which implies that the insertion enforces structural constraints that could be involved in its correction. CONCLUSIONS Our study demonstrates that frameshifts can be widespread and can be retained for millions of years if they are embedded in a conserved sequence theme.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Present Address: University of Groningen, University Medical Center Groningen, Department of Pediatrics, 9700 RB Groningen, Netherlands
| | - Wanjun Chen
- China National Genebank, BGI-Shenzhen, Beishan Industrial Zone, 518083 Shenzhen, China
| | - Josefin Stiller
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- China National Genebank, BGI-Shenzhen, Beishan Industrial Zone, 518083 Shenzhen, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, 650223 Kunming, China
| |
Collapse
|
2
|
Demongeot J, Moreira A, Seligmann H. Negative CG dinucleotide bias: An explanation based on feedback loops between Arginine codon assignments and theoretical minimal RNA rings. Bioessays 2020; 43:e2000071. [PMID: 33319381 DOI: 10.1002/bies.202000071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Theoretical minimal RNA rings are candidate primordial genes evolved for non-redundant coding of the genetic code's 22 coding signals (one codon per biogenic amino acid, a start and a stop codon) over the shortest possible length: 29520 22-nucleotide-long RNA rings solve this min-max constraint. Numerous RNA ring properties are reminiscent of natural genes. Here we present analyses showing that all RNA rings lack dinucleotide CG (a mutable, chemically instable dinucleotide coding for Arginine), bearing a resemblance to known CG-depleted genomes. CG in "incomplete" RNA rings (not coding for all coding signals, with only 3-12 nucleotides) gradually decreases towards CG absence in complete, 22-nucleotide-long RNA rings. Presumably, feedback loops during RNA ring growth during evolution (when amino acid assignment fixed the genetic code) assigned Arg to codons lacking CG (AGR) to avoid CG. Hence, as a chemical property of base pairs, CG mutability restructured the genetic code, thereby establishing itself as genetically encoded biological information.
Collapse
Affiliation(s)
- Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, France
| | - Andrés Moreira
- Departamento de Informática, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Hervé Seligmann
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, France.,The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Demongeot J, Seligmann H. Codon assignment evolvability in theoretical minimal RNA rings. Gene 2020; 769:145208. [PMID: 33031892 DOI: 10.1016/j.gene.2020.145208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
Genetic code codon-amino acid assignments evolve for 15 (AAA, AGA, AGG, ATA, CGG, CTA, CTG. CTC, CTT, TAA, TAG, TCA, TCG, TGA and TTA (GNN codons notably absent)) among 64 codons (23.4%) across the 31 genetic codes (NCBI list completed with recently suggested green algal mitochondrial genetic codes). Their usage in 25 theoretical minimal RNA rings is examined. RNA rings are designed in silico to code once over the shortest length for all 22 coding signals (start and stop codons and each amino acid according to the standard genetic code). Though designed along coding constraints, RNA rings resemble ancestral tRNA loops, assigning to each RNA ring a putative anticodon, a cognate amino acid and an evolutionary genetic code integration rank for that cognate amino acid. Analyses here show 1. biases against/for evolvable codons in the two first vs last thirds of RNA ring coding sequences, 2. RNA rings with evolvable codons have recent cognates, and 3. evolvable codon and cytosine numbers in RNA ring compositions are positively correlated. Applying alternative genetic codes to RNA rings designed for nonredundant coding according to the standard genetic code reveals unsuspected properties of the standard genetic code and of RNA rings, notably on codon assignment evolvability and the special role of cytosine in relation to codon assignment evolvability and of the genetic code's coding structure.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700 La Tronche, France
| | - Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel.
| |
Collapse
|
4
|
Demongeot J, Seligmann H. Deamination gradients within codons after 1<->2 position swap predict amino acid hydrophobicity and parallel β-sheet conformational preference. Biosystems 2020; 191-192:104116. [PMID: 32081715 DOI: 10.1016/j.biosystems.2020.104116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Deaminations C->T and A->G are frequent mutations producing nucleotide content gradients across genomes proportional to singlestrandedness during replication/transcription. Hence, within single codons, deamination risks increase from first to third codon positions, while second codon positions are functionally most crucial. Here genetic codes are analyzed assuming that after anticodons protected codons from deaminations, first and second codon positions swapped (N2N1N3->N1N2N3), with lowest deamination risks for N2 in presumed primitive N2N1N3 codons. N2N1N3, not standard N1N2N3, codon structure minimizes deaminations inversely proportionally to cognate amino acid hydrophobicity and parallel betasheet conformational preference. For N1N2N3, deamination minimization increases with genetic code integration order of cognate amino acids: during the presumed N2N1N3->N1N2N3 codon structure transition, protein synthesis combined direct codon-amino acid interactions for late amino acids and tRNA-based translation for early amino acids. Hence N2N1N3 codons would correspond to tRNA-free translation by spontaneous codon-amino acid affinities, and tRNA-mediated translation presumably caused N2N1N3->N1N2N3 swaps. Results show that rational, not arbitrary rules link codon and amino acid structures. Some analyses detect mitochondrial RNAs and peptides in public data corresponding to systematic position swaps, suggesting occasional swapping polymerase activity.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel.
| |
Collapse
|
5
|
Warthi G, Fournier PE, Seligmann H. Systematic Nucleotide Exchange Analysis of ESTs From the Human Cancer Genome Project Report: Origins of 347 Unknown ESTs Indicate Putative Transcription of Non-Coding Genomic Regions. Front Genet 2020; 11:42. [PMID: 32117454 PMCID: PMC7027195 DOI: 10.3389/fgene.2020.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Expressed sequence tags (ESTs) provide an imprint of cellular RNA diversity irrespectively of sequence homology with template genomes. NCBI databases include many unknown RNAs from various normal and cancer cells. These are usually ignored assuming sequencing artefacts or contamination due to their lack of sequence homology with template DNA. Here, we report genomic origins of 347 ESTs previously assumed artefacts/unknown, from the FAPESP/LICR Human Cancer Genome Project. EST template detection uses systematic nucleotide exchange analyses called swinger transformations. Systematic nucleotide exchanges replace systematically particular nucleotides with different nucleotides. Among 347 unknown ESTs, 51 ESTs match mitogenome transcription, 17 and 2 ESTs are from nuclear chromosome non-coding regions, and uncharacterized nuclear genes. Identified ESTs mapped on 205 protein-coding genes, 10 genes had swinger RNAs in several biosamples. Whole cell transcriptome searches for 17 ESTs mapping on non-coding regions confirmed their transcription. The 10 swinger-transcribed genes identified more than once associate with cancer induction and progression, suggesting swinger transformation occurs mainly in highly transcribed genes. Swinger transformation is a unique method to identify noncanonical RNAs obtained from NGS, which identifies putative ncRNA transcribed regions. Results suggest that swinger transcription occurs in highly active genes in normal and genetically unstable cancer cells.
Collapse
Affiliation(s)
- Ganesh Warthi
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel.,Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, La Tronche, France
| |
Collapse
|
6
|
Li T, Yu L, Song B, Song Y, Li L, Lin X, Lin S. Genome Improvement and Core Gene Set Refinement of Fugacium kawagutii. Microorganisms 2020; 8:microorganisms8010102. [PMID: 31940756 PMCID: PMC7023079 DOI: 10.3390/microorganisms8010102] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/01/2020] [Accepted: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
Cataloging an accurate functional gene set for the Symbiodiniaceae species is crucial for addressing biological questions of dinoflagellate symbiosis with corals and other invertebrates. To improve the gene models of Fugacium kawagutii, we conducted high-throughput chromosome conformation capture (Hi-C) for the genome and Illumina combined with PacBio sequencing for the transcriptome to achieve a new genome assembly and gene prediction. A 0.937-Gbp assembly of F. kawagutii were obtained, with a N50 > 13 Mbp and the longest scaffold of 121 Mbp capped with telomere motif at both ends. Gene annotation produced 45,192 protein-coding genes, among which, 11,984 are new compared to previous versions of the genome. The newly identified genes are mainly enriched in 38 KEGG pathways including N-Glycan biosynthesis, mRNA surveillance pathway, cell cycle, autophagy, mitophagy, and fatty acid synthesis, which are important for symbiosis, nutrition, and reproduction. The newly identified genes also included those encoding O-methyltransferase (O-MT), 3-dehydroquinate synthase, homologous-pairing protein 2-like (HOP2) and meiosis protein 2 (MEI2), which function in mycosporine-like amino acids (MAAs) biosynthesis and sexual reproduction, respectively. The improved version of the gene set (Fugka_Geneset _V3) raised transcriptomic read mapping rate from 33% to 54% and BUSCO match from 29% to 55%. Further differential gene expression analysis yielded a set of stably expressed genes under variable trace metal conditions, of which 115 with annotated functions have recently been found to be stably expressed under three other conditions, thus further developing the "core gene set" of F. kawagutii. This improved genome will prove useful for future Symbiodiniaceae transcriptomic, gene structure, and gene expression studies, and the refined "core gene set" will be a valuable resource from which to develop reference genes for gene expression studies.
Collapse
Affiliation(s)
- Tangcheng Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (T.L.); (L.Y.); (L.L.)
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (T.L.); (L.Y.); (L.L.)
| | - Bo Song
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China;
| | - Ling Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (T.L.); (L.Y.); (L.L.)
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (T.L.); (L.Y.); (L.L.)
- Correspondence: (X.L.); (S.L.)
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (T.L.); (L.Y.); (L.L.)
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China
- Correspondence: (X.L.); (S.L.)
| |
Collapse
|